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Nonlinear equations of deformation of atomic lattices
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This paper presents vector, scalar and variational forms of motion/equilibrium
equations of atomic lattices. An automated method is suggested for constructing the
matrices and vectors of equations based on summing the corresponding local matrices
and vectors of atomic pairs. The exact expression for the tangential stiffness matrix of
an atomic pair is obtained where both the change in the segment length of a straight
line connecting atoms in this pair and rotation of the segment are taken into account.

1. Introduction

According to present-day ideas of solid-state physics (cf., [1]), many solids
under common conditions are either single crystals or polycrystals. The single
crystal is some spatial atomic lattice with an ordered structure, and the poly-
crystal is a set of single crystals with various spatial orientations.

A solution of nonlinear problems of deformation of atomic lattices is a perti-
nent question, for example, in connection with an attempt to describe adequately
the initiation and propagation of the crack in a solid under tensile and shear
loads. In the context of continuum mechanics, phenomenological models of solid
fracture offer no correct pattern of stress and strain distribution in the vicinity
of a crack. In particular, the solution of the problems in the framework of linear
fracture mechanics leads to infinite values of stresses and strains at the crack
tip for the linear-elastic material model. There is thus a conflict between these
results and finite values of interaction forces between atoms that make up the
solid. The attempts to construct a more correct model of solid fracture result
in the description of initiation and propagation of a crack at the atomic level
[2, 3] when buckling of an atomic lattice induces the initiation of a crack. A wide
difference between tensile failure loads obtained experimentally and theoretical
tensile failure loads is due to the presence of foreign atoms and vacancies in an
atomic chain [4].

The objective of the present work is to develop various novel formulations
of motion/equilibrium equations for atomic lattices. Vector, scalar and varia-
tional formulations of the equations are given. One of the complicated things in
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constructing a motion/equilibrium system of equations for an atomic lattice is
to obtain the matrices and vectors of such a system. Korobeynikov [5, 6] has
proposed to apply a well-developed technique for numerical solution of nonlinear
problems of solid mechanics by the FEM (finite element method) (cf., [7–10])
for formulating nonlinear problems of deformation of atomic lattices. In doing
so, each atomic pair is considered as a ‘finite element’ for which formulations
of the tangential stiffness matrix and vector of internal forces have been ob-
tained. Application of the FEM technique is based on using scalar forms of the
motion/equilibrium equations, but the matrices and vectors obtained are finally
used to yield a system of equations in vector, scalar and variational formulations.

In [5, 6], the tangential stiffness matrix of an atomic pair is obtained with
allowance for change only in the segment length directed along the line of action
of the central force of interaction between the atoms. In the present work, a re-
fined formulation of this matrix is developed with allowance for rotation of this
segment.

2. Statement of the problem of deformation of an atomic lattice

The ordered set of the atoms (molecules) in equilibrium state (by “equilibrium
state” we generally mean both static and dynamic states of a lattice) under the
action of internal (interatomic) and external forces (at dynamic equilibrium state
the inertial forces are included in the external ones) will be termed an atomic
lattice. In the present work, we will consider the internal forces corresponding
only to central forces of interaction between atoms. Suppose the action of the
central atomic forces follows from the potential

(2.1) f =
∂V (r)

∂r
, r ∈ (0, ∞),

where V (r) is the potential energy of the central atomic force at the distance r
between atoms in an atomic pair (Fig. 1a).

We consider two kinds of this function (cf., [1]):
• the Lennard–Jones (12-6) potential

V (r) = D

[(re
r

)12
− 2

(re
r

)6
]
,

• and the Morse potential

(2.2) V (r) = D
[
e−2α(r−re) − 2e−α(r−re)

]
,

where D is the energy of an atomic bond (the depth of a potential hole), re is
the distance between atoms corresponding to the minimum of potential energy
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a) b)

c)

Fig. 1. Potential V , force f , and value c versus the distance r between atoms (dependences
for the Morse potential with constants: re = 3, α = 1.4, D = 0.3 are given):

a) V versus r, b) f versus r, c) c versus r.

of the atomic bond, and α is the prescribed value determining the potential form
(cf., Eq. (2.2)).

A typical dependence of the central force f of atom interaction in an atomic
pair of a lattice at the distance r between atoms is shown in Fig. 1b (cf., [1]).
For r = re (the equilibrium state in the absence of the external forces act-
ing on an atomic pair), the central force of interaction between atoms is equal
to zero; for r < re, a (negative) repulsion force acts between the atoms; for
r > re, a (positive) attractive force acts between the atoms, the force taking
the maximum value fm at some distance rm, so that the central force of inter-
action between atoms is weaker as the atoms move away from each other and
this force decreases by one order of magnitude from its maximum value at dis-
tance 2re.

In conformity with Eq. (2.1), the first derivative of the potential V (r) suggests
the expression of the central force of interaction between atoms. Further we need
the second derivative of the potential

(2.3) c ≡ ∂f

∂r
=
∂2V (r)

∂r2
,

that characterizes the rate of change in the central force f depending on r
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(Fig. 1 c). We find explicit expressions of f , c, rm and fm for the considered
potential functions:

• the Lennard–Jones (12–6) function

f =
12D

r

[(re
r

)6
−
(re
r

)12
]
, c =

12D

r2

[
13
(re
r

)12
− 7

(re
r

)6
]
,

rm =
6

√
13

7
re, fm =

72D

13re

(
7

13

)7/6

,

• the Morse function

f = 2Dα[e−α(r−re) − e−2α(r−re)], c = 2Dα2[2e−2α(r−re) − e−α(r−re)],

rm = re +
ln 2

α
, fm =

Dα

2
.

Suppose that the atomic lattice consists of K atoms. Each atom in the atomic
lattice is under the action of both central forces (short-range interaction r ≈ re
follows from the nearest neighbors; long-range interaction r & 2re results from
more remote neighbors) and external forces (Fig. 2).

It is noted that the character of external forces is of no importance for solving
the problem of deformation of a lattice; in particular, these forces may also be
the central forces of interaction between atoms, which are not included in the
atomic lattice considered in the statement of the problem. It is assumed that
the external forces are known, i.e. both their magnitude and direction of their
action. The vector equation of balance of the forces acting on the k-th atom
(k = 1,K) in a lattice takes the form

(2.4)

Mk∑

m=1

fm
k = Rk −mkük.

Henceforth, Mk is the number of atoms in a lattice, the action of the internal
forces of these atoms on the k-th atom being taken into account; fm

k is the central
interaction force of them-th atomic pair; Rk andmkük are the vectors of external
and inertial forces acting on the k-th atom (mk is the mass of the k-th atom;
uk is the displacement vector of the k-th atom; henceforth, a superimposed
dot denotes the derivative of the value with respect to time t, i.e., ük is the
acceleration vector of the k-th atom). Suppose that Mk of the neighbor atoms
interact with the k-th atom, the number Mk being arbitrary: the more influence
of neighbor atoms (including remote atoms: r & 2re) on behavior of the k-th
atom is taken into account, the larger is the number Mk. In most cases, only the
action of the nearest neighbors (r ≈ re) can be accounted for. It should be noted
that the number Mk may vary from atom to atom.
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Fig. 2. Internal force f
m
k and external force Rk acting on the k-th atom (1 6 k 6 K).

3. Vector form of motion/equilibrium equations of atomic lattice

The motion of each atom in a lattice depends on motions of other atoms. In
the general case, since values of the internal forces fm

k in Eq. (2.4) are unknown,
this equation is not solved separately for each atom. A set of all equations of the
form (2.4) yields the system of N = 3K of nonlinear ordinary differential equa-
tions relative to the i-th (i = 1, 2, 3) components of displacement vectors of the
k-th (k = 1,K) atoms. Let us introduce a column vector of atom displacement
components in a lattice

(3.1) U = [u1
1, u

1
2, u

1
3, u

2
1, u

2
2, u

2
3, . . . , u

K
1 , u

K
2 , u

K
3 ]T .

Henceforth, the upper index T denotes a transposition operation and uk
i is the

i-th component of the displacement vector of the k-th atom in an atomic lattice.
The sought system of equations with initial conditions can be written in the
form of a single vectorial nonlinear motion equation of an atomic lattice

(3.2) F(U) = R − MÜ, U(0) = U0, U̇(0) = V0.

Here F is the internal force vector of a lattice, R is the external force vector of
a lattice, Ü is the acceleration vector of a lattice; U0 and V0 are the prescribed
vectors of initial values of the displacement vector U and velocity vector U̇ of an
atomic lattice, respectively; and M is the diagonal positive definite mass matrix
of a lattice

diag(M) = [m1, m1, m1, m2, m2, m2, . . . ,mK , mK , mK ].

If inertial forces may be neglected, Eq. (3.2) is reduced to the nonlinear
vectorial algebraic equilibrium equation (to the system of N scalar algebraic
equations) of an atomic lattice

(3.3) F(U) = R.
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It should be noted that the number N of scalar equations in systems (3.2) and
(3.3) is independent of the values Mk (k = 1,K) corresponding to the number
of neighbors being considered for the k-th atom.

Components uk
i of the vector U in Eqs. (3.2) and (3.3) are assumed to be

independent degrees of freedom. These equations should be modified if restric-
tions are imposed on the degrees of freedom of some atoms. Denoting a degree of
freedom uk

i (i = 1, 2, 3, k = 1,K) by Un (n = 1, N), we can rewrite expression
(3.1) for the vector U in the form

U = [U1, U2, . . . , UN ]T .

Let the restrictions on some degrees of freedom of an atomic lattice be imposed
in the form

(3.4) Uj(t) = U∗

j (t) (1 6 j 6 N),

where the asterisk denotes a prescribed value. To illustrate such restrictions, we
give the following example. Let prescribed values be assigned to six components
of the displacement vector in order to eliminate the motion of a lattice as a single
rigid whole (three components of the displacement vector and three rotations
relative to the axes of the Cartesian coordinate system). It is necessary to apply
such elimination for solving the system (3.3), and it is useful but not necessary
to apply elimination for solving the system (3.2).

The inclusion of restrictions (3.4) into Eqs. (3.2) and (3.3) can be performed
in different ways. First, the restrictions (3.4) can be introduced directly into
Eqs. (3.2) and (3.3) by rejection of the j-th equations from these systems and
modifying the remaining equations (transferring the members containing Uj val-
ues from the left-hand sides of equations to the right-hand ones). Following [9],
this method of inclusion of restrictions can be referred to as the condensation
of a system of equations. Rejecting the prescribed components with numbers j
(1 6 j 6 N) from the vector U and renumbering the remaining independent
degrees of freedom, we introduce a condensed displacement vector of an atomic
lattice

Û = [U1, U2, . . . , UNEQ]T

where NEQ = N − J is the number of independent degrees of freedom of an
atomic lattice (J is the total number of restrictions of the form (3.4)). The con-
densation method allows restrictions in Eq. (3.4) to be taken exactly into ac-
count. But the method is complicated enough in practical realization and it does
not allow to define the reaction forces corresponding to the prescribed displace-
ments.

Second, restrictions (3.4) can be taken into account also by using the clas-

sical methods of introducing restrictions into equations, such as the methods of
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Lagrangian multiplier or penalty function (cf., [7, 8]). The Lagrangian multi-

plier method provides a faithful inclusion of restrictions and determination of

the reaction forces, but it is inconvenient in practical realization and, moreover,

the method leads to an increase in the number of unknown values since J un-

known Lagrangian multipliers are added to the sought N independent degrees

of freedom (in this method, Uj degrees of freedom in Eq. (3.4) are assumed to

be independent). The total number of both the degrees of freedom and scalar

equations in Eqs. (3.2) and (3.3) becomes equal to NEQ = N + J . The penalty

function method is more efficient. When using this method, equations in systems

(3.2) and (3.3) corresponding to the j-th degrees of freedom in Eq. (3.4) are mod-

ified, the total number of these equations being unchanged (i.e., NEQ = N). The

reaction forces are also defined. However, restrictions in Eq. (3.4) are satisfied

approximately.

In order to avoid introduction of additional notation, the modified systems

of equations of the order NEQ (as a result of restrictions being accounted by

one of the presented methods) are written in the same form as it was shown

before in Eqs. (3.2) and (3.3). It is difficult to obtain an expression of the in-

ternal force vector F by a direct composition of vectors of the forces applied

to atoms in a lattice. It is simpler to derive an expression for this vector based

on the scalar form of the motion/equilibrium equations, which are given in the

following section.

4. Scalar form of motion/equilibrium equations of an atomic lattice

Taking the scalar product of both the left- and right-hand sides of vector

equation (3.2) by the arbitrary vector W ∈ RNEQ, we obtain the scalar equation

(4.1) WT F(U) = WT R − WT MÜ ∀ W ∈ RNEQ.

On the contrary, matching special expressions of vectors W, we may obtain each

scalar equation in the system (3.2) from Eq. (4.1). That is, vector equation (3.2)

and scalar equation (4.1) are equivalent (cf., [9]).

If by the ‘vector W’ we mean a vector of possible (virtual) velocities of lattice

atoms (the velocities do not necessarily satisfy the motion equations (3.2)), then

Eq. (4.1) expresses the equality of virtual power balance: the virtual power of

internal forces is equal to that of external forces (including inertial forces). If by

the ‘vector W’ we mean a vector of virtual displacement of an atomic lattice

δU, then Eq. (4.1) can be rewritten as

(4.2) δUT F(U) = δUT R − δUT MÜ ∀ δU ∈ RNEQ.
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In mechanics, scalar equation (4.1) given in the form of Eq. (4.2) is commonly

referred to as an equation of the virtual work principle. This principle is formu-

lated as follows: virtual work of the internal forces (work of the internal forces

at virtual displacements) is equal to that of the external forces (including the

inertial forces).

The virtual power of internal forces of an atomic lattice w is expanded addi-

tively into virtual powers of the internal forces of all atomic pairs wm (m = 1,M),

i.e.,

(4.3) w =
M∑

m=1

wm,

where M is the total number of atomic pairs of a lattice that are considered in

the mathematical model. The following notations are introduced here

(4.4) w ≡ WT F(U), wm ≡ WT F̃m(U) ∀ W ∈ RNEQ,

where F̃m(U) is the internal force vector of an atomic pair. From Eqs. (4.3) and

(4.4) and taking the vector W as arbitrary, we have

(4.5) F(U) =
M∑

m=1

F̃m(U).

The equality in Eq. (4.5) allows to pass from the definition of the internal force

vector F of an atomic lattice to the definition of the internal force vector F̃m of

the m-th atomic pair. It is more appropriate to define this vector by going from

the global approach to a local one (cf., [9]). Since only two atoms are needed to

define a virtual power of the internal force of an atomic pair, the definition of

virtual power of the internal force we of the e-th (1 6 e 6 M) atomic pair may

be written as

(4.6) we = We TFe(Ue),

where We ∈ R6 is an arbitrary vector of the form

We ≡ [W1, W2, W3, W4, W5, W6]
T ,

so that W1, W2, W3 are components of the virtual velocity vector of the first

atom, and W4, W5, W6 are the same components of the second atom in the

atomic pair being considered (Fig. 3).

Note that numbers #1 and #2 are assigned to atoms arbitrarily. The dis-

placement vector Ue ∈ R6 of an atomic pair is defined as follows:

(4.7) Ue ≡ [u1
1, u

1
2, u

1
3, u

2
1, u

2
2, u

2
3]

T = [U1, U2, U3, U4, U5, U6]
T ,
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where ui
j is the j-th (j = 1, 2, 3) component of the displacement vector ui of

the i-th (i = 1, 2) atom in the considered atomic pair. Note that in Eq. (4.7)
the local numbering is used, which is generally not coincident with the global
numbering of the degrees of freedom of an atomic lattice.

atom #1

atom #2
r

0

e
o

x
2

0

x
1

x
1

0

x
2

u
2

u
1

e

r

Fig. 3. Initial and deformed configurations of the k-th atomic pair.

The power of the internal forces of an atomic pair is defined as follows:

(4.8) we = fṙ.

For r, we have the expression:

(4.9) r ≡
√

rT r =
√
rkrk (k = 1, 2, 3).

Henceforth, summing is extended over repeated indices (indices run over all their
values for which they are defined), rk is the k-th component of a vector

(4.10) r ≡ x2 − x1 ⇔




r1

r2

r3


 =




x2
1

x2
2

x2
3


−




x1
1

x1
2

x1
3


 .

Here xi is the position vector of the i-th (i = 1, 2) atom, and xi
j (j = 1, 2, 3) are

its components (Fig. 3). From Eq. (4.9), we obtain

(4.11) ṙ =
1

r
rkṙk = ekṙk = eT ṙ,

where ek = rk/r (k = 1, 2, 3) are components of the unit length vector e =
[e1, e2, e3]

T

(4.12) e ≡ r/r,

directed along the segment connecting atoms #1 and #2 (Fig. 3).
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Since
xi = x0

i + ui, x0
i ≡ xi(0),

using Eq. (4.10), the vector r can be written in the form

(4.13) r = r0 + u2 − u1, r0 ≡ r(0) = x0
2 − x0

1.

Here x0
i is the position vector of the i-th (i = 1, 2) atom at the initial time t = 0.

From Eq. (4.13), we obtain

(4.14) ṙ = u̇2 − u̇1.

We introduce a matrix

D ≡ [−I, I], I ≡




1 0 0

0 1 0

0 0 1


 ,

such that expression

(4.15) ṙ = DU̇e

is valid. Substituting ṙ from Eq. (4.15) into Eq. (4.11), we obtain

(4.16) ṙ = BU̇e = U̇e T BT ,

where a row vector is introduced

(4.17) B ≡ eT D = [−e1, −e2, −e3, e1, e2, e3].

Replacing the velocity vector U̇e in Eq. (4.16) with an arbitrary virtual velocity
vector of an atomic pair We ∈ R6, substituting ṙ into Eq. (4.8) with regard to
Eq. (4.6) and in view of the fact that We is arbitrary, we obtain

(4.18) Fe(Ue) = fBT .

Note that nonlinear dependence of the vector Fe on the vector Ue in Eq. (4.18)
is implicit.

We use the standard FEM technique [7–10] to turn from definition of the
internal force vector of an atomic pair Fe in local variables to a definition of this
vector F̃e in the global ones. We introduce a Boolean localization matrix (the
elements of which consist of zeros and units) of an atomic pair Ae such that
[9, 10]

(4.19) Ue = Ae U, We = Ae W.
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From Eqs. (4.4), (4.6) and (4.19), we obtain an expression relating internal force
vectors of an atomic pair applying both the local and global approaches

(4.20) F̃e = Ae T Fe.

Following the definition of internal force vectors F̃e of all atomic pairs, the in-
ternal force vector F of a lattice is defined from Eq. (4.5).

Summing operation of internal force vectors of atomic pairs Fe to get the
internal force vector F using localization matrices Ae is referred to as an assembly
operation in the FEM literature. The symbol ‘A’ is frequently used for this
operation (cf., [9]), so that Eq. (4.5) may be rewritten as

(4.21) F(U) =
M
A

m=1
Fm(Um) ⇔ F(U) =

M∑

m=1

Am T Fm(Am U).

Vector equation (3.3) is equivalent to the scalar equilibrium equation

(4.22) WT F(U) = WT R ∀ W ∈ RNEQ,

which is obtained by rejection of the last summand in the right-hand side of
Eq. (4.1).

5. The variational formulation of equilibrium equations
of an atomic lattice

Scalar equilibrium equation (4.22) and, hence, vector equation (3.3) can be
derived using a stationarity principle of the total potential energy (the variational
formulation of equilibrium equations) of an atomic lattice. The stationarity prin-
ciple is formulated below.

Consider the total potential energy of an atomic lattice

E(U) = V (U) − UT R,

which is the sum of potential energies of the internal forces V (U) and the external
forces −UT R of an atomic lattice. The potential energy of an atomic lattice
V (U) is equal to the sum of potential energies of central forces of interatomic
interactions in all atomic pairs

(5.1) V (U) =
M∑

m=1

Ṽ m(U),

where

(5.2) Ṽ m(U) ≡ V m[r(Um)] = V m(Um) = V m(Am U)
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is the potential energy of the m-th atomic pair (see Sec. 2). Here Ṽ e(U) (1 6

e 6 M) is the potential energy of an atomic pair that is expressed in terms of
the components of the global displacement vector U of an atomic lattice, and
V e(Ue) is the potential energy of this pair expressed in terms of the displacement
vector Ue of an atomic pair using dependence r(Ue) that is obtained with the
help of Eqs. (4.9) and (4.13).

Now we find the differential of the total potential energy of an atomic lattice
in the form

(5.3) dE(U, dU) = dUT ∂V

∂U
− dUT R,

or in the component form

dE(Ui, dUj) =
∂V

∂Uk
dUk −Rk dUk (i, j, k = 1, NEQ).

The potential energy gradient of internal forces of an atomic lattice ∂V/∂U is
defined using Eqs. (5.1) and (5.2):

dV (U, dU) = dUT ∂V

∂U
=

M∑

m=1

dṼ m(U) =
M∑

m=1

dV m(Um).

Define now the differential of the potential energy of internal force of the e-th
(1 6 e 6 M) atomic pair. From Eq. (5.2), we obtain

(5.4) dV e(Ue, dUe) =
∂V e(r)

∂r

∂r

∂Ui
dUi (i = 1, 6),

where Ui are displacement vector components of an atomic pair (see Eq. (4.7)).
Equation (2.1) can be rewritten as

(5.5) f =
∂V e(r)

∂r
.

From Eqs. (4.9) and (4.12), we obtain

(5.6)
∂r

∂Ui
=

1

r
rk
∂rk
∂Ui

= ek
∂rk
∂Ui

(k = 1, 2, 3, i = 1, 6).

Rewrite Eq. (4.13)1 in the component form

(5.7) rk = r0k + u2
k − u1

k (k = 1, 2, 3).
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Using Eqs. (4.7) and (5.7), from Eq. (5.6) we obtain

(5.8)

∂r

∂U1
= −e1,

∂r

∂U2
= −e2,

∂r

∂U3
= −e3,

∂r

∂U4
= e1,

∂r

∂U5
= e2,

∂r

∂U6
= e3.

Substituting expressions (5.5) and (5.8) into Eq. (5.4) and using Eqs. (4.17) and
(4.18), we obtain

dV e = fB dUe = Fe T dUe = dUe T Fe.

From Eq. (4.19)1, we have

(5.9) dUe = Ae dU.

Then from Eqs. (4.20), (5.2), and (5.9), we get

(5.10) dV e(Ue, dUe) = dV e(Ae U,Ae dU) = dṼ e(U, dU) = dUT F̃e.

From Eqs. (4.21), (5.1) and (5.10), we obtain

(5.11) dV (U, dU) = dUT F(U).

Since (see Eq. (5.3))

(5.12) dV (U, dU) = dUT ∂V

∂U
,

then from Eqs. (5.11), (5.12) and in view of the fact that the vector dU is
arbitrary, we obtain

(5.13)
∂V

∂U
= F(U) ⇔ ∂V

∂Ui
= Fi (i = 1, NEQ).

Using Eq. (5.13), we rewrite Eq. (5.3) for the differential of the total potential
energy of an atomic lattice

(5.14) dE(U, dU) = dUT [F(U) − R] U, dU ∈ RNEQ.

Let us formulate and prove the theorem on stationarity of the total potential
energy of an atomic lattice.

Theorem 1. For an atomic lattice to be in equilibrium state it is necessary
and sufficient that its total potential energy should take a stationary value.
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P r o o f. Necessity. Let an atomic lattice be in the equilibrium state, so
that system (3.3) is realized. Then using Eq. (5.14), we obtain

(5.15) dE(U, dU) = 0 ∀ dU ∈ RNEQ,

i.e., the function E(U) takes the stationary value at the equilibrium point.
Sufficiency. Let the total potential energy take a stationary value at some

point U ∈ RNEQ, i.e. Eq. (5.15) is realized. From Eqs. (5.14) and (5.15), we
have

(5.16) dUT [F(U) − R] = 0 ∀ dU ∈ RNEQ.

By virtue of the fact that vector dU is arbitrary, Eq. (3.3) follows from Eq.
(5.16).

Note. The stationarity condition (5.16) is equivalent to the scalar equilibrium
equation (4.22). This statement follows from identification of the dU and W

vectors.

6. Equations of quasistatic deformation of an atomic lattice

Vector equation (3.3) or the equivalent scalar equation (4.22) determine the
equilibrium of an atomic lattice to which external forces are applied and/or dis-
placements of some atoms are prescribed. Since in the general case, the unique-
ness of solutions of these equations is not provided, it is more advantageous to
reformulate the problem of definition of equilibrium of a lattice as a problem of
quasistatic deformation of a lattice by defining in succession all the equilibrium
configurations in the range from the initial to final ones.

Introduce a certain monotonically increasing parameter of atomic lattice de-
formation t. The prescribed force, atom displacement, and arc length in the
(U, λ)-space can be used as this parameter (U is a displacement vector of atoms
in a lattice, λ is a scalar parameter describing the external force), etc. Further,
for brevity, the parameter t will be termed as time. Note that natural time is
always used as the deformation parameter in motion equations (3.2) and (4.1).

Differentiating left- and right-hand sides of Eq. (3.3) with respect to t, we
obtain the equilibrium equations in the rate form

(6.1) Ḟ(U) = Ṙ.

Since

(6.2) Ḟ(U) =
∂F

∂U
U̇ ⇔ Ḟi =

∂Fi

∂Uj
U̇j (i, j = 1, NEQ),
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then introducing the Hesse matrix

(6.3) K ≡ ∂F

∂U
=

∂2V

∂U∂U
⇔ Kij ≡

∂Fi

∂Uj
=

∂2V

∂Ui∂Uj
(i, j = 1, NEQ),

and adding initial conditions to the system (6.1), we get

(6.4) K(U)U̇ = Ṙ, U(0) = U0.

Herein U0 is the prescribed initial displacement vector. Following the termi-
nology adopted in the FEM application to solution of the problems of solid
mechanics, the Hesse matrix K will be termed a tangential stiffness matrix of
an atomic lattice. The symmetry of this matrix follows from Eq. (6.3): KT = K.
To define the equilibrium configurations of an atomic lattice, it is necessary to
solve the Cauchy problem (6.4) for the system of quasilinear ordinary differential
equations.

Elements of the matrix K are more convenient to define starting from the
scalar equation equivalent of the vector equation (6.4):

(6.5) WT K(U)U̇ = WT Ṙ ∀ W ∈ RNEQ.

From Eqs. (5.1) and (6.3), we obtain

(6.6) K =
M∑

m=1

K̃m, K̃m ≡ ∂F̃m

∂U
=

∂2Ṽ m

∂U∂U
,

where the tangential stiffness matrix of an atomic pair K̃m (1 6 m 6 M) is
introduced when the global approach is used to form the matrices and vectors
of an atomic pair. By v denote the left-hand side of equality (6.5):

v ≡ WT K(U)U̇.

From (6.6) we get

(6.7) v =
M∑

m=1

ṽm, ṽm ≡ WT K̃m(U)U̇.

Using the local approach to form the matrices and vectors of an atomic pair,
first we define the tangential stiffness matrix of an atomic pair. We have

(6.8) ve = We T Ke(Ue)U̇e(= ṽe) (1 6 e 6 M),

where

Ke ≡ ∂Fe

∂Ue
=
∂2V e(Ue)

∂Ue ∂Ue
.
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The elements of Ke matrix can be expressed based on the equality

(6.9) Ḟe(Ue) =
∂Fe

∂Ue
U̇e = Ke U̇e ⇔ Ḟ e

i =
∂F e

i

∂Uj
U̇j = Ke

ijU̇j (i, j = 1, 6).

From Eq. (4.18), we have

(6.10) Ḟe = ḟBT + fḂT .

From Eqs. (2.3) and (4.16), we obtain

(6.11) ḟ =
∂f

∂r
ṙ = cBU̇e.

To define elements of the row vector Ḃ, it is necessary to determine the ėk
(k = 1, 2, 3) values in terms of Eq. (4.17). Using the definition of a unit length
vector e in Eq. (4.12) and equalities (4.14) and (4.16), we obtain

(6.12) ėk =
(rk
r

)
�

=
ṙk
r

− rk
r2
ṙ =

1

r
(u̇2

k − u̇1
k − ekBU̇e).

Using Eqs. (4.17) and (6.12), we define

(6.13) ḂT =
1

r
(P − BT B)U̇e,

where the following matrix is introduced:

P ≡ DT D =

[
I −I

−I I

]
.

Using Eqs. (6.11) and (6.13), we obtain an expression for the local tangential
stiffness matrix of an atomic pair from Eqs. (6.9) and (6.10)

(6.14) Ke = cBT B +
f

r
(P − BT B).

Let us analyze expression (6.14). Each summand in the right-hand side of
Eq. (6.14) is governed by the fact that the corresponding summand in the right-
hand side of Eq. (6.10) is accounted for. If the atomic pair is subjected to rigid
translation augmented by tension/compression without rotation, i.e., ėk = 0
(k = 1, 2, 3), then the second term in the right-hand side of Eq. (6.10) is equal
to zero. Hence, here follows a simple interpretation of summands in expression
(6.14) for the local tangential stiffness matrix: the first summand is caused by
tension/compression of the segment connecting atoms in a pair, and the second
one is due to rotation of the segment. In the previous works of the author [5, 6],
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the tangential stiffness matrix of an atomic pair including only the first summand
in the right-hand side of Eq. (6.14) was considered, i.e., rotation of this segment
was not taken into account. In the present work, the refined matrix expression
is given with account for rotation of this segment during its motion.

Equating the right-hand sides of Eqs. (6.8) and (6.7)2 (e = m) and taking
into account Eq. (4.19), we obtain

K̃e = Ae T Ke Ae.

Finally, the tangential stiffness matrix of an atomic lattice is defined by assem-
bling (summing) the tangential stiffness matrices of all atomic pairs of the lattice

(6.15) K =
M∑

m=1

K̃m.

Using the assembly operation, equality (6.15) can be rewritten as

K(U) =
M
A

m=1
Km(Um) ⇔ K(U) =

M∑

m=1

Am T Km(Am U)Am.

We advance a variational formulation of quasistatic deformation equations of
an atomic lattice. This formulation may be useful when uniqueness and stability
of solutions of these equations are studied. Introduce a scalar function of the
vector argument

(6.16) I(U̇) ≡ 1

2
ḞT U̇ − U̇T Ṙ, U̇ ∈ RNEQ.

It is follows from Eqs. (6.2) and (6.3) that

(6.17) Ḟ = K(U)U̇.

Using Eq. (6.17) and symmetry of a matrix K, we rewrite Eq. (6.16) as

I(U̇) =
1

2
U̇T KU̇ − U̇T R, U̇ ∈ RNEQ.

Let us formulate and prove a theorem.

Theorem 2. The velocity vector U̇ is a solution of Eq. (6.4) of quasistatic
deformation of an atomic lattice if and only if the scalar function I(U̇) takes
a stationary value.
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P r o o f. Let I(U̇) take the stationary value for some fixed displacement
vector U. We define the differential

(6.18) dI(U̇, dU̇) = dU̇T (KU̇ − Ṙ), dU̇ ∈ RNEQ.

Then from the stationarity condition

(6.19) dI(U̇, dU̇) = 0 ∀ dU̇ ∈ RNEQ

it follows that the velocity vector U̇ should satisfy Eq. (6.4).
On the contrary, let U̇ be the solution of Eq. (6.4). Then the fulfillment of

the stationarity condition (6.19) follows from Eqs. (6.18) and (6.4).

Assuming in Eq. (6.5) W = dU̇, we note that stationarity condition (6.19)
is equivalent to the scalar form of the equations of an atomic lattice quasistatic
deformation.

7. Conclusion

The alternative (vector, scalar and variational) forms of motion/equilibrium
equations of atomic lattices are presented in the work. On the basis of the scalar
form of equations and FEM technique, the automated technique is put forward
for constructing matrices and vectors of equations based on the definition of local
matrices and vectors of atomic pairs and their assembling into global matrices
and vectors of the atomic lattice.

The refined expression (as compared to that reported in works [5, 6]) for the
tangential stiffness matrix of an atomic pair is obtained. Thus, not only a change
in segment length connecting two atoms in a pair but also its rotation is taken
into account.
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