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Direct methods for limits in plasticity
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The paper discusses a methodology for the evaluation of shakedown and ratchet
limits for an elastic perfectly plastic solid subjected to mechanical and thermal cy-
cles of loading. The steady cyclic state is characterised by a minimum theorem that
contains the classical shakedown theorems as a special case. For a prescribed class
of kinematically admissible strain rate histories, the minimum of the functional is
found by a programming method, the Linear Matching Method, which converges to
the least upper bound. Three examples are given for a finite element implementa-
tion, rolling contact on a half-space, the behaviour of a complex heat exchanger and
the behaviour of a regular particulate metal matrix composite subjected to variable
temperature.

1. Introduction

Since Huber’s landmark discovery of the yield condition, now known as the
Huber–von Mises condition, plasticity theory has developed as a methodology
capable of providing profound insights into material processing and structural
design. Where design is concerned, the most significant insight was provided
by the classical theorems of limit load and shakedown limit analysis in the
1950’s [1]. Structural design codes currently in use call upon this insight in
guarding against excessive deformation. At the same time computer methods
have developed along two parallel paths, the development of complex consti-
tutive relationships for structural simulation and the development of so-called
direct methods. Direct methods refer to theoretical and computational methods
that directly address the quantities required in a design situation, e.g. the factor
of safety against a design limiting condition. The most widely discussed method
consists in the evaluation of the shakedown limit, providing a limit against ex-
cessive deformation. The range of design restrictions required in practice, how-
ever, is much wider. These including, for example, fatigue limits, creep defor-
mation limits, creep rupture limits and creep/fatigue limits for structures that
suffer severe mechanical and thermal loading. There has been a developing need
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to produce direct methods with a wider range of theoretical background than
shakedown theory. Such methods should have the potential for producing com-
puter methods that call upon the strengths of classical plasticity theory but
with application to a wide range of material behaviour and structural circum-
stances.

This paper describes a possible way forward in such an endeavour. Structural
design usually calls upon an understanding of performance for a repeated cycle
of loading. Power stations perform cycles of operation, interspersed with main-
tenance periods; turbines likewise are cyclically loaded, e.g. a single flight of an
aircraft. Design codes, implicitly, look at a typical cycle within a steady state.
Hence it is useful to first characterise cyclic behaviour as a minimum theorem
for a class of kinematically admissible inelastic strain rate histories or equilib-
rium stress histories. The location of the minimum reduces to a programming
problem, and those familiar with shakedown analysis will be conscious of the
number of ways that this may be achieved. Recently, however, a particular type
of method has emerged that has the advantage of remaining close to conven-
tional structural analysis and may be implemented within standard commercial
finite element codes. The method originates from methods of approximate struc-
tural analysis by Marriot (Reduced modulus method) [2], Sheshadri (R-node
method) [3] and Mackenzie and Boyle (Elastic Compensation Method) [4].
The essential concept is to describe non-linear inelastic material behaviour by
linear solutions where the material coefficients vary spatially and in time. This
provides a type of functional representation that is particularly flexible. It is pos-
sible to develop the idea into properly convergent numerical methods capable of
application to minimum theorems that characterise steady cycle state behaviour.
This approach has been termed the Linear Matching Method by the authors of
this paper.

In this paper we describe the application of this approach to an elastic-
perfectly plastic material subjected to cyclic loading. With extensions to high
temperature creep the method has been applied to all the stages of the UK’s
life assessment method, R5, [6, 7] for high temperature power plant, providing
economic and accurate limits, capable of extending the range and accuracy of
present methods [5]. Here we confine ourselves to problems where creep is not an
issue and give examples from three contrasting areas of application, shakedown
under rolling contact, the behaviour of a power plant heat exchanger, and the
behaviour of a metal matrix composite when subjected to constant macro-stress
and variable temperature.

In the following sections we briefly summarise a general cyclic minimum
theorem for perfect plasticity and the application of the Linear Matching Method
for a particular class of problems. This is followed by a description of the three
examples.
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2. Cyclic behaviour

Consider a body with volume V and surface S. Part of S, namely ST , is
subjected to a cyclic history of load λPi(xi, t), while the remainder of S, namely
SU , is subjected to zero displacement rate, u̇i = 0. Within V a cyclic history
of temperature λθ(xi, t) occurs. Here λ denotes a load parameter. The body is
composed of an elastic/perfectly plastic solid. For such a model the modes of
behaviour are well understood. For differing loading conditions, four modes of
behaviour are possible.

Elastic behaviour: For sufficiently low values of λ, the elastic stress history
λσ̂ij due to λPi and λθ lies within yield, assuming no initial residual stresses.

Shakedown: When the elastic stress history exceeds yield, plastic strains
occur during initial cycles and the stress history σij asymptotes to a history of
the form σij = λσ̂ij(t)+ ρ̄ij , where σ̂ij denotes the linear elastic stress history for
λ = 1 and ρ̄ij denotes a time-constant residual stress field. Generally ρ̄ij is not
unique and depends on any initial residual stress field but the value of λ = λs

that characterises the limit to this mode of behaviour, the shakedown limit, is
independent of any initial residual stress. At the limit a unique ρ̄ij exists for a
strictly convex yield surface. The shakedown limit may be subdivided into two
subcategories, a reverse plasticity limit (low Pi, high θ) where a closed cycle of
plastic strain begins to occur but no cyclic strain growth, and a ratchet limit
(high Pi, low θ) where cyclic strain growth occurs at values of λ = λs < λL

where λL is the limit load value for constant temperature and maximum load.
In excess of the shakedown limit, the steady state cyclic stress history has

the form σij = λσ̂ij + ρ̄ij + ρr
ij where ρ̄ij now becomes the residual stress at the

beginning and the end of the cycle and ρr
ij denote the change in the residual

stress field during the cycle, reducing to zero at the beginning and end of the
cycle. This stress history is produced by a cyclic history of plastic strain ε̇pij
that accumulates over the cycle to a compatible increment of strain ∆εpij , giving
rise to an increment of displacement ∆up

i . In this state two possible modes of
behaviour occur, corresponding to two separate regions of loading.

Plastic shakedown or reverse plasticity: For this range of loading, in
excess of the reverse plasticity shakedown limit, no cyclic strain growth occurs,
i.e. ∆εpij = 0 and ∆up

i = 0, but locally a closed cycle of plastic strain occurs as a
potential source of fatigue initiation. Hence the interest in this region is an eval-
uation of the amplitude and location of the maximum plastic strain amplitude.

Plastic ratchetting: For this range ∆εpij and ∆up
i are non-zero and the

material experiences a cyclic growth of strain.
The evaluation of these patterns of behaviour may be obtained through a

large number of step-by-step finite element calculations and this has certainly
been done in the past. The identification of the boundaries between these behav-
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ioural load regions can be difficult and essentially subjective. The whole calcu-
lation is rather excessively tedious. However, we show, in the next two sections,
how it is possible to identify the primary characteristics of the region boundaries
directly. These methods have been developed to provide improved computational
methods for structural life assessment methods for high temperature power plant
[5, 8, 9, 15, 16].

In Sec. 3 the minimum theorem is described and related to the classical
shakedown theorems. The Linear Matching Method is summarised for shakedown
in Sec. 4 and the solution strategy described. This is extended to the ratchet limit
in Sec. 5. Finally, in Sec. 6 numerical solutions are discussed.

3. Minimum theorems

The theory discussed in this section is derived in general terms in Ponter
and Chen [8] and Chen and Ponter [9]. Since the publication of these papers it
has become clear that the theorems were contained, in essence, in the classic book
of Gokhfeld and Cheriavsky [19]. Recently Polizzotto has extended the
result to a generalized standard material [20]. Here the results are summarised for
perfect plasticity. The yield condition is given by the Huber–von Mises condition
and the associated flow rule,

(3.1) f(σij) = σ̄ − σy ≤ 0, ε̇pij = µ̇
∂f

∂σij
,

where σ̄ denotes the von Mises effective stress and σy the uniaxial yield stress.
The linear elastic stress solution, corresponding to plastic strains ε̇Pij = 0, is

denoted by λσ̂ij , with

(3.2) λσ̂ij(x, t) = λ(σ̂P
ij(x, t) + σ̂θ

ij(x, t)),

where σ̂P
ij(x, t) and σ̂θ

ij(x, t) are the linear elastic stress solutions corresponding
to Pi and θ.

For the above general problem in a typical cycle, 0 ≤ t ≤ ∆t, in the steady
state, the following minimum theorem (Ponter and Chen [8]) exists. For any
chosen value of λ, the functional

(3.3) I(ε̇cij , λ) =

∫

V

∆t∫

0

(σc
ij − λσ̂ij)ε̇

c
ijdtdV

is minimised by the exact solution, where σc
ij denotes the stress at yield corre-

sponding to a plastic strain rate history ε̇pij = ε̇cij , such that the accumulated
strain over the cycle,
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(3.4)

∆t∫

0

ε̇cij = ∆εcij

is kinematically admissible, i.e. compatible with a displacement field, ∆uc
ij ,

which, in turn, satisfies the displacement boundary condition on Su. Two ad-
ditional restrictions are now placed on the magnitude of ε̇cij :

Restriction 1: Corresponding to ε̇cij , a cyclic history of residual stress,
ρc

ij(x, t), is defined such that it satisfies the relationship

(3.5) ε̇ccij = Cijklρ̇
c
ij + ε̇cij ,

where ε̇ccij is kinematically admissible and Cijkl denotes the linear elastic compli-
ance tensor. Note that:

(3.6) ρc
ij(0) = ρc

ij(∆t) = 0.

Restriction 2: Corresponding to ρc
ij(x, t), a restriction is then placed on

the absolute magnitude of ε̇cij , with the requirement that there exists a constant
residual stress field, ρ̄ij , such that the composite stress history

(3.7) σij = σ̂ij + ρ̄ij + ρc
ij

satisfies the yield condition, f(σij) ≤ 0, for 0 ≤ t ≤ ∆t.
For a prescribed load history, i.e. a prescribed λPi and λθ,

(3.8) I(ε̇cij , λ) ≥ 0

with equality achieved when ε̇cij = ε̇crij , the exact cyclic solution, Ponter and
Chen [8].

This result includes the classical shakedown theorems as a limiting case. If
we take λ = λs, the value corresponding to the shakedown limit, the magni-
tude of the strain rate history, ε̇cij , becomes infinitesimally small and ρc

ij(x, t)
becomes insignificant compared with the elastic stresses. Restriction 1 no longer
applies and Restriction 2 corresponds to the lower bound shakedown theorem
(Koiter [1]). At this limit I is linear in the absolute magnitude of ε̇cij . Hence
(2.8) yields that I(ε̇cij , λs) ≥ 0 and I(ε̇sij , λs) = 0, where ε̇sij is the exact shake-
down mechanism and we understand that ε̇cij and ε̇sij are small but finite. If we
now define λ = λUB as the value that satisfies I(ε̇cij , λ

c
UB) = 0, independent

of the absolute magnitude of ε̇cij , then it follows, easily, that λc
UB ≥ λs. Hence

the upper bound shakedown theorem of Koiter [1] is recovered. In summary,
for small ε̇cij , the aforesaid minimum theorem provided a generalisation of both
the lower and upper bound shakedown theorems. For finite ε̇cij the theorem is
applicable above the shakedown limit.
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4. The linear matching method for the shakedown limit

The Linear Matching Method involves the solution of a sequence of linear
problems that yield kinematically admissible strain rate histories corresponding
to monotonically reducing upper bounds λUB that may be shown to converge
to the least upper bound associated with the class of displacement fields chosen,
Ponter and Engelhardt [10]. The linear material is matched to the yield
condition for the current strain rate history. Essentially it is a non-linear pro-
gramming method but of a form that is particularly easy to understand and
implement.

For simplicity, consider a problem where the elastic solution has two extremes
at times t1 and t2 with linear interpolation between these values at other times.
In this case the plastic strain history consists of two increments of strain ∆ε1ij
and ∆ε2ij corresponding to the extremes of the elastic stress history at times t1
and t2. For initial estimates ∆ε1I

ij and ∆ε2I
ij , we define shear moduli µ̄1I and µ̄2I

corresponding to an incompressible, isotropic linear material by the matching
conditions;

(4.1) σy =

(
3

2

)
2µ̄lI ε̄(∆εlIij), l = 1, 2,

where ε̄ denotes the von Mises effective strain. For an incompressible linear
materials defined by shear moduli µ̄1I and µ̄2I , the effective stress matches the
yield condition at these, initial, estimates of plastic strain increments. A new
estimate of the strain rate history is then given by the solution of the following
linear problem:

(4.2)

∆ε1F
ij =

1

2µ̄1I

{
λσ̂ij(t1) + ρ̄F

ij

}
,

∆ε2F
ij =

1

2µ̄2I

{
λσ̂ij(t2) + ρ̄F

ij

}
,

λ = λI
UB;

(4.3)

∆εFij = ∆ε1F
ij + ∆ε2F

ij , σ̂ij(t) = (σ̂p
ij + σ̂θ

ij),

∆ε1F
kk = 0,

∆ε2F
kk = 0,

where ∆εFij is kinematically admissible and ρ̄F
ij satisfies equilibrium. Here λI

UB de-
notes the upper bound corresponding to the initial solution, i.e. I(∆εlIij , λ

I
UB) = 0.

General theory (Ponter and Engelhardt [10]) then gives that

(4.4) λF
UB ≤ λI

UB
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with equality at convergence. Repeated application of this algorithm produces
a sequence of reducing upper bounds that converge to the least upper bound
corresponding to the finite element mesh for finite element solution. The gener-
alisation to an arbitrary strain rate history is simple and is given in [10].

5. Evaluation of the ratchet limit

In the case of loading in excess of shakedown, a parallel understanding of
the nature of the ratchet boundary is required (Chen and Ponter [9]). The
following concerns the case where we assume that the load state, for a prescribed
λ, is within the reverse plasticity load region. First, the functional, I(ε̇cij , λ),
is minimised for mechanisms that satisfies ∆εcij = 0, but taking into account
Restriction 1, Eq. (2.5), of the minimum theorem and assuming that ρc

ij(x, t)
is finite. For problems that exhibit a reverse plasticity shakedown limit, this
consists of increasing λ above this limit in increments. This is then followed by
the evaluation of a load factor λ̄ so that an appropriate constant load λ̄P̄i takes
the load state to the ratchet limit. This is given by the shakedown limit with the
elastic solution λσ̂ij now replaced by λσ̂ij + ρc

ij , [8, 9].
Consider, again, the case where the elastic solution varies proportionally be-

tween two extreme values, σ̂ij(t1) and σ̂ij(t2), describing a straight-line path in
stress space. Using this simplification, Eqs. (2.4) and (2.5) now give

(5.1)

t1∫

0

ε̇cijdt = ∆ε1ij and

t2∫

t1

ε̇cijdt = ∆ε2ij = −∆ε1ij

and

(5.2)

t1∫

0

ρ̇c
ijdt = ∆ρ1

ij and

t2∫

t1

ρ̇c
ijdt = ∆ρ2

ij = −∆ρ1
ij ,

∆ε1ij + ∆ε2ij = 0, ∆ρ1
ij + ∆ρ2

ij = 0.

Thus, by taking into consideration only ∆ε1ij and ∆ρ1
ij , the extremes of the

reverse-plasticity mechanism can then be identified. In the following, it is impor-
tant to note that the strain increment, ∆ε1ij , is assumed to occur at a fixed point
on the yield surface, in contrast to the exact solution, where the plastic strain
rate may move around the yield surface. For proportional loading problems we
find (Chen and Ponter [9]) that this assumption has little effect upon the
solution and considerably simplifies the solution method.

As before, the evaluation of ∆ε1ij and ∆ρ1
ij requires the solution of a se-

quence of linear problems. For an initial estimate, ∆ε1ij = ∆ε1I
ij , a new estimate,
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∆ε1ij = ∆ε1F
ij , is then defined as the solution of a linear problem corresponding

to a shear linear coefficient, µ̄I being given by the matching condition for the
range of stress,

(5.3) 2σy =

(
3

2

)
2µ̄I ε̄(∆ε1I

ij ).

The new distribution of the strain increment, ∆ε1F
ij , is then characterized as

the solution to the following problem:

(5.4) ∆ε1TF
′

ij =
1

2µ
∆ρ1F

′

ij + ∆ε1F
′

ij , ∆ε1TF
kk =

1

3K
∆ρ1F

kk

and

(5.5) ∆ε1F
′

ij =

(
1

2µ̄I

)(
∆σ̂

′

ij + ∆ρ1F
′

ij

)
, ∆ε1F

kk = 0,

where ∆ε1TF
ij is kinematically admissible and ∆ρ1F

ij satisfies equilibrium condi-
tions for zero applied loads. Here

(5.6) ∆σ̂ij = λ(σ̂θ
ij(t1) − σ̂θ

ij(t2)),

Note that the shear modulus, µ, and the bulk modulus, K, correspond to
(isotropic) elastic material behaviour. In an iterative process, the repeated ap-
plication of this algorithm produces a sequence of solutions for ∆ε1F

ij , which
converge to the absolute minimum of the functional I [8, 9].

The numerical procedure now used to identify the ratchet limit, is the same
as the upper bound shakedown limit discussed in the previous section. The linear
elastic solution is replaced by

(5.7) σ̂ij = λσ̂ij + λ̄σ̂P̄
ij(xi) + ρr

ij(xi, t),

where σ̂P̄
ij(xi) denotes the linear elastic solution corresponding to the additional

loads P̄i . The residual history ρr
ij(xi, t) is given by

ρr
ij(xi, 0) = 0, ρr

ij(xi, t1) = ∆ρ1
ij ,

ρr
ij(xi, t2) = ∆ρ1

ij + ∆ρ2
ij = 0 = ρr

ij(xi,∆t).

6. Examples of applications

In the following we describe three examples from differing applications; the
shakedown of surfaces under rolling contact, the performance of a heat exchanger
subjected to severe thermal loading and the performance of a particulate metal
matrix composite subjected to variable temperature.
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6.1. Example 1. The shakedown of a surface subjected to repeated rolling contact

A half-space, z > 0, is composed of an elastic perfectly plastic material. A
contacting body rolls, repeatedly from x = −∞ to x = +∞. The contact area
is elliptical with semi axes a and b as shown in Fig. 1. Within this area normal
pressure p (x, y) is assumed to be given by the solution of the Hertz contact
problem. In addition a frictional force acts in the x direction given by

q(x, y) = fp(x, y),

where f is a coefficient of friction. Linear elastic solutions have been given by
Hamilton [12] and Sackfield and Hill [13]. Solutions for the shakedown
solution to this problem were given, using a semi-analytic method, by Ponter
Hearle and Johnson [11], mainly for the case of circular contact, a = b.

Fig. 1. A rolling contact problem.

Details of the finite element implementation may be found in Chen and
Ponter [14]. Any ratchet mechanism will be independent of the x direction.
A finite element mesh is chosen in the (y, z) plane of three-dimensional brick
elements. Displacement constraints are then applied to ensure that the displace-
ment on the opposing x = constant surfaces are identical. The cycle of loading
then consists of positioning the contact region at a sequence of positions along
the x-axis, thereby generating an elastic stress history for each element Gauss
point.

Shakedown limits are shown as an interaction diagram in Fig. 2. Here
k = σy/

√
3 denotes the pure shear yield stress. For a fixed value of the contact

ellipse aspect ratio b/a, the shakedown limit is shown as a contour in a space
where the axes are given by the normal load and the traction coefficient f .
The extreme case of line contact, b/a → ∞ may be evaluated directly from
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Fig. 2. Shakedown boundaries for the rolling contact problem for a range
of ellipse aspect ratios b/a.

the two-dimensional line contact solution as the optimum mechanism consists
of a slip surface parallel to the contact surface. The solution for b/a = 1 corre-
sponds closely to the solution given by Ponter, Hearle and Johnson [11]. By
inspecting the mechanisms in each optimal solution at convergence, it is possible
to classify the mechanisms into three broad categories:

1. RP – Reverse plasticity mechanism, where plastic strains occur at a sin-
gle point (numerically at a single Gauss point), with zero plastic strains
elsewhere.

2. R – A subsurface ratchet mechanism, similar in form to the mechanism
chosen by Ponter, Hearle and Johnson [11] although generally of
a more complex nature than the simple form assumed by these authors.

3. SR – Surface ratchetting. For these cases the mechanism occurs at the
surface and consist of the movement, in the direction of travel, of a thin
surface layer within the contact area.

It can be seen that reverse plasticity (RP) occurs for low friction coefficient,
less than f ∼= 0.15, except for large and small values of b/a. Surface ratchetting
occurs for high values of f > 0.25. For the intermediate range, where realistic f
values occur, the mechanism is a ratchet mechanism beneath the surface.
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The extreme case of b/a = 0 and f = 0 reduces to a two-dimensional limit
load problem, and the corresponding value is included for comparison. The value
is significantly higher than the computed case of b/a = 0.25.

This example demonstrates that the method is capable of providing reference
solutions to complex problems. Such rolling contact solutions have application
in the design of railway lines, bearing surfaces and road pavements.

6.2. Example 2. A heat exchanger subjected to severe thermal cycling

Figure 3 shows a 1/16-th section of a heat exchanger from a power plant.
Such exchangers are subjected to particular severe thermal loading, resulting
in the possibility of ratchetting and premature failure due to high cycle fatigue.

Fig. 3. Heat Exchanger. Temperature distribution at Boiler Trip ◦C.

Fig. 4. Heat Exchanger. Heat Exchanger. Temperature at Boiler Reconnect, ◦C.
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In Figs. 3 and 4 are shown two extreme temperature distributions that occur
when the superheated steam supply is suddenly disconnected (Boiler Trip) and
when the superheated steam supply is reconnected (Boiler Reconnect). At the
same time there is a varying internal steam pressure. If this sequence is re-
garded as a cycle of loading, the resulting interaction diagram may be evalu-
ated, using the methods of Secs. 4 and 5, as shown in Fig. 5. The linear elastic
stress histories where evaluated and the maximum variation of effective elas-
tic stress was denoted by ∆σ̂BT−RC

TP . This linear solution was then scaled and
the vertical axis of Fig. 5 ∆σ̂/∆σ̂BT−RC

TP corresponds to differing scaling factors
where ∆σ̂/∆σ̂BT−RC

TP = 1 corresponds to the actual history. The horizontal axis
σ̂/σ̂SS

p corresponds to the maximum elastic effective stress for an internal pres-
sure, where σ̂/σ̂SS

p = 1 corresponds to the internal pressure experienced by the
heat exchanger in normal operation. Variation of the yield stress with temper-
ature was taken into account as this has a significant effect on the solutions.
The diagram is subdivided into regions where shakedown (S), reverse plastic-
ity (P) and ratchetting (R) occurs. It is possible to adapt the method so that
cyclic hardening is taken into account and this effects the position of the ratchet
boundary. Using the known steady state cyclic behaviour for the material (an
austenitic stainless steel), the corresponding ratchet boundary is shown in Fig. 5
as a dashed line.

0
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1.2

1.4

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

The applied cyclic loads (BT-RC)

ratchet limit with Perfect Plasticity

ratchet limit with hardening model

elastic shakedown limit
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S: Elastic Shakedown

P

S

R

∆σ̂
∆σ̂BT−RC

TP

σ̂
σ̂SS

P

∆σ̂BT−RC
TP maximum elastic stress range from Boiler Trip (BT) to Reconnect (RC).

σ̂SS
P maximum elastic internal pressure at the steady state normal operation.

Fig. 5. Interaction diagram for Heat Exchanger problem of Fig. 4, showing the ranges of
loading for which differing modes of behaviour occur.
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This method of representing the behaviour of the structure can be seen to
have considerable advantages. The actually loading history, ∆σ̂/∆σ̂BT−RC

TP = 1,
lies slightly outside the ratchet boundary within the ratchet region, assuming
perfect plasticity. When cycle hardening is taken into account, the load point
lies on the ratchet boundary. This characteristic of the problem corresponds
very well with the known behaviour of the component. The load point lies well
outside the shakedown region and this is typical of such problems where the
amplitude of plastic strain and the location of the load point in relation to the
ratchet boundary are of greatest interest. A full discussion of the solutions and
comparisons with step-by-step solutions for complex constitutive equations are
given by Chen and Ponter [15, 16].

This example demonstrates that, for these complex industrial problems, the
method is capable of providing solutions that are much more illuminating than
conventional analysis.

6.3. Example 3. A particulate metal matrix composite subjected to constant stress
and variable temperature

The final example concerns the behaviour of a metal matrix composite ma-
terial. Such materials consist of a combination of a ductile matrix metal within
which is incorporated, in a regular manner, a ceramic. The ceramic may be
in the form of long continuous fibres or particles. Such materials have higher
strength, greater stiffness and lower density than the monolithic matrix material
and hence are potentially advantageous for aerospace applications. An aspect of
such materials that is potentially difficult to understand in all its aspects is the
effect of variable temperature. The constitutive components, ceramic and metal,
have significantly differing coefficients of thermal expansion and this gives rise
to micro thermal stresses when the (uniform) temperature of the material is
changed.

We consider a regular particulate composite that consists of a regular three
dimensional array of cubic elements. A particle of the ceramic is positioned at
the centre of each cube. In Fig. 6 we show the finite element mesh for one eigth of
a generic cube for two values of Vp, the volume fraction occupied by the ceramic
particle.

The following problem was considered. A uniaxial macro-stress Σ is applied
in a direction parallel to an edge of the generic cube and maintained constant.
The temperature of the composite remains uniform but varies cyclically over
a range θ0 to θ0+∆θ. The generic cube is subjected to homogenisation boundary
conditions so that the surface displacement in a single cube is consistent with
that of adjacent, identical cubes.
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Fig. 6. Typical finite element meshes for 1/8th of the generic cube of a regular particulate
metal matrix composite. The elements are 20 noded quadratic.

Figure 7 shows a sequence of interaction diagrams for a range of Vp where the
axis are expressed in non-dimensional variables, Σ/Σy and ∆σθ/∆σθ

RP . Here Σy

denotes the limit macro-stress Σ of the composite for ∆θ = 0; ∆σθ denotes the

Fig. 7. Shakedown limits and ratchet limits for metal matrix composite consisting of
an aluminium (Al) matrix with the particles of alumina (AL2O3) for a range of Vp,

the proportion of the volume occupied by the alumina particles.
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maximum effective elastic stress due to ∆θ whereas ∆σθ
RP denotes the value of

∆σθ at the reverse plasticity shakedown boundary between the regions S and P.
Figure 7 was evaluated using appropriate material properties for an aluminium
matrix and alumina particles. Solutions for silica carbide particles produced a
nearly identical diagram; this set of non-dimensional variable provides a diagram
that will be reasonable accurate for any combination of elements.

The most noticeable feature of Fig. 7 is the observation that the reduction
of the effective strength of the composite due to variable temperature has a sat-
uration value, which varies with volume fraction Vp with a maximum reduction
of about 50%.

7. Conclusions

The paper concentrates on the behaviour of an elastic/perfectly plastic body
subjected to cyclic loading. The approach involves the characterisation of the
cyclic state as a minimum principle. For an approximating class of kinematically
admissible strain rate histories, an optimal minimum may then be found by a
simple programming method, the Linear Matching Method. The objective of this
study is to demonstrate that Direct Methods may be applied to a much wider
range of circumstances than have hitherto been possible. The methodology has
been applied to complex problems involving both creep and plasticity [15, 16].
Minimum theorems may be derived for cyclic creep and Direct Methods for cyclic
creep problems [17, 18] have been solved, for the first time, by the methodology
described in this paper.
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