
Arch. Mech., 57, 1, pp. 43–65, Warszawa 2005

Some results on the spatial behaviour in linear porous elasticity
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In this paper we study the spatial behaviour for an extended class of isotropic and
homogeneous porous materials for which the constitutive coefficients are supposed
to satisfy some relaxed positive definiteness conditions. By using some appropriate
measures, we are able to establish results describing the spatial behaviour of transient
and steady-state solutions in these enlarged classes of porous materials.
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1. Introduction

The theory of elastic porous materials has been studied by Goodman and
Cowin [1], Nunziato and Cowin [2] and Cowin and Nunziato [3] for de-
scribing the deformation of a continuum with voids in which the matrix material
is elastic and the interstices are void of material. The nonlinear theory of porous
materials was developed by Nunziato and Cowin [2] by assuming that the
bulk density is the product of two fields: the matrix material density field and
the volume fraction field. This representation introduces an additional degree of
kinematic freedom and it is compatible with the theory of granular materials
developed by Goodman and Cowin [1]. The linear theory of elastic materials
with voids has been developed by Cowin and Nunziato [3]. The intended ap-
plications of the theory of elastic materials with voids are to geological materials
such as rocks and soils and to artificial porous materials. Porous materials have
also been studied in micromechanics (see Gibson and Ashby [4]) and in homog-
enization (see, for example, Jikov, Kozlov and Oleinik [5], Galka, Telega

and Tokarzewski [6] and Cioranescu and Saint-Jean Paulin [7]).
The spatial behaviour of solutions in elastostatics of cylinders made of

a porous elastic material was studied by Chiriţă [8, 9] and Ieşan and Quin-

tanilla [10]. The spatial behaviour of the steady-state and transient solutions
have been studied by Ieşan and Quintanilla [10] and Scalia [11], under the
assumption concerning the positive definiteness of the constitutive coefficients.
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Recently, some novel foam structures with negative Poisson’s ratios were
prepared and their mechanical behaviour and structure have been analysed (see,
e.g. Lakes [12] and Caddock and Evans [13]). Such auxetic or anti-rubber
materials expand laterally when stretched, in contrast to ordinary materials.
Some anisotropic polymer foams have been prepared which exhibit the Poisson’s
ratio exceeding 1 (see Lee and Lakes [14]). Materials of this kind are expected
to have interesting mechanical properties, such as high energy absorption and
fracture resistance, which may be useful in applications. Possible applications of
such materials in prevention of pressure sores or ulcers are outlined by Wang

and Lakes [15]. Saint–Venant end effects for materials with negative Poisson’s
ratio are studied by Lakes [16].

In the present paper we describe two methods, relevant to the study of spa-
tial behaviour for the steady-state and transient solutions in a linear isotropic
homogeneous elastic body with voids, under relaxed conditions concerning the
positive definiteness of the constitutive coefficients, including the class of auxetic
materials.

In the study of the transient solutions we introduce two time-weighted surface
measures and derive and discuss a second-order differential inequality which is
valid for a bounded as well as an unbounded body of arbitrary form. Thus, we
obtain results of the type described by Scalia [11], but for some enlarged classes
of materials with voids.

For the study of the time-harmonic vibrations, we consider a right cylinder
made of an isotropic and homogeneous elastic material with voids and introduce
two appropriate cross-sectional measures. The treatment of this problem leads
to a first-order differential inequality furnishing the information concerning the
spatial behaviour of the amplitude of vibration, provided the frequency of the
harmonic vibration is lower than critical frequency. Such results are established
for the same enlarged classes of materials with voids as for the transient solutions.

2. Formulation of the problem

Let B be a bounded or unbounded regular region of the physical space R3

with the piecewise smooth boundary surface ∂B. We denote by n the outward
unit normal vector to the boundary. The region B is filled with an isotropic
and homogeneous elastic porous material. We select a rectangular system of
coordinates and note that vectors and tensors will have components denoted
by Latin subscripts ranging over 1, 2, 3. Summation over repeated subscripts
and other conventions typical for differential operations used and superposed
dot or a comma followed by a subscript are used to denote partial derivative
with respect to time or the corresponding Cartesian coordinate, respectively.
Further, we suppress the dependence upon the spatial variable when no confusion
may occur.
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In the context of linear theory for a porous elastic solid as described by
Cowin and Nunziato [3], the equations of motion are

(2.1)
tji,j + bi = ρüi,

hj,j + g + l = ρχφ̈, in B × (0,∞).

In the above relations we have used the following notations: ui are the compo-
nents of the displacement vector field, φ is the change in volume fraction from the
reference volume fraction, tij are the components of the stress tensor, hi are the
components of the equilibrated stress vector, g is the intrinsic equilibrated force,
bi are the components of the body force vector and l is the extrinsic equilibrated
body force. Moreover, ρ and χ are the bulk mass density and the equilibrated
inertia in the reference state.

The constitutive equations for the linear theory of isotropic and homogeneous
elastic porous continuum are [3]

(2.2)
tij = λerrδij + 2µeij + βφδij , hi = αφ,i,

g = −βerr − ξφ, in B̄ × [0,∞),

where λ, µ, α, β and ξ are constitutive constants, δij is the Kronecker’s delta
and

(2.3) eij =
1

2
(ui,j + uj,i) .

The set B̄ represents the closure of B.
The internal energy density E associated with the kinematic fields ui, φ is

defined by

(2.4) E =
1

2
λerress + µeijeij + βerrφ+

1

2
ξφ2 +

1

2
αφ,iφ,i,

and it is positive definite if and only if (see, e.g. Cowin and Nunziato [3])

(2.5) µ > 0, α > 0, ξ > 0, 3λ+ 2µ > 0, (3λ+ 2µ)ξ > 3β2.

We further note that, by assuming zero boundary displacements and volume
fraction, the total internal energy associated with B,

(2.6) EB =

∫

B

Edv,

can be written in the following form:

(2.7) EB =
1

2

∫

B

Wdv,
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or in the form

(2.8) EB =
1

2

∫

B

W ∗dv,

where

W = µui,jui,j + (λ+ µ)ur,rus,s + 2βur,rφ+ ξφ2 + αφ,iφ,i,(2.9)

W ∗ = µui,jui,j + (λ+ µ)ui,juj,i + 2βur,rφ+ ξφ2 + αφ,iφ,i.(2.10)

In this work we shall use the positive definiteness of the quadratic forms W
and W ∗ in order to study the spatial behaviour of solutions in the linear theory
of elastodynamics of materials with voids. As we will see later, the hypotheses
of positive definiteness on the constitutive coefficients defined by (2.5) will be
relaxed. To this end, we consider an isotropic, homogeneous elastic porous solid
so that the basic equations (2.1) to (2.3) of the linear dynamic theory reduce
to [3]

(2.11)
µui,rr + (λ+ µ)ur,ri + βφ,i + bi = ρüi,

αφ,rr − βur,r − ξφ+ l = ρχφ̈.

With these equations we associate the following initial conditions

(2.12) ui = u0
i u̇i = u̇0

i , φ = φ0, φ̇ = φ̇0, on B̄ × {0},

and the following boundary conditions

(2.13) ui = ũi, φ = φ̃ on ∂B × [0,∞),

where u0
i , u̇

0
i , φ

0, φ̇0, ũi, and φ̃ are the prescribed continuous functions. Under
the positive definiteness conditions (2.5) for the potential energy density E and
by assuming ρ > 0, χ > 0, spatial behaviour of the transient solutions of the
initial-boundary value problem P defined by the relations (2.11)–(2.13), has been
established by Scalia [11]. Throughout this paper we will consider classical
solutions of the initial-boundary value problem P, that is we will consider the
couple of functions {ui, φ} twice continuously differentiable with respect to the
spatial and time variables, satisfying the relations (2.11)–(2.13). We have to
stress that our method of proof can be used also for appropriate classes of weak
solutions.
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3. Spatial behaviour of the transient solutions

Throughout this section we will establish the spatial behaviour of the tran-
sient solutions of the initial-boundary value problem P under the hypotheses on
the constitutive coefficients milder than those used in Scalia [11]. In fact, our
results are established for the classes of porous elastic materials will be defined
by relations (3.15) and (3.41). Clearly, these relations enlarge the class of porous
elastic materials described by the relation (2.5). This fact is possible because
we introduce two new measures associated with the solutions, essentially differ-
ent from that used by Scalia [11]. Our analysis is motivated by the existence
of the novel foam structures for which the internal energy density E is not al-
ways a positive definite quadratic form, but, under our hypotheses (3.15) and
(3.41), we can assure the positive definiteness of one of the quadratic forms W
and W ∗.

3.1. First measure and related estimates

To this end, we follow an idea devised in Chiriţă [9] and write the system
(2.11) in the form

(3.1) Sji,j + bi = ρüi, hj,j + g + l = ρχφ̈, in B × (0,∞),

with
Sji = µui,j + (λ+ µ)ur,rδij + βφδij ,

(3.2) hi = αφ,i, g = −βur,r − ξφ.

Then the initial-boundary value problem P is defined by the Eqs. (3.1) and (3.2),
the initial conditions (2.12) and the boundary conditions (2.13).

For fixed T > 0, we consider the support D̂T of the initial and bound-
ary data and the body forces in the time interval [0, T ] and further, we as-
sume that it is a bounded set. Of course, D̂T is the set of all x ∈ B̄ such
that:

a) if x ∈ B, then:

u0
i (x) 6= 0 or u̇0

i (x) 6= 0 or φ0(x) 6= 0 or φ̇0(x) 6= 0

or bi(x, τ) 6= 0 or l(x, τ) 6= 0 for some τ ∈ [0, T ];

b) if x ∈ ∂B, we have:

ũi(x, τ) 6= 0 or φ̃(x, τ) 6= 0 for some τ ∈ [0, T ].
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Let D̂∗

T be a non-empty set such that:
(i) if D̂T ∩ B 6= ∅ then we choose D̂∗

T to be the smallest bounded regular
region in B̄ that includes D̂T ; in particular, we set D̂∗

T = D̂T if it also happens
that D̂T is a regular region;

(ii) if ∅ 6= D̂T ⊂ ∂B, then we choose D̂∗

T to be the smallest regular subsurface
of ∂B that includes D̂T ; in particular, we set D̂∗

T = D̂T if D̂T is a regular
subsurface of ∂B;

(iii) if D̂T = ∅, then we choose D̂∗

T to be an arbitrary non-empty regular
subsurface of ∂B.

Further, we introduce the following sets:

(3.3) Dr =
{
x ∈ B̄ : S(x, r) ∩ D̂∗

T 6= ∅
}
,

(3.4) Br = B\Dr, r ≥ 0, B(r1, r2) = Br2
\Br1

, r2 < r1,

where S(x, r) is the closure of the ball with radius r and center at x. Finally, we
denote by Sr the subsurface of ∂Br contained inside B and whose outward unit
normal vector is directed to the exterior of Dr. We can observe that the initial
and boundary data and the body forces are null on Br, Sr.

Corresponding to the solution U = {ui, φ} of the initial-boundary value
problem P, we introduce the following function

(3.5) Λ(r, t) = −
t∫

0

∫

Sr

e−σs[u̇i(s)Sji(s) + φ̇(s)hj(s)]njdads,

for a fixed positive parameter σ. This function is defined on I × [0, T ],
where I is the interval [0,∞) if B is an unbounded body, I is the interval[
0,max

x∈B̄

(
min

y∈ bD∗

T

|y − x|1/2
)]

if B is a bounded body.

From the definitions for Sr and Λ(r, t), it results

(3.6)
∂Λ

∂t
(r, t) = −

∫

Sr

e−σt[u̇i(t)Sji(t) + φ̇(t)hj(t)]njda.

By using the equations (3.1), (3.2), we get

(3.7) [u̇iSji + φ̇hj ],j =
1

2

∂

∂t

[
K +W

]
− biu̇i − lφ̇,

where

(3.8) K = ρu̇iu̇i + ρχφ̇2,
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(3.9) W (u, φ) = W1(u, φ) +W2(u) +W3(φ),

(3.10) W1(u, φ) = (λ+ 2µ)
(
u2

1,1 + u2
2,2 + u2

3,3

)

+ 2(λ+ µ)(u1,1u2,2 + u2,2u3,3 + u3,3u1,1)

+ ξφ2 + 2βφ (u1,1 + u2,2 + u3,3) ,

W2(u) = µ(u2
1,2 + u2

2,1 + u2
2,3 + u2

3,2 + u2
1,3 + u2

3,1),(3.11)

W3(φ) = αφ,jφ,j .(3.12)

The definition of Sr, Br, the divergence theorem and the relations (3.5), (3.7)
lead to

(3.13) Λ(r1, t) − Λ(r2, t) = −
t∫

0

∫

∂B(r1,r2)

e−σs[u̇i(s)Sji(s) + φ̇(s)hj(s)]njdads

= −1

2

t∫

0

∫

B(r1,r2)

e−σs ∂

∂s
[K(s) +W (s)]dvds, r2 < r1, 0 ≤ t ≤ T.

Taking into account (3.13) and the definition of Sr and Br, it is a simple matter
to obtain

(3.14)
∂Λ

∂r
(r, t) = −1

2

∫

Sr

e−σt[K(t) +W (t)]da

− σ

2

t∫

0

∫

Sr

e−σs[K(s) +W (s)]dads.

Obviously, if ρ > 0 and χ > 0 then the quadratic form K in the variables
{u̇1, u̇2, u̇3,

√
χ φ̇} is positive definite and if α > 0, then the form W3 in the varia-

bles {φ,1, φ,2, φ,3} is positive definite. Moreover,W2 is a positive definite quadratic
form in the variables {u1,2, u2,1, u2,3, u3,2, u1,3, u3,1} if and only if µ > 0. On
the other hand, the quadratic form W1 in the variables {u1,1, u2,2, u3,3, φ} is pos-
itive definite if and only if µ > 0, ξ > 0, 4µ + 3λ > 0, (4µ + 3λ)ξ > 3β2. The
eigenvalues of the matrix A of the quadratic form W1 are
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κ1 = κ2 = µ,

κ3 =
1

2

{
ξ + 4µ+ 3λ+

√
[ξ − (4µ+ 3λ)]2 + 12β2

}
,

κ4 =
1

2

{
ξ + 4µ+ 3λ−

√
[ξ − (4µ+ 3λ)]2 + 12β2

}
.

Throughout this subsection we will assume that

(3.15)
ρ > 0, χ > 0, α > 0, µ > 0,

ξ > 0, 4 4µ+ 3λ > 0, (4µ+ 3λ)ξ > 3β2,

so that K and Wi are positive definite. Consequently, the relations (3.13), (3.14)
imply that Λ(r, t) is a non–increasing function with respect to r, for all t ∈ [0, T ].

Let F [A;ψ, γ] be the symmetric bilinear form associated with the quadratic
form W1, that is

(3.16) F [A;ψ, γ] = ψ·Aγ = (λ+ 2µ) (ψ1γ1 + ψ2γ2 + ψ3γ3) + ξψ4γ4

+ (λ+ µ)(ψ1γ2 + ψ2γ1 + ψ2γ3 + ψ3γ2 + ψ3γ1 + ψ1γ3)

+ β [γ4 (ψ1 + ψ2 + ψ3) + ψ4 (γ1 + γ2 + γ3)] ,

for every ψ = {ψ1, ψ2, ψ3, ψ4}, γ = {γ1, γ2, γ3, γ4}. Clearly, we have

(3.17)
κm(ψ2

1 + ψ2
2 + ψ2

3 + ψ2
4) ≤ F [A;ψ,ψ] ≤ κM (ψ2

1 + ψ2
2 + ψ2

3 + ψ2
4),

F [A; ψ̃, ψ̃] = W1(u, φ) for ψ̃ = {u1,1, u2,2, u3,3, φ} ,

in which κm and κM are the lowest and the largest characteristic values of A,
respectively, that is

(3.18)

km = min

{
µ,

1

2

[
ξ + 4µ+ 3λ−

√
[ξ − (4µ+ 3λ)]2 + 12β2

]}
,

kM = max

{
µ,

1

2

[
ξ + 4µ+ 3λ+

√
[ξ − (4µ+ 3λ)]2 + 12β2

]}
.

Then, we can state the following theorem:

Theorem 1. Let U = {ui, φ} be a solution of initial–boundary value problem
P and D̂T be the bounded support of the external data in the time interval [0, T ].
Under the hypotheses (3.15), we have

(3.19)
σ

c1
|Λ(r, t)| + ∂Λ

∂r
(r, t) ≤ 0, (r, t) ∈ I × [0, T ],
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and

(3.20)

∣∣∣∣
∂Λ

∂t
(r, t)

∣∣∣∣ + c1
∂Λ

∂r
(r, t) ≤ 0, (r, t) ∈ I × [0, T ],

where

(3.21) c1 =

√
γM

ρ
,

and

(3.22) γM = max

{
α

χ
, µ,

1

2

[
ξ + 4µ+ 3λ+

√
[ξ − (4µ+ 3λ)]2 + 12β2

]}
.

P r o o f. By means of the Eqs. (3.2), (3.16), we have

(3.23) S2
11+ S2

22 + S2
33 + g2 = S11

[
(λ+ 2µ)u1,1 + (λ+ µ) (u2,2 + u3,3) + βφ

]

+ S22

[
(λ+ 2µ)u2,2 + (λ+ µ) (u3,3 + u1,1) + βφ

]

+ S33

[
(λ+ 2µ)u3,3 + (λ+ µ) (u1,1 + u2,2) + βφ

]

− g (βur,r + ξφ) = F
[
A;S, ψ̃

]
,

where S = {S11, S22, S33,−g} and ψ̃ = {u1,1, u2,2, u3,3, φ}. Further, by using the
Schwarz’s inequality and the inequality (3.17), from (3.23) we obtain

(3.24)
[
S2

11 + S2
22 + S2

33 + g2
]2 ≤ F [A; ψ̃, ψ̃]F [A;S,S]

≤W1κM

[
S2

11 + S2
22 + S2

33 + g2
]
,

that is

(3.25) S2
11 + S2

22 + S2
33 + g2 ≤ κMW1.

In view of the Eqs. (3.2)1, (3.10), (3.11), (3.18) and (3.25), we deduce that

(3.26) SijSij = µ2(u2
1,2 + u2

2,1 + u2
2,3 + u2

3,2 + u2
1,3 + u2

3,1) + S2
11

+ S2
22 + S2

33 ≤ µW2 + κMW1 ≤ κM (W2 +W1).

On the other hand, considering the Schwarz inequality and the arithmetic–
geometric mean inequalities, the relations (3.2), (3.8), (3.12) and (3.26) imply

(3.27)
∣∣∣u̇iSjinj + φ̇hjnj

∣∣∣ ≤ 1

2

(
ερu̇iu̇i +

1

ερ
SijSij + ερχφ̇2 +

1

ερ

α

χ
αφ,jφ,j

)

≤ 1

2

[
εK +

1

ερ
γMW

]
,
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where ε is an arbitrary positive constant and γM is defined by (3.22). If we insert
ε = c1 into (3.27), then the relations (3.5), (3.6) imply

|Λ(r, t)| ≤ c1

2

t∫

0

∫

Sr

e−σs[K(s) +W (s)]dads,(3.28)

∣∣∣∣
∂Λ

∂t
(r, t)

∣∣∣∣ ≤
c1

2

∫

Sr

e−σt[K(t) +W (t)]da.(3.29)

Under the hypotheses (3.15), the relations (3.14), (3.28), (3.29) lead to the
equations (3.19), (3.20) and the proof is complete.

Theorem 1 forms the basis of the following theorems for a bounded or un-
bounded body:

Theorem 2. (Spatial behaviour): Provided the hypotheses of Theorem 1 hold,
Λ(r, t) is a measure associated with the solution U = {ui, φ} of P:

Λ(r, t) ≥ 0 (r, t) ∈ I × [0, T ].

Moreover, at each fixed t ∈ [0, T ] we have

(3.30)
Λ(r, t) = 0, that is ui = 0, φ = 0 for r ≥ c1t,

0 ≤ Λ(r, t) ≤ Λ(0, t) e(−σ/c1)r for 0 ≤ r ≤ c1t.

Theorem 3. (Uniqueness): Assuming that the hypotheses of Theorem 1 hold,
there exists at most one solution for the initial-boundary value problem P.

It is a simple matter to prove these theorems following the method established
in Scalia [11] and Chiriţă and Ciarletta [17].

3.2. Second measure and related estimates

In this section, we describe a second method for analysing the spatial behav-
iour of the solutions for an appropriate class of materials. To this end, we write
the system (2.11) in the following form:

(3.31) Tji,j + bi = ρüi, hj,j + g + l = ρχφ̈, in B × (0,∞),

where

(3.32) Tji = µui,j + (λ+ µ)uj,i + βφδij , hi = αφ,i, g = −βur,r − ξφ.

Thus, the initial-boundary value problem P is defined by the Eqs. (3.31) and
(3.32) and the initial and boundary conditions (2.12) and (2.13). In what follows
we denote by U = {ui, φ} a solution of the initial-boundary value problem P.
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Now, by introducing the notations Dr, Br, Sr in the same manner as in the
previous subsection, we define the function on I × [0, T ]:

(3.33) Π(r, t) = −
t∫

0

∫

Sr

e−σs[u̇i(s)Tji(s) + φ̇(s)hj(s)]nj dads.

The equations (3.31), (3.32) give

(3.34) [u̇iTji + φ̇hj ],j =
1

2

∂

∂t
[K +W ∗] − biu̇i − lφ̇,

in which

(3.35) W ∗(u, φ) = W ∗

1 (u, φ) +W ∗

2 (u) +W3(φ),

W ∗

1 (u, φ) = (λ+ 2µ)
(
u2

1,1 + u2
2,2 + u2

3,3

)

+ 2βφ (u1,1 + u2,2 + u3,3) + ξφ2,

(3.36)

W ∗

2 (u) = µ(u2
1,2 + u2

2,1 + u2
2,3 + u2

3,2 + u2
1,3 + u2

3,1)

+ 2(λ+ µ)(u1,2u2,1 + u2,3u3,2 + u3,1u1,3).

Taking into account the definition for Sr, Br and the divergence theorem,
the relations (3.33), (3.34) imply that

(3.37) Π(r1, t) −Π(r2, t) = −1

2

t∫

0

∫

B(r1,r2)

e−σs ∂

∂s
[K(s) +W ∗(s)] dvds,

and
∂Π

∂r
(r, t) = −1

2

∫

Sr

e−σt[K(t) +W ∗(t)]da

(3.38) −σ
2

t∫

0

∫

Sr

e−σs[K(s) +W ∗(s)]dads,

∂Π

∂t
(r, t) = −

∫

Sr

e−σt[u̇i(t)Tji(t) + φ̇(t)hj(t)]njda.
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Clearly, K is positive definite if and only if ρ > 0, χ > 0, while W3 is positive
definite if and only if α > 0. Moreover, the quadratic form W ∗

2 in the variables
{u1,2, u2,1, u2,3, u3,2, u3,1, u1,3} is positive definite if and only if λ < 0, λ+2µ > 0.
The eigenvalues of the matrix B of this quadratic form are

(3.39) κ̆1 = κ̆2 = κ̆3 = −λ, κ̆4 = κ̆5 = κ̆6 = λ+ 2µ.

Further, the quadratic form W ∗

1 in the variables {u1,1, u2,2, u3,3, φ} is positive
definite if and only if ξ > 0, λ + 2µ > 0, (λ + 2µ)ξ > 3β2. The matrix C of the
quadratic form W ∗

1 has the following eigenvalues:

(3.40)
κ̂1 = κ̂2 = λ+ 2µ,

κ̂3,4 =
1

2

{
ξ + λ+ 2µ±

√
[ξ − (λ+ 2µ)]2 + 12β2

}
.

Throughout this subsection we will assume that

(3.41)
ρ > 0, χ > 0, α > 0, µ > 0,

ξ > 0, −2µ < λ < 0, (λ+ 2µ)ξ > 3β2,

so that K, W ∗

1 , W ∗

2 , and W3 are positive definite. Thus, for all t ∈ [0, T ], we
prove by means of the relation (3.32), that Π(r, t) is a non-increasing function
with respect to r.

We denote by G[B; ψ̆, γ̆] and I[C;ψ, γ] the bilinear forms associated with W ∗

2

and W ∗

1 , respectively, that is,

(3.42) G[B; ψ̆, γ̆] = ψ̆·Bγ̆ =µ(ψ̆1γ̆1 + ψ̆2γ̆2 + ψ̆3γ̆3 + ψ̆4γ̆4 + ψ̆5γ̆5 + ψ̆6γ̆6)

+ (λ+ µ)(ψ̆1γ̆2 + ψ̆2γ̆1 + ψ̆3γ̆4 + ψ̆4γ̆3 + ψ̆5γ̆6 + ψ̆6γ̆5),

ψ̆ =
{
ψ̆1, ..., ψ̆6

}
, γ̆ = {γ̆1, ..., γ̆6} ,

and
(3.43) I[C;ψ, γ] = ψ·Cγ =(λ+ 2µ) (γ1ψ1 + γ2ψ2 + γ3ψ3)

+ β(ψ1γ4 + ψ4γ1 + ψ2γ4 + ψ4γ2 + ψ3γ4 + ψ4γ3) + ξγ4ψ4,

ψ = {ψ1, ..., ψ4} , γ = {γ1, ..., γ4} .

Then, we have

κ̆m(ψ̆2
1 + ψ̆2

2 + ψ̆2
3 + ψ̆2

4 + ψ̆2
5 + ψ̆2

6)

(3.44) ≤ G[B; ψ̆, ψ̆] ≤ κ̆M (ψ̆2
1 + ψ̆2

2 + ψ̆2
3 + ψ̆2

4 + ψ̆2
5 + ψ̆2

6),

κ̂m(ψ2
1 + ψ2

2 + ψ2
3 + ψ2

4) ≤ I[C;ψ,ψ] ≤ κ̂M (ψ2
1 + ψ2

2 + ψ2
3 + ψ2

4),
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where κ̆m and κ̆M are the lowest and the largest characteristic values of B, while
κ̂m and κ̂M are the lowest and the largest characteristic values of C, respectively,
that is

(3.45) κ̆m = min {−λ, λ+ 2µ} , κ̆M = max {−λ, λ+ 2µ} ,

(3.46)

κ̂m = min

{
λ+ 2µ,

1

2

[
ξ + λ+ 2µ−

√
[ξ − (λ+ 2µ)]2 + 12β2

]}
,

κ̂M = max

{
λ+ 2µ,

1

2

[
ξ + λ+ 2µ+

√
[ξ − (λ+ 2µ)]2 + 12β2

]}
.

It is interesting to observe that

(3.47)
G[B; Ψ̆, Ψ̆] = W ∗

2 for Ψ̆ = {u1,2, u2,1, u2,3, u3,2, u3,1, u1,3} ,

I[C; Ψ̃, Ψ̃] = W ∗

1 for Ψ̃ = {u1,1, u2,2, u3,3, φ} .

We prove the following result

Theorem 4. Let U = {ui, φ} be a solution of initial–boundary value problem
P and D̂T be the bounded support of the external data in the time interval [0, T ].
Provided the hypothesis (3.41) holds, it follows that

(3.48)
σ

c2
|Π(r, t)| + ∂Π

∂r
(r, t) ≤ 0, (r, t) ∈ I × [0, T ],

and

(3.49)

∣∣∣∣
∂Π

∂t
(r, t)

∣∣∣∣ + c2
∂Π

∂r
(r, t) ≤ 0, (r, t) ∈ I × [0, T ],

where

(3.50) c2 =

√
γ∗M
ρ
,

and

(3.51) γ∗M = max

{
α

χ
,−λ, λ+ 2µ,

1

2

(
ξ + λ+ 2µ+

√
[ξ − (λ+ 2µ)]2 + 12β2

)}
.

P r o o f. We first note that the Eqs. (3.32), (3.42), (3.43) give

(3.52) T 2
12 + T 2

21 + T 2
23 + T 2

32 + T 2
31 + T 2

13 = G[B; T̆, Ψ̆],
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and

(3.53) T 2
11 + T 2

22 + T 2
33 + g2 = I[C;T∗, Ψ̃],

where T̆ = {T21, T12, T32, T23, T13, T31}, Ψ̆ = {u1,2, u2,1, u2,3, u3,2, u3,1, u1,3},
T∗= {T11, T22, T33, −g} and Ψ̃ = {u1,1, u2,2, u3,3, φ}.

By means of the Schwarz inequality and by using the relations (3.42), (3.43)
and (3.44), we have

(3.54)
[
T 2

12 + T 2
21 + T 2

23 + T 2
32 + T 2

31 + T 2
13

]2 ≤ G [B; Ψ̆, Ψ̆]G [B; T̆, T̆]

≤W ∗

2 κ̆M

(
T 2

12 + T 2
21 + T 2

23 + T 2
32 + T 2

31 + T 2
13

)
,

and

(3.55)
[
T 2

11 + T 2
22 + T 2

33 + g2
]2 ≤ I [C; Ψ̃, Ψ̃)I [C;T∗,T∗]

≤W ∗

1 κ̂M

[
T 2

11 + T 2
22 + T 2

33 + g2
]
.

Therefore, we obtain

T 2
12 + T 2

21 + T 2
23 + T 2

32 + T 2
31 + T 2

13 ≤ κ̆MW
∗

2 ,(3.56)

T 2
11 + T 2

22 + T 2
33 + g2 ≤ κ̂MW

∗

1 .(3.57)

Thus, we conclude that

(3.58) TijTij ≤ κ̆MW
∗

2 + κ̂MW
∗

1 .

By means of the Cauchy-Schwarz’s inequality and the arithmetic-geometric mean
inequalities and the relations (3.8), (3.35) and (3.58), we get

(3.59)
∣∣∣u̇iTjinj + φ̇hjnj

∣∣∣ ≤ 1

2

(
εK +

1

ερ
γ∗MW

∗

)
,

where ε is an arbitrary positive constant and γ∗M is defined by the relation (3.51).
If we put ε = c2, with c2 defined by (3.50), into (3.59), then the relations (3.33),
(3.59) imply that

|Π(r, t)| ≤ c2

2

t∫

0

∫

Sr

e−σs[K(s) +W ∗(s)]dads,(3.60)

∣∣∣∣
∂Π

∂t
(r, t)

∣∣∣∣ ≤
c2

2

∫

Sr

e−σt[K(t) +W ∗(t)]da.(3.61)

These relations imply the differential inequalities (3.48), (3.49) and thus, we
obtain the desired result.
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Following the procedure developed in Scalia [11] and Chiriţă and
Ciarletta [17] and using Theorem 4, we can prove that

Theorem 5. (Spatial behaviour): Provided the hypotheses of Theorem 4 hold,
then Π(r, t) is a measure associated with the solution U = {ui, φ} of P. Further,
at each fixed t ∈ [0, T ] we have

(3.62) Π(r, t) = 0, that is ui = 0, φ = 0 for r ≥ c2t,

(3.63) 0 ≤ Π(r, t) ≤ Π(0, t) e(−σ/c2)r, for 0 ≤ r ≤ c2t.

Theorem 6. (Uniqueness): Provided the hypotheses of Theorem 4 hold, there
exists at most one solution for the initial-boundary value problem P.

4. Spatial behaviour of the steady-state solutions

Throughout this section we will discuss the problem of spatial behaviour
of the steady vibrations. For this purpose we stipulate that the region B from
here on refers to the interior of a right cylinder with parallel plane ends. The
rectangular Cartesian coordinate frame is supposed to be chosen in such a way
that one end of the cylinder lies in the x1Ox2 plane and contains the origin. We
suppose that the length of the cylinder is L and that Dx3

represents the bounded
cross–section at distance x3 from the x1Ox2 plane. The boundary ∂D of each
cross–section is assumed to be a piecewise smooth simple closed curve. The Greek
subscripts range over 1,2. In what follows we shall assume that the external body
force and the extrinsic equilibrated body force are absent. Moreover, we assume
the following boundary conditions for all t ∈ [0, T ]

(4.1) ui = 0 on (∂D × [0, L]) ∪DL,

(4.2)
φ = 0 on Γ1 × [0, L], hαnα = 0 on Γ2 × [0, L],

φ = 0 or h3 = 0 on DL,

(4.3)
ui(x1, x2, 0, t) = ṽi(x1, x2)e

iωt, φ(x1, x2, 0, t) = ψ̃(x1, x2)e
iωt

or h3(x1, x2, 0, t) = h̃(x1, x2)e
iωt,

where ṽi, ψ̃ and h̃ are prescribed functions and Γ1 and Γ2 are subcurves of ∂D
so that Γ̄1 ∪Γ2 = ∂D and Γ1 ∩Γ2 = ∅ and ω is a positive prescribed parameter.
Other boundary conditions can be viewed but essential for our considerations is
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to conserve the boundary condition (4.1). In this section we discuss the problem
of steady-state vibrations assuming that

(4.4) ui = ℜe[vi(x;ω)eiωt], φ = ℜe[ψ(x;ω)eiωt],

where ℜe[f ] represents the real part of f . Then the equations of motion (2.11)
reduce to

µvj,rr + (λ+ µ)vr,rj + βψ,j + ρω2vj = 0,(4.5)

αψ,rr − βvr,r − ξψ + ρχω2ψ = 0,(4.6)

while the boundary conditions (4.1), (4.2) and (4.3) reduce to

(4.7) vi = 0 on (∂D × [0, L]) ∪DL,

(4.8)
ψ = 0 on Γ1 × [0, L], Hαnα = 0 on Γ2 × [0, L],

ψ = 0 or H3 = 0 on DL,

(4.9)
vi(x1, x2, 0) = ṽi(x1, x2), ψ(x1, x2, 0) = ψ̃(x1, x2)

or H3(x1, x2, 0) = h̃(x1, x2),

where

(4.10) Hi = αψ,i.

In what follows we will study the spatial behaviour of the amplitude (vi, ψ) of
the harmonic vibration described by the relation (4.4). To this end we note that
(vi, ψ) is the solution of the boundary value problem P0 defined by the equations
(4.5) and (4.6) and by the boundary conditions (4.7) to (4.9).

4.1. First measure

Throughout this subsection we will assume that the hypotheses described by
the relation (3.15) hold true. Then we associate with the solution (vi, ψ) of the
problem P0 the function J on [0, L] defined by

(4.11) J (x3) =

∫

Dx3

(s3iv̄i + s̄3ivi +H3ψ̄ + H̄3ψ)da, x3 ∈ [0, L],

where

(4.12) sji = µvi,j + (λ+ µ)vr,rδij + βψδij ,
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and a superposed bar denotes the complex conjugate. In view of the equations
(4.5) and (4.6) and by using the relations (4.11) and (4.12), we get

(4.13) J ′(x3) = −
∫

Dx3

(
v̄isρi,ρ + vis̄ρi,ρ + ψ̄Hρ,ρ + ψH̄ρ,ρ

)
da

− 2ω2

∫

Dx3

(
ρviv̄i + ρχψψ̄

)
da+

∫

Dx3

[
s3iv̄i,3 + s̄3ivi,3 +H3ψ̄,3 + H̄3ψ,3

+ 2ξψψ̄ + β
(
ψ̄vr,r + ψv̄r,r

) ]
da.

Furthermore, by an integration by parts and by using the boundary conditions
(4.7) and (4.8), we obtain

(4.14) J ′(x3) =

∫

Dx3

[
sjiv̄i,j + s̄jivi,j +Hjψ̄,j + H̄jψ,j

+ 2ξψψ̄ + β
(
ψ̄vr,r + ψv̄r,r

) ]
da− 2ω2

∫

Dx3

(ρviv̄i + ρχψψ̄) da.

In view of the relations (4.10) and (4.12), we deduce

(4.15) J ′(x3) = 2

∫

Dx3

[
w − ω2(ρviv̄i + ρχψψ̄)

]
da,

where

(4.16) w = µvi,j v̄i,j + (λ+ µ)vr,rv̄s,s + ξψψ̄ + β
(
ψ̄vr,r + ψv̄r,r

)
+ αψ,jψ̄,j .

We write w in the form

(4.17) w = w1 + w2 + w3,

where

(4.18) w1 = (λ+ 2µ)(v1,1v̄1,1 + v2,2v̄2,2 + v3,3v̄3,3)

+ (λ+ µ)(v1,1v̄2,2 + v̄1,1v2,2 + v2,2v̄3,3 + v̄2,2v3,3 + v3,3v̄1,1 + v1,1v̄3,3)

+ ξψψ̄ + β
[
ψ̄ (v1,1 + v2,2 + v3,3) + ψ (v̄1,1 + v̄2,2 + v̄3,3)

]
,

w2 = µ(u1,2ū1,2 + u2,1ū2,1 + u2,3ū2,3 + u3,2ū3,2 + u3,1ū3,1 + u1,3ū1,3),(4.19)

w3 = αψ,jψ̄,j .(4.20)
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In view of the hypothesis (3.15) and by using the relation (3.17), we deduce that

(4.21) km(v1,1v̄1,1 + v2,2v̄2,2 + v3,3v̄3,3 + ψψ̄) ≤ w1 ≤ kM (v1,1v̄1,1

+ v2,2v̄2,2 + v3,3v̄3,3 + ψψ̄),

and hence we obtain

(4.22) km(vj,kv̄j,k + ψψ̄) + αψ,jψ̄,j ≤ w ≤ kM (vj,kv̄j,k + ψψ̄) + αψ,jψ̄,j .

In view of the boundary conditions (4.7), we have

(4.23) λ1

∫

Dx3

vj v̄jda ≤
∫

Dx3

vj,αv̄j,αda, λ1

∫

Dx3

ψψ̄da ≤
∫

Dx3

ψ,αψ̄,αda,

where λ1 is the first eigenvalue corresponding to the membrane problem for the
section Dx3

.
Then, the relations (4.15), (4.22) and (4.23) imply

(4.24) J ′(x3) ≥ 2

∫

Dx3

{
km

[(
1 − ρω2

λ1km

)
vj,kv̄j,k

+

(
1 − ρχω2

km

)
ψψ̄

]
+ αψ,jψ̄,j

}
da.

Further, we shall assume that

(4.25) ω < ω1,

where

(4.26) ω2
1 =

km

ρ
min

{
λ1,

1

χ

}
.

Then, we have

(4.27) J ′(x3) ≥ 2km

(
1 − ω2

ω2
1

) ∫

Dx3

(
vj,kv̄j,k + ψψ̄

)
da+ 2α

∫

Dx3

ψ,jψ̄,jda ≥ 0.

On the other hand, by means of the Schwarz inequality and by using the
relations (3.17), (3.25), (4.10), (4.12) and (4.21), we get
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(4.28) |J (x3)| ≤
∫

Dx3

{
ε1s3ρs̄3ρ +

1

ε1
vρv̄ρ + ε2s33s̄33 +

1

ε2
v3v̄3

+ ε3αψ,3ψ̄,3 +
α

ε3
ψψ̄

}
da ≤

∫

Dx3

{
ε1µ

2vρ, 3v̄ρ,3 +
1

λ1ε1
vρ,αv̄ρ,α

+ ε2k
2
M (v1,1v̄1,1 + v2,2v̄2,2 + v3,3v̄3,3 + ψψ̄) +

1

λ1ε2
v3,ρv̄3,ρ

+ ε3αψ,3ψ̄,3 +
α

λ1ε3
ψ,ρψ̄,ρ

}
da, ∀ε1, ε2, ε3 > 0.

Thus, by setting ε1 = ε2 =
1

kM

√
λ1

and ε3 =
1√
λ1

, we obtain

(4.29) |J (x3)| ≤
∫

Dx3

{
m1vj,kv̄j,k +m2ψψ̄ +m3ψ,jψ̄,j

}
da,

where

(4.30) m1 =
2kM√
λ1
, m2 =

kM√
λ1
, m3 =

2α√
λ1
.

On the basis of the relations (4.27) and (4.29), we can formulate the following
result.

Theorem 7. Let V = {vi, ψ} be a solution of the boundary value problem
P0. Provided the hypothesis (3.15) holds true and the frequency ω is lower than
the critical value ω1 defined by (4.26), the corresponding cross-sectional integral
J (x3) satisfies the following first-order differential inequality

(4.31) m2 |J (x3)| ≤ J ′(x3),

where

(4.32)
1

m2
= max






m1

2km

(
1 − ω2

ω2
1

) ,
m2

2km

(
1 − ω2

ω2
1

) ,
m3

2α





.

We now proceed to prove how the first-order differential inequality (4.31) can
describe the spatial behaviour of the amplitude V of the considered vibration.
To this end, we first suppose that J (0) > 0. Since J ′(x3) ≥ 0, it follows that
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J (x3) > 0 for all x3 ≥ 0, so that it results that J (L) > 0 . Then the differential
inequality (4.31) becomes

(4.33) J ′(x3) ≥ m2J (x3),

which, by an integration, gives

(4.34) J (0)em
2x3 ≤ J (x3) ≤ J (L)e−m2(L−x3), x3 ∈ [0, L].

Let us now consider the case J (0) = 0. Then either J (L) = 0 or J (L) > 0.
When J (L) = 0 then it results that J (x3) = J ′(x3) = 0 for x3 ∈ [0, L] and
therefore, by the relations (4.1) and (4.27), we deduce that vi = 0, ψ = 0
in B. When J (L) > 0 it follows that there is x∗3 = inf{x3 ∈ [0, L] with
J (x3) > 0} > 0 and then the relation (4.31) implies

(4.35)
J (x3) = J ′(x3) = 0 for x3 ∈ (0, x∗3),

J (x∗3)e
m2(x3−x∗

3
) ≤ J (x3) ≤ J (L)e−m2(L−x3), x3 ∈ [x∗3, L].

Finally, we consider the case J (0) < 0. Then we can have J (L) < 0 or
J (L) ≥ 0. If J (L) < 0 then J (x3) < 0 for all x3 ∈ [0, L] and therefore, the
relation (4.31) gives

(4.36) −J (L)em
2(L−x3) ≤ −J (x3) ≤ −J (0)e−m2x3 , x3 ∈ [0, L].

For the case J (L) ≥ 0 we obtain a combination of situations discussed above by
the relations (4.35) and (4.36).

We have to note that for a semi-infinite cylinder the cross-sectional measure
has the following behaviour: for the case when J (0) < 0, we obtain

(4.37) −J (x3) ≤ −J (0)e−m2x3 , x3 ≥ 0,

while for J (0) ≥ 0, we obtain

(4.38) J (x3) ≥ J (0)em
2x3 , x3 ≥ 0,

or

(4.39) J (x3) ≥ J (x∗3)e
m2(x3−x∗

3
), x3 ≥ x∗3.
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4.2. Second measure

In the remainder of this paper we shall assume that the hypotheses described
by the relation (3.41) hold true. Then we introduce the following measure:

(4.40) I(x3) =

∫

Dx3

(m3iv̄i + m̄3ivi +H3ψ̄ + H̄3ψ)da, x3 ∈ [0, L],

where

(4.41) mjk = µvk,j + (λ+ µ)vj,k + βψδjk.

Further, we get

(4.42) I ′(x3) = 2

∫

Dx3

[
w∗ − ω2(ρviv̄i + ρχψψ̄)

]
da,

where

(4.43) w∗ = µvi,j v̄i,j + (λ+ µ)vi,j v̄j,i + ξψψ̄ + β
(
ψ̄vr,r + ψv̄r,r

)
+ αψ,jψ̄,j .

Thus, if we set k∗m = min
(
k̂m, k̆m

)
, k∗M = min

(
k̂M , k̆M

)
and define ω̂1 by

(4.44) ω̂2
1 =

k∗m
ρ

min

{
λ1,

1

χ

}
,

and assume that

(4.45) ω < ω̂1,

then, by following the procedure used in the Subsec. 4.1, we get

(4.46) m̂2 |I(x3)| ≤ I ′(x3),

where

(4.47)
1

m̂2
= max





m̂1

2k∗m

(
1 − ω2

ω̂2

) , m̂2

2k∗m

(
1 − ω2

ω̂2

) , m̂3

2α




 ,

(4.48) m̂1 =
1√
λ1

(
k̂M + k̆M

)
, m̂2 =

k̂M√
λ1
, m̂3 =

α√
λ1
.

Thus, the first-order differential inequality (4.46) leads to spatial estimates
of type described by the relations (4.34), (4.36), (4.38) or (4.39).
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5. Concluding remarks

In the present paper we have introduced the new measures (3.5), (3.33) and
(4.11), (4.40) in order to study the spatial behaviour of the transient and steady-
state solutions, respectively. The measures defined by the relations (3.5) and
(4.11) are suitable for the class of porous elastic materials described by the rela-
tion (3.15), while the measures (3.33) and (4.40) are useful in the class described
by the relation (3.41). These classes of porous elastic materials are not coinci-
dent with the class defined by (2.5) and treated in [11]. The method presented
here is believed to be used successfully for many novel foam structures with neg-
ative Poisson’s ratio, because the relations (3.15) and (3.41) can include such
materials, not included in the class defined by (2.5).

Our results expressed by the relations (3.30)1 and (3.62) prove the idea of
influence domain. The estimates (3.30)2, (3.63) and (4.37) express the results of
Saint–Venant type, while the estimates (4.38) and (4.39) give an alternative of
the Phragmèn–Lindelöf type.

On the other hand, we have to stress that we can combine our estimates
(3.30), (3.63), (4.37) with each other and also with those predicted in [11] in
order to obtain complete information about the spatial behaviour of the transient
and steady-state solutions.

In any case, our method allows us to study the spatial behaviour for a large
class of special materials (useful in biomechanics) and characterized by essen-
tially negative (or positive) Poisson’s ratio. In particular, we outline the auxetic
materials and the polymer foams.
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