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Existence and uniqueness for the reflection-transmission process originated in
a viscoelastic solid layer are investigated. Wave propagation is framed within the
Fourier-transform domain and the oblique incidence is modelled by a factor involving
a transverse wave vector. The backward-forward propagation in the axial direction
is ascertained through the sign of an energy flux. Next, a connection is established
between the energy flux and an Hermitian matrix whose eigenvalues are half positive
and half negative. The proof is given that if the matrix has two diagonal blocks,
one of which is positive definite and the other is negative definite, the solution to
the reflection-transmission problem exists and is unique. The condition on the blocks
is found to hold, e.g., for obliquely propagating homogeneous waves in anisotropic
elasticity or normally propagating waves in isotropic viscoelasticity.

1. Introduction

The aim of this paper is to establish the existence and uniqueness of the so-
lution to the reflection-transmission (RT) problem associated with the oblique
incidence on a stratified multilayer sandwiched between two homogeneous half-
spaces. The layers and the half-spaces are viscoelastic anisotropic solids. The
material properties are constant in the two half-spaces, depend on the depth
inside the layers, and may suffer jump discontinuities at the plane interfaces.

Wave propagation in stratified media is investigated in connection with the
Helmholtz equation, the Schrödinger equation, the one-dimensional equation of
elasticity, the Maxwell equations of electromagnetism. References [1] to [7] pro-
vide interesting approaches and results within the direct and the inverse scat-
tering. Nevertheless, it seems that no results are given concerning the existence
and uniqueness for the RT problem in dissipative anisotropic solids. Moreover,
dissipation and anisotropy require that a system of six first-order ordinary differ-
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ential equations should be considered instead of a single second-order or a pair
of first-order equations.

Mathematically, there are three remarkable features associated with the RT
problem. First, at least at one interface both incident (known) and reflected
(unknown) waves occur. This prevents the RT problem from being a genuine
boundary-value problem. Secondly, the solutions to the governing equations in
the homogeneous half-spaces are required to produce a basis for the representa-
tion of the incoming and outgoing waves. Thirdly, a characterization is in order
for the direction of propagation of a wave solution in homogeneous regions. These
features are strictly interrelated.

Existence and uniqueness for the RT problem is investigated in [8] for an
elastic layer and normal incidence in the time domain and in [9] for oblique inci-
dence on the interface between two homogeneous viscoelastic half-spaces in the
frequency domain. The RT problem is investigated in electromagnetism [10, 11]
but the scheme does not seem to apply in mechanics. The results obtained for
the one-dimensional Schrödinger equation on the line [3] cannot be generalized
directly, e.g. to dissipative and anisotropic materials.

Here we take advantage of some suggestions arising from two recent pa-
pers of ours. In [12] uniqueness is proved to follow from an appropriate form
of the boundary conditions for the layer, which express the outgoing charac-
ter of reflected and transmitted waves. This aspect however has to be recon-
sidered because [12] deals with elastic solids. In [9] viscoelastic solids are con-
sidered and the direction of a wave is associated with the sign of an energy
flux.

In this paper, the wave propagation in viscoelastic solids is framed within the
Fourier-transform domain, and the backward-forward propagation in the axial
direction is ascertained through the sign of an appropriate energy flux F . The
conceptual improvement in this approach is the monotone character of F which
follows from the balance of energy. The oblique incidence is modelled by a factor
involving the transverse wave vector k⊥. Next a connection is established be-
tween F and a Hermitian matrix Φ whose eigenvalues are half positive and half
negative. We prove that, whenever the matrix Φ has two diagonal blocks, one
of which is positive definite and one is negative definite, the solution to the RT
problem exists and is unique. This means that existence and uniqueness hold,
provided in each half-space the fundamental solutions are partitioned in three
incoming and three outgoing waves and any linear combination of the triplet
preserves the incoming or the outgoing character. As examples, we show that
the required property on the blocks of Φ holds for obliquely-propagating ho-
mogeneous waves in elastic anisotropic solids, or normally-propagating waves in
viscoelastic isotropic solids, but does not hold for inhomogeneous (evanescent)
waves in elastic solids.
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2. Basic framework

Consider a body occupying the whole space domain R
3. Each position in the

body is associated with the Cartesian coordinates x, y, z or x1, x2, x3. Denote
by x = (x, y, z) the position vector. Let u(x, t) be the displacement at point x
at time t. Also, let e1, e2, e3 be the unit vectors of x1, x2, x3 and let ∂t denote
the partial differentiation with respect to t. Body forces are disregarded and the
linear approximation is considered. Hence the equation of motion is written in
the form

(2.1) ρ∂2
t u = ∇ · T,

where ρ is the mass density and T is the Cauchy stress tensor.
The body is taken to be anisotropic and linearly viscoelastic. We then write

T in terms of the gradient of displacement, ∇u, in the form

(2.2) T(x, t) = G0(x)∇u(x, t) +

∞∫

0

G′(x, η)∇u(x, t − η)dη,

where the values of G0 and G′ are fourth-order tensors and G′(x, η) = 0 as
η < 0. In indicial form,

Tij(x, t) = G0ijhk∂uk/∂xh +

∞∫

0

G′
ijhk(x, η)∂uk(x, t − η)/∂xh dη.

Both G0 and G′ are required to satisfy the minor and major symmetries, namely

G′
ijhk = G′

jihk = G′
ijkh = G′

hkij .

For any pair of tensors A,B we let A ·B represent the inner product which
in components has the form

A · B = AijBij .

It is a consequence of thermodynamics [13] that the half-range sine transform
of G′,

G′
s(x, ω) =

∞∫

0

G′(x, η) sin ωη dη,

is definite in the space of symmetric tensors Sym, i.e.

(2.3) ωE · G′
s(x, ω)E < 0, ∀E ∈ Sym, ∀ω ∈ R \ {0}.
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We let u depend on t through the factor exp(iωt) or rather address attention
to the Fourier transform

uF (x, ω) =

∞∫

−∞

u(x, t) exp(−iωt)dt

so that

u(x, t) =
1

2π

∞∫

−∞

uF (x, ω) exp(iωt)dω.

In this regard we let u(x, ·),∇u(x, ·), ∂tu(x, ·), ∂2
t u(x, ·) ∈ L1(R).

By applying the Fourier transform to (2.2) we find that

(2.4) TF (x, ω) = G(x, ω)∇uF (x, ω),

where

G(x, ω) = G0(x) +

∞∫

0

G′(x, η) exp(−iωη) dη.

Of course G inherits the major and minor symmetries from G0 and G′.
Let the subscripts R, I denote the real and imaginary parts, e.g. GR = ℜG,
GI = ℑG. Since GI = −G′

s, the restriction of thermodynamic character on G′

can be written as

(2.5) ωE · GI(x, ω)E > 0, ∀ E ∈ Sym, ∀ω ∈ R \ {0}.

3. Energy flux vector in the frequency domain

We now investigate consequences of (2.1)–(2.5) in the frequency domain.
Apply the Fourier transform to (2.1) to obtain

(3.1) iωρvF = ∇ · TF ,

where v = ∂tu is the velocity. The dependence of uF ,vF ,TF on x and ω is often
understood and not written. Let an asterisk denote complex conjugation. Let us
multiply (3.1) by v∗

F to obtain

iωρvF · v∗
F = ∇ · (TFv∗

F ) − TF · ∇v∗
F .

The left-hand side is imaginary and hence

(3.2) ℜ[∇ · (TFv∗
F )] = ℜ[TF · ∇v∗

F ].
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We now evaluate ℜ[TF · ∇v∗
F ]. Since ∇v∗

F = −iω∇u∗
F , upon substitution

and use of the symmetries of G we have

(3.3) ℜ[TF · ∇v∗
F ] = ER · ωGI(ω)ER + EI · ωGI(ω)EI ,

where E now stands for Sym∇uF . In viscoelasticity, the positive definiteness of
ωGI(ω), ω 6= 0, yields

(3.4) ℜ[TF · ∇v∗
F ] > 0 ∀ω ∈ R \ {0}

and equality holds at ω = 0. In elasticity GI = 0 and hence

ℜ(TF · ∇v∗
F ) = 0, ∀ω ∈ R.

In both cases we can then write

(3.5) ℜ(TF · ∇v∗
F ) ≥ 0 ∀ω ∈ R;

equality holds if ω = 0 or in elasticity.
In terms of

(3.6) j := −
1

2
ℜ[TFv∗

F ],

by (3.2), (3.3) and (3.5) we have

∇ · j = −
1

2
[ER · ωGI(ω)ER + EI · ωGI(ω)EI ] ≤ 0.

Hence, for any region V ⊂ R
3, with boundary ∂V , the divergence theorem gives

(3.7) 0 ≥

∫

∂V

j · n da,

where n is the unit outward normal to ∂V . If ω = 0, or the solid is elastic, then
∇ · j = 0.

By (3.7) we regard j as the (real) energy flux vector. This view is motivated
also as follows. Consider the strain tensor

E(x, t) = E1(x) cos ωt + E2(x) sinωt.

Substitution in (2.2) gives the corresponding stress tensor. Hence, the energy
dissipation in the period [0, τ ], τ := 2π/|ω|, yields

τ∫

0

T(t) · Ė(t)dt =
1

2
τ(E1 · GIE1 + E2 · GIE2)
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thus showing that (E1 · GIE1 + E2 · GIE2)/2 is the energy dissipated per unit
time. The identification E1 = ER, and E2 = EI shows that, by (3.7), j is rightly
viewed as the energy flux vector. As a consequence,

(3.8) j · n = −
1

2
ℜ[(TFn) · v∗

F ]

is the energy flux, per unit area and unit time, through a surface with normal n.
The results for the energy flux vector and the energy flux are consistent with

the argument given, e.g., in [14], Sec. 2.5, and [15], Sec. 3.4, and [16] where
the power, in time-harmonic motions, is taken as the time average, over a time
period, of the inner product of the real part of the force and the real part of the
velocity.

4. First-order system of equations

Henceforth we let G and ρ depend on x through z. The governing equations
can then be written as a first-order system, which in turn is essential for the
investigation of the energy flux and the proof of uniqueness.

Let w(z, ω) take values in C
6 and set

[
uF

tF

]
= w exp(ik⊥ · x),(4.1)

where tF = TFe3 is the traction on the pertinent z=constant plane and k⊥ ∈ C
3,

k⊥ · e3 = 0. The factor exp(ik⊥ · x) allows for oblique incidence and traces back
to Snell’s law.

The equation of motion (2.1) then takes the form of a first-order system of
equations

(4.2) w′ = Aw,

where A(z, ω) ∈ C
6×6 and a prime stands for differentiation with respect to z.

The matrix A is determined as follows. For any pair a,b ∈ C
3, let aGb stand

for the matrix with components (aGb)hk = apGhpqkbq. Hence

A =

[
AI AII

AIII AIV

]

where

AI =−i(e3Ge3)
−1(e3Gk⊥), AII = (e3Ge3)

−1,

AIII = −ρω21 + k⊥Gk⊥ − (k⊥Ge3)(e3Ge3)
−1(e3Gk⊥), AIV = (AI)T .
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Since AII and AIII are symmetric it follows that, letting

K =
[
0 1

1 0

]
,

we have

(4.3) KA = (KA)T .

The form (4.2) for the governing equations traces back to Stroh [17] for
elastic materials; cf. [9].

4.1. Representation of w in homogeneous regions

Look at homogeneous regions (half-spaces) where A is independent of z.
We assume that A is simple and hence that A has six linearly independent
eigenvectors, say pα, α = 1, ..., 6. Denote by iσα the corresponding eigenvalues.
We assume that each σα is nonzero. The values of σα are determined by solving
the eigenvalue problem

(4.4) Ap = iσp,

where A is parameterized by k⊥ and ω. In this regard, represent p as the or-
dered pair of triplets [a, l]T . By using the block form of A, we find that (4.4) is
equivalent to

(4.5) [σ2e3Ge3 + σ(e3Gk⊥ + k⊥Ge3) − ρω21 + k⊥Gk⊥]a = 0.

The values of σ are then given by the secular equation

(4.6) det[−ρω21 + k⊥Gk⊥ + σ2e3Ge3 + σ(e3Gk⊥ + k⊥Ge3)] = 0.

Correpondingly, the value of a is determined by (4.5) and that of l by

(4.7) l = i(e3Gk⊥ + σe3Ge3)a.

The integral of (4.2) is written in the form

(4.8) w(z) =
∑

α

cαpα exp[iσα(z − z0)],

where cα,pα and σα are complex-valued and parameterized by ω while z0 is a
reference value of z. The representation (4.8) of w shows that {pα exp[iσα(z −
z0)]} is a basis for the solution to (4.2). It is worth remarking that the form

(4.9) [uF , tF ]T (z, ω) exp(iωt) =
∑

α

cαpα exp[i(k⊥ · x + σα(z − z0) + ωt)]
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of the pair [uF , tF ]T allows the solution to be viewed as a superposition of
inhomogeneous waves (cf. [18, 15]). Hence a can be viewed as the polarization
of the displacement and l as the polarization of the traction.

It is convenient to consider the matrix

P = [p1, ...,p6],

namely the matrix whose columns are the eigenvectors of A. The linear inde-
pendence of the eigenvectors makes P invertible. Moreover we have

P−1AP = Λ,

where

Λ = diag[iσ1, ..., iσ6].

Letting

c = [c1, ..., c6]
T

and

E(z, z0) = diag[exp(iσ1(z − z0)), ..., exp(i(z − z0))],

we can write (4.8) in the form

(4.10) w(z) = PE(z, z0)c.

We next make use of the freedom in choosing z0 so as to simplify the descrip-
tion of the pertinent problem. For distinct eigenvalues, by (4.3) the eigenvectors
satisfy the K-orthogonality condition

(4.11) (PTKP)βα = pT
β Kpα = γαδαβ .

If the eigenvalues are not all distinct, we can use the arbitrariness in the choice
of {pα} by letting (4.11) still hold.

5. Decay of the energy flux

We now show that the energy flux decays while the wave propagates. This
property is essential to prove the uniqueness of the solution.

Theorem 1. Let k⊥ ∈ R
3. The functions [uF , tF ]T in (4.1), subject to (2.4)

and (4.2), and vF = iωuF satisfy the identity

(5.1)
d

dz
ℜ(tF · v∗

F ) = ℜ(TF · ∇v∗
F ).
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P r o o f. Let w = [û, t̂]T so that

uF = û exp(ik⊥ · x), tF = t̂ exp(ik⊥ · x).

Since

∇uF = ik⊥ ⊗ uF + e3 ⊗ u′
F

by (2.4) we have

tF = [iG(k⊥ ⊗ uF ) + G(e3 ⊗ u′
F )]e3.

Also, v∗
F = −iωu∗

F and

∇v∗
F = −ωk⊥ ⊗ u∗

F − iωe3 ⊗ u′∗
F .

Consequently by using (2.4), the symmetry of G, and the reality of k⊥ we have

TF ·∇v∗
F = −ω(ik⊥⊗û+e3⊗û′)·G(k⊥⊗û∗)−iω(ik⊥⊗û+e3⊗û′)·G(e3⊗û′∗).

By (4.2) we have

û′ = −i(e3Ge3)
−1(e3Gk⊥)û + (e3Ge3)

−1t̂.

Hence, by using again (4.2) we have

t̂′ = −ρω2û + (k⊥Gk⊥)û − i(k⊥Ge3)û
′.

Consequently,

d

dz
(tF · u∗

F ) = (ik⊥ ⊗ û + e3 ⊗ û′) · G(e3 ⊗ û′∗)

− ρω2û · û∗ + (û∗ ⊗ k⊥) · G(k⊥ ⊗ û) − i(û∗ ⊗ k⊥) · G(e3 ⊗ û′).

A comparison with the expression of TF · ∇v∗
F yields

iω
d

dz
(tF · u∗

F ) + TF · ∇v∗
F = −iω3ρû · û∗.

The right-hand side is purely imaginary. Hence, taking the real part we have

ℜ[iω
d

dz
(tF · u∗

F )] = −ℜ[TF · ∇v∗
F ]

whence the conclusion follows.
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In view of (3.8) we let

(5.2) F := j · e3 = −
1

2
ℜ[tF · v∗

F ]

be the energy flux in the direction e3. If F > 0 (F < 0) then energy is flowing,
across a z = constant surface, in the positive (negative) z-direction. Let F̂ be
the functional such that

F(z) = F̂(w(z)).

If F > 0 then the pertinent wave w is said to propagate in the positive z-
direction.

Corollary 1. The function F is non-increasing.

P r o o f. By (5.2) and (5.1) we have

F ′ = −
1

2
ℜ(TF · ∇v∗

F ).

The positive definiteness of ℜ(TF · ∇v∗
F ) implies that

(5.3) F ′ ≤ 0

and equality holds when ω = 0 or in elastic solids (GI = 0).

Corollary 2. The function F cannot change the sign.

P r o o f. The result (5.3) means that the energy flux decays while the wave
propagates. In this regard consider F2 and observe that

(F2)′ = 2FF ′.

If F > 0 then the wave propagates forward (z-direction) and (F2)′ ≤ 0. If, in-
stead, F < 0 then the wave propagates backward (−z-direction) and dF2/d(−z)
= −(F2)′ ≤ 0. In both cases F2 decreases as the wave propagates. Since

dF2

dz
≤ 0 if F > 0 and

dF2

d(−z)
≤ 0 if F < 0

then F2 decreases in any direction. So, if there is z̄ such that F(z̄) = 0 then
either F(z) ≥ 0 as z < z̄ and F(z) = 0 as z > z̄, or F(z) ≤ 0 as z > z̄ and
F(z) = 0 as z < z̄. Hence F cannot change the sign.

Remark 1. If k⊥ ∈ C
3 then the result (5.1) is no longer true. Indeed,

iω
d

dz
(tF ·u∗

F ) = exp[−2ℑk⊥ ·x]{−iω3û · û∗ + iω(e3 ⊗ û′∗ ·G(e3 ⊗ û′))

+ iωû∗(k⊥Gk⊥)û + ω[û∗ · (k⊥Ge3)û
′ − û · (k⊥Ge3)û

′∗]}
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and the real part is not (negative) definite. Consequently, the restriction k⊥ ∈ R
3

for Theorem 1 and, moreover, for the inequality (5.3) is really necessary. The
reality of k⊥ seems to be a requirement placed by the joint occurrence of the
oblique incidence and the unboundedness of the plane interface. This in turn
shows that (5.3) is not merely the law of energy conservation. Energy conserva-
tion applies to a volume, (5.3) involves a single direction.

6. The energy flux as a Hermitian quadratic form

In order to establish the existence and uniqueness for the RT problem we
now investigate some algebraic properties of F in homogeneous solids.

For later applications where (5.3) is crucial, henceforth we restrict attention
to a real-valued k⊥. The results of this section, though, hold with trivial changes
if k⊥ is complex-valued.

Since vF = iωuF , by (5.2) we have

F = −
ω

2
ℑ(tF · u∗

F ) =
iω

4
(tF · u∗

F − t∗F · uF ).

Hence, letting

I =
iω

4

[
0 1

−1 0

]

we can write F in the form

F = [u∗
F , t∗F ] I

[
uF

tF

]

and also
F(z) = w†(z)I w(z).

Letting

(6.1) Φ = P†
I P,

by (4.10) we obtain
F(z) = c†E†(z, z0)ΦE(z, z0)c.

It is convenient to represent the α-th eigenvector pα as the ordered pair of triplets
[aα, lα]. Accordingly we have

(6.2) Φαβ =
iω

4
(a∗

α · lβ − l∗α · aβ).

The energy flux F can then be written as

F(z) =
∑

α,β

c∗αcβΦαβ exp[i(σβ − σ∗
α)(z − z0)].
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In particular,

(6.3) F(z0) =
∑

α,β

c∗αcβΦαβ .

Since I is Hermitian, I = I
†, then by (6.1) Φ proves to be Hermitian too,

Φ = Φ†.

The eigenvalues λ1, ..., λ6 of I are

λ1,2,3 = ω/4, λ4,5,6 = −ω/4.

This follows at once by

det[I − λ1] = (λ2 − ω2/16)3

or because

I I =
ω2

16
1.

Since Φ is Hermitian, the eigenvalues φ1, ..., φ6 say, are real. Also, Φ is congruent
with I. Now, two Hermitian matrices (as Φ and I) are congruent if and only
if they have the same rank and the same number (counting multiplicities) of
positive and negative eigenvalues (see [19], p. 185). Hence Φ has three positive
and three negative eigenvalues, say

(6.4) φ1,2,3 > 0, φ4,5,6 < 0.

For convenience we represent Φ in terms of 3 × 3 blocks,

(6.5) Φ =

[
Φf Φ̃

Φ̃
†

Φb

]
.

We assume that the diagonal blocks are definite, Φf is positive definite and Φb

is negative definite. Section 9 shows how such an assumption is significant. The
property holds for oblique incidence of homogeneous waves in elastic half-spaces
and for normal incidence in isotropic viscoelastic half-spaces. It does not hold if
inhomogeneous waves σ ∈ C occur.

According to the assumption

w(z) =
3∑

h=1

chph exp(iσh(z − z0)) or w(z) =
6∑

h=4

chph exp(iσh(z − z0)),
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by (6.3) we have

(6.6) F(z0) =
3∑

h,k=1

c∗hckΦhk > 0 or F(z0) =
6∑

h,k=4

c∗hckΦhk < 0

for every non-trivial triplet c1, c2, c3 or c4, c5, c6 of complex numbers. The prop-
erty (6.6) is essential in the proof of existence and uniqueness of the solution and
hence of the reflected and transmitted waves.

As a consequence of (5.3), the energy of the reflected and transmitted waves
decays with distance from the interface.

7. Uniqueness in the reflection-transmission problem

Let z < 0 and z > L be homogeneous, viscoelastic, half-spaces. The interval
0 < z < L consists of a multilayer of n adjacent inhomogeneous layers sep-
arated by interfaces at z = z1, ..., zn−1. At z = z0 = 0 and z = zn = L an
interface separates the multilayer from the adjacent half-space. The j-th layer,
j = 1, 2, ..., n, occupies the interval z ∈ (zj−1, zj). In each layer the constitutive
properties depend continuously on the spatial coordinate z only. Let f(z−) and
f(z+) denote the left and right-hand limits of a function f at z. As it is quite
a common practice, we let the displacement u and the traction t be continuous
across any interface. The continuity of u and t implies that

w(zj−) = w(zj+), j = 0, 1, ..., n.

To fix ideas we let the incident wave wI come from z = −∞. The wave wI

impinges on the multilayer at z = 0 and produces a reflected wave wR at z = 0
and a transmitted wave at z = L. Since the half-spaces z < 0 and z > L are
homogeneous we denote by a superscript − or + the parameters pertaining to
z < 0 or z > L. By (6.6), p1,p2,p3 represent forward waves, p4,p5,p6 represent
backward waves. Consequently by (4.8) we can represent wI ,wR,wT as

(7.1) wI(z) =
3∑

h=1

cI
hp

−

h exp(iσ−

h z), wR(z) =
6∑

h=4

cR
h p−

h exp(iσ−

h z),

(7.2) wT (z) =
3∑

h=1

cT
h p+

h exp(iσ+

h (z − L)),

where, for formal convenience, we have chosen z0 = 0 in the expressions of
wI ,wR and z0 = L in the expression of wT . Also, let wj be the solution to (4.2)
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as z ∈ (zj−1, zj). The whole (wave) solution is then expressed by

(7.3) w(z) =





wI(z) + wR(z), z < 0,
wj(z), z ∈ (zj−1, zj), j = 1, ..., n,
wT (z), L < z.

The solution w(z) is also required to satisfy the boundary conditions, namely
the continuity across the interfaces,

(7.4)





wI(0−) + wR(0−) = w1(0+),
wj(zj−) = wj+1(zj+), j = 1, ..., n − 1,
wn(L−) = wT (L+).

The RT problem reads: given wI , determine wR, wT , and wj , j = 1, ..., n,
and hence w of (7.3), subject to (4.2) and (7.4).

We may phrase the problem by saying that the coefficients cI
1, c

I
2, c

I
3 are known

and we have to determine the coefficients cR
4 , cR

5 , cR
6 , cT

1 , cT
2 , cT

3 and the functions
wj , j = 1, ..., n, subject to (4.2) and (7.4).

Theorem 2. If Φf is positive definite, as z > L, and Φb is negative definite,
as z < 0, then the solution (7.3) to the RT problem is unique.

P r o o f. Let ξ, χ be two solutions to the RT problem, namely

ξ(z) =





wI(z) + ξR(z), z < 0,

ξj(z), z ∈ (zj−1, zj), j = 1, ..., n,

ξT (z), L < z,

χ(z) =





wI(z) + χR(z), z < 0,
χj(z), z ∈ (zj−1, zj), j = 1, ..., n,
χT (z), L < z.

When z < 0 and z > L, ξ and χ can be represented as

ξR(z) =

6∑

h=4

ξR
h p−

h exp(i)σ−

h z), ξT (z) =

3∑

h=1

ξT
h p+

h exp(iσ+

h (z − L)),

χR(z) =
6∑

h=4

χR
h p−

h exp(iσ−

h z), χT (z) =
3∑

h=1

χT
h p+

h exp(iσ+

h (z − L)).

The difference s = ξ − χ takes the form

s(z) =





sR(z), z < 0,

sj(z), z ∈ (zj−1, zj), j = 1, ..., n,

sT (z), L < z,
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and satisfies (4.2) and the continuity conditions




sR(0−) = s1(0+),

sj(zj−) = sj+1(zj+), j = 1, ..., n − 1,

sn(L−) = sT (L+).

Moreover,

sR(0−) =
6∑

h=4

sR
h p−

h , sT (L+) =
3∑

h=1

sT
h p+

h ,

where sR
h = ξR

h − χR
h , sT

h = ξT
h − χT

h .
By (6.6) we conclude that

(7.5) F̂(s(0−)) ≤ 0, F̂(s(L+)) ≥ 0.

Moreover, F(z) = F̂(s(z)) is continuous everywhere and satisfies (5.3) in the
open intervals (0, z1), (z1, z2), ..., (zn−1, L). Hence

(7.6) F̂(s(0−)) ≥ F̂(s(L+)).

It follows at once from (7.5) and (7.6) that

F̂(s(0−)) = 0, F̂(s(L+)) = 0.

Now, because s(0−) is a linear combination of p−

4 ,p−

5 ,p−

6 , the negative definite-
ness of Φb yields

F̂(s(0−)) = 0 =⇒ s(0−) = 0.

By continuity, also s(0+) = 0. The problem

s′ = As, z ∈ (0, z1), s(0+) = 0,

has the unique solution s = 0. Hence s(z1−) = 0 and, by continuity s(z1+) = 0.
Iteration of the argument leads to s(L−) = 0 and then s(L+) = 0. Hence s

vanishes on R and the solution to the RT problem is unique.

8. Existence in the reflection-transmission problem

To establish existence of the solution we proceed by showing how the solution
can be determined. The continuity of w is used throughout. Within the j-th layer,
z ∈ (zj−1, zj), the solution wj at z is given by wj(zj−1) through the propagator
Ωj at z, namely

wj(z) = Ωj(z)wj(zj−1), z ∈ (zj−1, zj).
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Hence Ωj satisfies the differential equation

d

dz
Ωj = AjΩj , z ∈ (zj−1, zj), Ωj(zj−1) = 1,

where Aj is the restriction of A to the j-th layer (zj−1, zj).
For brevity, let Ωj stand for Ωj(zj) so that

w(zj) = Ωjw(zj−1).

By the continuity of w across any interface we have

(8.1) w(L) = Ωw(0),

where

Ω = ΩnΩn−1 · · ·Ω1.

We represent the incident wave wI and the reflected wave wR, at z < 0, and
the transmitted wave wT , at z > L, in the form (7.1). To solve the RT problem
we need to express {cT

1 , cT
2 , cT

3 , cR
4 , cR

5 , cR
6 } in terms of {cI

1, c
I
2, c

I
3}. By (8.1) we

have

Ω[wI(0) + wR(0)] = wT (L)

whence, by means of the continuity at z = 0, L,

(8.2)
3∑

h=1

cT
h p+

h −
6∑

h=4

cR
h Ωp−

h =
3∑

h=1

cI
hΩp−

h

where p+ is evaluated at L+ and p− at 0−. This is the system to be solved for
the RT problem in a layer.

Theorem 3. The vectors p+

1 ,p+

2 ,p+

3 and Ωp−

4 ,Ωp−

5 ,Ωp−

6 are linearly inde-
pendent, which provides the existence of the solution to the RT problem.

P r o o f. Starting from

α1p
+

1 + α2p
+

2 + α3p
+

3 + α4Ωp−

4 + α5Ωp−

5 + α6Ωp−

6 = 0

we have

(8.3) F̂(−α1p
+

1 − α2p
+

2 − α3p
+

3 ) = F̂(Ω(α4p
−

4 + α5p
−

5 + α6p
−

6 )).

Consider the field w(z), such that

w(0) = (α4p
−

4 + α5p
−

5 + α6p
−

6 ), w(L) = Ω(α4p
−

4 + α5p
−

5 + α6p
−

6 ),
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and observe that

F(0+) = F̂(α4p
−

4 + α5p
−

5 + α6p
−

6 ), F(L−) = F̂(Ω(α4p
−

4 + α5p
−

5 + α6p
−

6 )).

By (5.3) we have F(0+) ≥ F(L−) and hence

(8.4) F̂(α4p
−

4 +α5p
−

5 +α6p
−

6 ) = F(0+) ≥ F(L−) = F̂(Ω(α4p
−

4 +α5p
−

5 +α6p
−

6 )).

By (8.3), (8.4), and (6.6) we have

0 ≤
3∑

h,k=1

α∗
hαkΦ

f
hk = F̂(−α1p

+

1 − α2p
+

2 − α3p
+

3 )

≤ F̂(α4p
−

4 + α5p
−

5 + α6p
−

6 ) =
6∑

h,k=4

α∗
hαkΦ

b
hk ≤ 0.

Hence we have

3∑

h,k=1

α∗
hαkΦ

f
hk = 0,

6∑

h,k=4

α∗
hαkΦ

b
hk = 0.

The definiteness of the two blocks of Φ implies that α1, α2, ..., α6 = 0.
The linear independence of the vectors p+

1 ,p+

2 ,p+

3 and Ωp−

4 ,Ωp−

5 ,Ωp−

6 makes
the system (8.2) to have a (unique) solution.

Remark 2. The particular case Ω = 1 describes the RT problem at the
interface between two half-spaces. In such a case existence and uniqueness hold
with k⊥ ∈ C

3. Moreover, existence and uniqueness hold for a free surface and
for a fixed surface, bounding a half-space.

9. Block structure of Φ

We now ascertain that, in two significant circumstances, the matrix Φ has
the block structure (6.5) with the positive-negative definiteness. Following [9],
we observe that if

u(x, t) = a exp[i(k⊥ · x + σz + ωt)]

then the propagation condition takes the form (4.5). The eigenvectors {pα}
satisfy (4.11) whence

(9.1) pT
β Kpα = aβ · lα + lβ · aα =

{
0 if α 6= β,

2aα · lα =: γα if α = β.
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9.1. Oblique incidence of homogeneous waves in elastic half-spaces

The matrix G and the wave vector k⊥ are real-valued. Hence by (4.5) it
follows that the roots σα are real or occur in complex-conjugate pairs. Restrict
our attention to real-valued roots.

Since σα is real then aα is real and, by (4.7), lα is imaginary. Consequently,

σα ∈ R =⇒ aα = a∗
α, lα = −l∗α.

Hence, by (6.2) and (9.1),

Φαβ = i
ω

4
(aα · lβ + lα · aβ) = i

ω

4
pT

αKpβ = i
ω

4
γαδαβ .

This means that, in the α-th column, only the diagonal term is nonzero and its
value is real.

The whole matrix Φ is diagonal and, by (6.4), three eigenvalues are positive
and three are negative. Consequently, possibly by reordering the terms, the form
(6.5) holds with Φ̃ = 0 and Φf ,Φb diagonal.

9.2. Normal incidence in viscoelastic isotropic half-spaces

Since k⊥ = 0 then A takes the block form

A =
[

0 (e3Ge3)
−1

−ρω21 0

]
.

The isotropy of the solid results in

e3Ge3 = µ1 + (µ + λ)e3 ⊗ e3,

where µ, λ ∈ C. The thermodynamic restriction (2.5) provides the inequalities

ωℑµ > 0, ωℑ(2µ + λ) > 0, ω ∈ R \ {0}.

Hence

(e3Ge3)
−1 =

1

µ
1 −

µ + λ

µ(2µ + λ)
e3 ⊗ e3

and A takes the form

A =




0 0 0 1/µ 0 0
0 0 0 0 1/µ 0
0 0 0 0 0 1/(2µ + λ)

−ρω2 0 0 0 0 0
0 −ρω2 0 0 0 0
0 0 −ρω2 0 0 0




.
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Because 1/µ and 1/(2µ + λ) are in the fourth quadrant, as ω > 0, we let

σT =
√

ρω2/µ, σL =
√

ρω2/(2µ + λ),

and say that σL, σT are in the second quadrant as ω > 0, in the first one as
ω < 0. Once the eigenvectors of A are determined we can write the matrix P in
the form

P =




0 −σT 0 0 σT 0
0 0 −σT 0 0 σT

σL 0 0 −σL 0 0
0 −iρω2 0 0 −iρω2 0
0 0 −iρω2 0 0 −iρω2

iρω2 0 0 iρω2 0 0




.

A direct application of (6.1) yields

Φ = −
ρω3

4




σL + σ∗
L 0 0 −(σL − σ∗

L)
0 σT + σ∗

T 0 0
0 0 σT + σ∗

T 0
σL − σ∗

L 0 0 −(σL + σ∗
L)

0 σT − σ∗
T 0 0

0 0 σT − σ∗
T 0

0 0
−(σT − σ∗

T ) 0
0 −(σT − σ∗

T )
0 0

−(σT + σ∗
T ) 0

0 −(σT + σ∗
T )




.

Because ω(σL + σ∗
L) < 0 and ω(σT + σ∗

T ) < 0 for any ω 6= 0 it follows that
the block Φf of Φ is positive definite and the block Φb is negative definite.

10. Inhomogeneous waves and nondefiniteness in elastic solids

In elastic solids the values σα are real or pairwise complex conjugate. Letting
σh and σh+3 be complex conjugate, σh+3 = σ∗

h 6= σh, we have

(10.1) ah+3 = a∗
h, lh+3 = −l∗h.

By means of the orthogonality condition (4.11) we now examine the form of Φ.
By (10.1) and (4.11) we have

Φh,h+3 = i
ω

4
(a∗

h · lh+3 − l∗h · ah+3) = i
ω

4
(ah+3 · lh+3 + lh+3 · ah+3) = i

ω

4
γh+3.
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For any value of β, by (10.1) we have

Φhβ = i
ω

4
(a∗

h · lβ − l∗h · aβ) = i
ω

4
(ah+3 · lβ + lh+3 · aβ).

By (4.11), the condition β 6= h + 3 gives Φhβ = 0. The result

Φhβ =
{ iωγh+3/4, β = h + 3

0, β 6= h + 3

holds as a consequence of the conjugacy property σh+3 = σ∗
h, irrespective of the

fact that the other values of σα are real or complex. On the other hand, for real
values of σα, only the corresponding diagonal entry, Φαα is nonzero. Hence for
any row and any column, only one entry is nonzero. As an example, if σ1, σ4 ∈ R

and σ5 = σ∗
2, σ6 = σ∗

3, then

Φ = i
ω

4




γ1 0 0 0 0 0
0 0 0 0 γ5 0
0 0 0 0 0 γ6

0 0 0 γ4 0 0
0 −γ∗

5 0 0 0 0
0 0 −γ∗

6 0 0 0




.

Of course the nonzero entries of Φ depends on the eigenvectors pα of A.
It is an immediate consequence of this evaluation that the occurrence of

complex values of σα makes the diagonal blocks of Φ non-definite. Since the
definiteness of the blocks is essential for the uniqueness of the solution, we can
say that the uniqueness of the solution fails if some values of σα are complex.

Complex values of σα denote that the corresponding solutions occur in the
form

wα exp[i(k⊥ · x + ωt)] = pα exp(−ℑσα z) exp[i(k⊥ · x + ℜσα z + ωt)]

namely as inhomogeneous (or evanescent) waves. Hence nonuniqueness is asso-
ciated with the occurrence of inhomogeneous waves which may be viewed as lo-
calized waves. This gives an interesting interpretation of the result, namely the
occurrence of localized waves implies nonuniqueness in the RT problem. This
conclusion is consistent with the nonuniqueness associated with the occurrence
of interface waves.

11. Remarks about nonuniqueness

Nonexistence and/or nonuniqueness may look not very convincing from the
physical point of view. Here we comment on the lack of uniqueness in elasticity.
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In this sense it is instructive to consider waves in elastic solids and let two values
of σ be complex-conjugate.

To fix ideas, let σ1, σ2, σ4, σ5 ∈ R and σ3, σ6 ∈ C, σ3 = σ∗
6. Hence

Φ = i
ω

4




γ1 0 0 0 0 0
0 γ2 0 0 0 0
0 0 0 0 0 γ6

0 0 0 γ4 0 0
0 0 0 0 γ5 0
0 0 −γ∗

6 0 0 0




.

Restrict attention to z = z0. By (6.3) it follows that

F̂(p3) = 0, F̂(p6) = 0

and
F̂(p3 + ap6) = i

ω

4
(aγ6 − a∗γ∗

6).

Letting a = ±1 we have the values

F̂(p3 ± p6) = ±i
ω

4
(γ6 − γ∗

6)

of the energy flux. To fix ideas let iω(γ6 − γ∗
6) > 0. This means that the waves

associated with p3 and p6 are neither forward nor backward waves and nev-
ertheless, the superpositions p3 + p6 and p3 − p6 are forward and backward,
respectively.

In the basis p̃1 = p1, p̃2 = p2, p̃3 = p3 + p6 for the forward waves and
p̃4 = p4, p̃5 = p5, p̃6 = p3 − p6 for the backward vaves, the first 3 × 3 diagonal
block of Φ̃ = P̃†

I P̃ is positive definite and the second one is negative definite.
The positive-negative definiteness of the diagonal blocks then implies that, in the
basis p1,p2,p3 + p6 for the forward waves and p4,p5,p3 −p6 for the backward
vaves, the solution to the RT problem exists and is unique.

However, for any a ∈ R, the triplets p1,p2,p3 + |a|p6 and p4,p5,p3 − |a|p6

can be bases for the forward and backward waves. The solution then exists and
is unique but depends on the parameter a. Consequently, the solution to the RT
problem depend on the basis chosen. This shows that the nonuniqueness of the
solution, in elasticity, occurs because complex values of σ arise (inhomogeneous
waves). The crucial property for the nonuniqueness is vanishing of F for inho-
mogeneous waves in elasticity. In viscoelasticity, instead, inhomogeneous waves
usually provide F 6= 0 and hence uniqueness is allowed (see Sec. 9.2).

The amplitude of the wave

p3 exp(−ℑσz) exp[i(k⊥ · x + ℜσz + ωt)], ℑσ > 0,
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decays as z increases. Sometimes [20, 9] the decay is regarded as a character-
ization of forward propagation. By arguing in this way one may say that a
transmitted wave can be represented as a superposition of the waves associated
with p1,p2 and p3. By requiring that the continuity conditions hold at the inter-
faces, we obtain an algebraic system for the unknown amplitudes of the waves.
Once the choice of outgoing waves (possibly partly with the energy criterion
and partly with the amplitude criterion) is made, the RT problem is uniquely
solved provided only the algebraic system allows for a unique solution (algebraic
uniqueness). This means that the solution is unique once the basis is selected. It
is a matter of fact that also such a basis may be associated with incompatibilities
of the algebraic system (see [9]).

12. Conclusions

The existence and uniqueness results obtained in this paper hold for time-
harmonic waves in a stratified anisotropic viscoelastic solid whose geometry is
that of a layer sandwiched between homogeneous half-spaces. The oblique char-
acter of the solution is modelled through the factor exp(ik⊥ ·x). Hence the vector
[uF , tF ] is found to satisfy the first-order system (4.2). The matrix A is required
to be simple and to have non-zero eigenvalues. If k⊥ ∈ R

3 then we have the decay
property F ′ ≤ 0 for the energy flux F . This property, along with the partition
of elementary waves, is the conceptual ingredient for existence and uniqueness
of the solution in multilayers between half-spaces, in bonded half-spaces and in
a free half-space.

Existence and uniqueness are not shown to hold when the diagonal blocks
Φf and Φb of Φ are not definite. Such is the case if (the solid is elastic and) the
fundamental solutions comprise evanescent waves. This is not surprising because
the occurrence of evanescent waves means that the number of energy-carrying
waves is not great enough to represent the reflected and transmitted waves.

The characterization of the direction of propagation of the fundamental solu-
tions, by means of the energy flux F , is not new in the literature [20, 9]. The main
result of this paper is that F obeys the decay property, F ′ ≤ 0, which in turn
yields existence and uniqueness of the solution to the RT problem, in dissipative
solids, if the diagonal blocks of Φ satisfy the positive-negative definiteness.
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