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The planar crack problem for a dielectric medium
in a uniform electric field
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THE THEORY for dielectric materials is applied to solve the planar problem of
a Griffith crack in an infinite isotropic dielectric body subjected to a far-field ten-
sion and a uniform electric field. Fourier transforms are used to reduce the mixed
boundary value problem to two simultaneous dual integral equations. The integral
equations are then solved exactly, and the stress intensity factor and energy release
rate under Mode I and Mode II loadings are expressed in closed form.

1. Introduction

ELASTIC DIELECTRICS such as insulating materials are currently being used in
construction of the spacecrafts which operate over long periods of time on Earth’s
orbit [1]. Insulating materials are reported to have poor mechanical properties.
Mechanical failure of insulators is also a well-known phenomenon among insula-
tion engineers. Expressions for the stress intensity factor and energy release rate
may be useful for determining life expectancy of elastic dielectrics. TOUPIN [2]
considered the isotropic elastic dielectric and obtained the form of constitutive
relations for the stress and effective local fields. KURLANDZKA [3] investigated a
crack propagation problem of an elastic dielectric subjected to an electrostatic
field. PAK and HERRMANN [4, 5| also derived a material force in the form of a
path-independent integral for the elastic dielectric, which is related to the energy
release rate, and evaluated it for a crack placed in an infinite dielectric medium
subjected to a far-field uniaxial tension and an external electric field. SHINDO
et al. [6] considered the scattering of normally incident waves by a crack in an
isotropic dielectric body under a uniform electric field.

In the present paper, we investigate the planar problem for an infinite dielec-
tric medium containing a Griffith crack subject to a uniform electric field. The
problem is considered for a uniform electric field normal to the crack surface and
the uniform loading (at infinity) forms an angle with the crack surface. By using
Fourier transforms, the problem is reduced to that of solving a system of simul-
taneous dual integral equations. The simultaneous integral equations are solved
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exactly and explicit expressions for the Mode I and Mode II stress intensity fac-
tors are obtained. The solutions are then used in evaluating the path-independent
integrals to find the material forces in explicit form for the Mode I and Mode II
cases.

2. Basic Equations

In rectangular Cartesian coordinates z;(O—z1,z2,23), we decompose the
electric field intensity vector E;, the polarization vector P; and the electric dis-
placement vector D; into those representing the rigid body state, indicated by
overbars and those for the deformed state, denoted by lower case letters,

(2.1) Ei=E;i+e, P, = Pi+pi, D; = D; +d;.

We assume that the deformation will be small even with large electric fields
and the second terms will have only a minor influence on the total fields. The
quasi-linear formulations will then be linearized with respect to these unknown
deformed state quantities.

The linearized field equations can be written as

(2.2) O—]Li,j —i—Ei’jpj + Pjem- = 0,
D;; =0,
di; = 0,

where UiLj is the local stress tensor, a comma denotes partial differentiation with

respect to the coordinate z;, and the summation convention for repeated indices
is employed.
The linearized constitutive equations become

(2.5) UiLj = Aug 105 + u(ui,j + uj,i)
+ Al (EkEk + QEkek)(sij + AQ(EZEJ + E,-ej + Eje,-),

o _ _ 1 o _
(2.6) O'Z‘-]y[ = 505T(EiEj + Eiej + Ejei) — 560 (EkEk + 2Ek€k) 5@']’7

(2.7) D; = eoE; + P, = epe, Ei, d; = goe; + p; = €oerei,
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where o

i 1s the Maxwell stress tensor, u; is the displacement vector, A and u
are the Lamé constants, A1 and As are the electrostrictive coefficients, eq is the
permittivity of free space, €, = 1 + 1 is the specific permittivity,  is the electric
susceptibility, and ¢;; is the Kronecker delta.

The linearized boundary conditions are

1 _ _
(2.9) [l o 1] mj + %, [(Pknk)2 + 2Pypimgn|n; = 0;
[| D; [Jn; = 0,
(2.10) )
eijknll Ex ] =0,

(211) [ d; [Jni — [| D; |]1fi,j”j =0,
eijkingll ex || — nowsl| Ex (1} =0,

where n; is the outer unit vector normal to an undeformed body, e;;, is the
permutation symbol and || f; || means the jump in any field quantity f; across
the discontinuity surface.

3. Problem statement

Let a Griffith crack be located in the interior of an infinite elastic dielectric.
We consider a rectangular Cartesian coordinate system (z,vy,z) such that the
crack is placed on the z-axis from —a to a as shown in Fig. 1, and assume plane

y
A

[ I

Fic. 1. An infinite isotropic dielectric medium with a Griffith crack.
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strain perpendicular to the z-axis. A uniform electric field Ey is applied perpen-
dicularly to the crack surface. For convenience, all electric quantities outside the
solid will be denoted by the superscript +. The solution for the rigid body state
outside the solid is

E; = ETE(), D; = E()ETE(), Per = 0,
(3.1) - - -
Ey = Eo, Dy = 6067«E0, Py = 5077E0.

The governing equations in the z and y directions are then given by

1 2A1E AsE
2 1Eo 3Eo
Vite + T (“x:v + uy,y)vx + A + A 0,

1 E
(32) V%’U,y + E (Uzﬂ; =+ ’U,y?y> y + (2141 —+ A2 =+ Ag) Ioeyvy

)

where 72 = 0%/02% + 0%/0y? is the two-dimensional Laplace operator in the
variables x and y, v is Poisson’s ratio, and A3 = As + ggn. The electric field
equations for the perturbed state are

(33) €x.x + Cyy = 07 ezJEr,I + ezj,y =0.

The electric field equations (3.3) are satisfied by introducing an electric potential
¢ such that

el =—¢}, Vigt =0,
(3.4)
ei =—0., Vig =0.

The governing equations become

1 Eo
V%ux + E <Ux7x + Uyy)ﬂj — <2A1 + A3> Igb’xy = O,

1 E
(35) V%uy + @ (Uz,w + ’U:y,y) - (2141 + AQ + A3) 70¢,yy
B A2E0

®az = 0.

When the uniform loading (at infinity) forms an angle 1) with the crack surface,
the loading will cause mixed-mode deformation so that both Mode I and Mode 11
crack problems are considered. The problem will be split into two parts, and
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the mixed boundary conditions on the z-axis can be obtained from Egs. (2.9)—

(2.11) as
Mode I:
(3.6) op(2,00=0  (0<|2|<o00),
(3.7) ¢.2(2,0) = —nEouy »(z,0) + gb;(a:, 0) 0<|z|< a),
| é(x,0) =0 (a <z |< o),
2
vy oo -t {Z om0} -Tate 0l i<a,
uy(z,0) =0 (a <|z|< o0).
Mode II:
(3.9) or(x,00)=0  (0<|z|< 00),
(3.10) ¢2(x,0) = —nEouy . (x,0) + qS;(x,O) (0<|z|< a),
' 6y(w,0) =0 (a <[z |< 00),
(3.11) ok, (x,0) = —T'sin e cos ¢ (0<|z|<a),
' uy(z,0) =0 (a <]z |< o).

4. Symmetric problem

Symmetry arguments are used to reduce the consideration to only the first
quadrant (0 <z < 00,0 <y < 00) with appropriate boundary conditions (3.6)—
(3.8) along the coordinate axes. By applying the Fourier transform with respect
to x and the inversion theorem, it can be easily shown that the solutions u,s,
Uys, Gs, ¢3 of the Egs. (3.4) and (3.5) for y > 0 are

oo

us =2 [{A) - 31— yo)Bifa)
0
(4.1) + ]io(l — 2w)(2A; + Ag)as(a)}e_ay sin(ax)da,

Uys = i/{AS(a) + Bs(a)y}e Y cos(ax)da,
0
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2 oo

(4.2) ps = —— | as(a)e”* cos(ax)da,
|

(4.3) oF = —i/aj(a) sinh(ay) cos(ax)do,

0

where As(a), Bs(a), as(a) and af (a) are the unknowns to be found. The local
stresses O'le s and Maxwell stresses 0]}/[ can be derived from the displacement field
(4.1) and electric field (4.2) which, when substituted into Egs. (2.5) and (2.6),

yield the expressions

ok = 4:/ [aAs(a) —(3—-2v — ay)Bs(a)
0
+ {(A1 + 43) — v(2A; + Ag)}]iaas(a)] e™ cos(ax)do + Ay B2,
(44) ob, = 2?’“‘ / [~ 20A,(a) +2(2— 2 — ay)B.(a)
0
—{(1—2v)(24; + A3) + Ag}ioaas(a)} e~ Ysin(ax)da,
4u yi
yys = — aAs(a) + (1 —2v — ay)Bs(«)
/!

—{(A1 + A2) —v(24; + Ag)}iaas(a)} e” % cos(ax)da + (A; + A9)E3,

o0

2e0El Ej
oM — 020 /aas(a)e_ay cos(ax)da — 802 0
T
0
E oo
2
(4.5) a%s el /aas(a)e_ay sin(az)da,
T
0
B [ o
2(1+2 142
oM = 2(1 +2n)eo By /aas(a)e—ay cos(ax)da + 500(2""77)'
T

0
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The first of boundary conditions (3.6) leads to the following relation between
the unknown functions:

(4.6)  —2aA4(a)+4(1 - v)By(a) — [(1 —20) (241 + A3) + As Lzoaas(a) = 0.

Using the relation (4.6), the two mixed boundary conditions of (3.7) and (3.8)
are converted into the simultaneous dual integral equations,

( oo

/a[as(a) —nEpAs(a)] sin(ax)da = 0 (0<z<a),
(4.7) 0 o0
/as(a) cos(ax)da =0 (a <x < 00),
\ 0

7{04A3(a) + {2(1 —20) Ay +2(1 — 1) A,
0

—eon—2(1 — 1/)50772} anas(a)} cos(ax)dao

2p
(4.8) — ”(12; v) [<A1 + Ay — 502772> E3 + T'sin? w}
(0<z<a),
/As(a) cos(az)da =0 (a <z < 00).
0

To solve the set of simultaneous dual integral equations, we make the integral
representations for as(a) and Ag(a)

a

as() = / 9(6) To(a)de,
(4.9) °

a

M) = [ HERla)de.
0
where Jo( ) is the zero-order Bessel function of the first kind. Having satisfied

Egs. (4.7) and (4.8) for a < z < oo, the remaining conditions for 0 < z < a
lead to
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i [ @ |90 — (6 | de .

x

d z 1
w) [ T [h(&)

+ {(1 — 20)(241 + £0) — 2(1 — v)(c0n? + €0 — A2)§3} g(f)] dg

. 7T(1 — l/) |:2A1 + 245

2
—&on .
o 5 E3 + T sin® 14 .

The functions g(£) and h(€) are found to be
9(&) —nEoh(§) =0

(A1) A+ {(1 ) (241 + 20) — 21— 1) (e + 2o — Agf/j} 9(9)

1— 241 + 245 — ggn?
_ 7( . V) [ 1+ 22 €oM E8+Tsin2 14 €.
"

By substituting h(£) and g(§) which are obtained from Eq. (4.11) into Eq. (4.9),
we can easily derive

1-— 241 + 245 — gon?
as(a) = ”(QMyOV) [ 1+ - ST B2 4 Tsin? 1/)] nEo%Jl(aa),
(4.12)
71’(1 — V) 241 + 245 — 50772 . a
As(a) = o [ 5 E2 4 T'sin® ¢ aJl(aa),

where Jq( ) is the first order Bessel function of the first kind and

1
(118) w0 =145 [(1 = 20)(2A + om) +2(1 ) (4o — con’ o) 5.
We introduce dimensionless variables as follows:

2
o _ €okyg
(4.14) B2 = =




THE PLANAR CRACK PROBLEM FOR A DIELECTRIC ... 455

Using the following results:

atomn et an = [ ]

0

<9 91—1—92)
r

4.15 — )
( ) a(T‘17“2 1/2 ( 91 + 92)
sin [ 6 —

3
o0 —(60;+6
/aJ1(aa)e°‘y {C.Os(ax)} da = - R YF) " 2< 1 2>
J sin(ax) (7“17“2) cos S (91 + 92)

the displacements near the crack tip, the singular parts of local stresses, Maxwell
stresses, and electric fields may be written as

Ugs ~ Ky (7;1) V2 {2 (1-2v)

225 \27
—{(1=20) (Aer +) = 20— v) A2 } B2

61

(4.16) 24+ {(1 = 20) (At + ) + 21 = ) Aup } B2 sin? (2) } o (921) ,
Uys ~ QIZ{’M (%)m {4(1 —)

+ 24+ {1 = 20)(Ac + 1) + 201 — 1) Ao | ] cos? <92> } i <92> |

K;

(4.17) ok~ 2.

{ [2 n {2(1 — 20) A + 2(1 — 1) Apo — n}Efm}

— 2+ {1 —20)2401 +m) +2(1 - ) Az | Eln| sin <921> i <3§1> }

X COs <91> #
2 (271'7”1)1/2’
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(4.17) . Ki B B 2 1. (0
eont Orys 2. [2 + {(1 2v)(2461 + 1) +2(1 I/)Aeg}EMT]:| sin | -
X COS h cos 0y _ 1
2 2 (271'7"1)1/2 ’
.Y

Tyys ™ 225{ [2 + {2(1 —2U) A1 +2(1 —v)Aea — n}Eﬁn}

n [2 + {(1 —20)(2401 + 1) +2(1 — V)Ae2}E5’7] sin (021>
() o %) gt
M

K 0 1
s ™~ — —I(l — V)’I?Ei coS <21> (

o -
Zs 277 )1/2’

K 0 1
M I 2 . 1
(418) Ua:ys ~ — 78(1 — U)T]ETEM Sin <2> W,

K 6 1
M I 2 1
O'yys NZ(]_ — l/)(]_ + 27’])77E/J COSs <2) W’

K . (0
_ M 4 nE 7
ZS,U/(27T7"1)1/2( V)77 0 S1n ( 9 > )

K; 01
E~———(1—-v)nE =,
ys ZS/J(27T7"1)1/2( I/)77 0 COS ( 2 >

where x = rcosf =rycosfi+a =rycosbo—a, y=rsinf = rysinf; = rosinfy
as defined in Fig. 1, and

Ea;s ~
(4.19)

1
(420) oz =1+ 5{(1 —2) (2401 + 1) + 21 — v)(Aex + 1 + 1)}77E3.
The Mode I stress intensity factor K is defined by

(421) K= lim+{27r(x—a)}1/2(UL +oM )y,

P yys yys
2Ac1 + 2400 — ) EE
=T(ma 1/228{( c = 2 1 sin? .
(ma) " 5 T, (0]
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5. Skew-symmetric problem

In the same way, utilizing the Fourier transform, the solutions uzq, Uya, Pa

and ¢ are
27 1
= (3 —4v —ya)Bo (o) —
2l :
(5.1) - i(l —2v)(2A; + Ag)aa(a)}e_o‘y cos(ax)da,
Uyq = i/{Aa(a) + Bo(a)yte™ Y sin(ax)da,
(5.2) Ga = —% /aa(oz)e_o‘y sin(az)da,
0
(5.3) oF = —% /af{(a) cosh(ay) sin(az)da,

0

where Ay(a), Bo(a),aq(a) and af (a) are the unknown functions. The local
stresses and Maxwell stresses are obtained as

s Vo
m—WO/{ (32 — ag) Bula)

[(Al + As) —v(24; + Ag)} Jiaaa(a) }e_o‘y sin(az)da,

Jéya _ [ 2044 (a) — 2(2 — 2v — ay) By (@)
(5.4) " 0/ { ’
+ [(1 —2v)(2A1 + A3) + A2:| ioozaa(a)}e_ay cos(ax)da,
yya = 4?'“ /{ —aAy(a) + (1 —2v — ay)B,(«)
0

[(Al + Ay) —v(24; + Ag)} iaaa(a)}eay sin(az)da,
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o0

oM = 2E[)Eo/aaa(a)eO‘y sin(az)da,
"y
o0
(5.5) a%a = 260fTTEO/ozaa(oz)e_o‘y cos(ax)da,
0
o0
a%a = —W/aaa(a)e_aysin(ax)da.
0

The boundary condition (3.9) leads the following relation between unknown
functions:

(56) Bal0) = 5 Au(a) + [ (A1 + A2) — v(24) + 4)| ioaa(a).

2(1—-v) (1-v)
We introduce a new unknown function Cy(«) as

(5.7 Cala) = —2(1—v)Ag(a)— [(1—2V)A1+(2—3V)A2—(1—y)gon} b;oaa(a).

Using these relations (5.6) and (5.7), the two mixed boundary conditions of
(3.10) and (3.11) are converted into the simultaneous dual integral equations,

/a[nEoCa(a) + Giaq(a)] cos(ax)da =0 (0<z<a),
(5.8) 0 50
/aa(a) sin(az)da =0 (a <z < 00);
0
/a[Ca(a) — Gaag(a)] cos(ax)da
0
(5.9) = —ﬂ(l — 2;/1(1 — I/)Tcoswsinw (0<x<a),
/C’a(a) cos(azx) =0 (a <x < 00),
0
where
E2n
Gr=2(1—v)+ [(1 — ) A; + (2 — 30) Ay — (1 — v)egn] 207,
(5.10) a

Ey

Gy = (1-2v) [(1 —2w)A; - VA2} p
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The unknowns a,(«) and Cy() can be found by the same method of approach
as in the symmetric case. The results are

611 )= [9@©hOds  Cul) = [ HEO(ag)ds
0 0
The functions ¢g(§) and h(§) in Egs. (5.11) are the solutions of the following
simultaneous equations:
nEoh(§) — Gi1g(§) =0,

(5.12) 1o
() + Gagle) = ~ =)0 =2

T¢ cossing.

The displacements near the crack tip are

K )1/2
~ — 2(1 —
Uga Zafl (27T ( l/)

+ {(1 —2)Ae1 +(2-3v) Ay — (1 — V)n}Eﬁn
(5.13) + [1 + {(1 —20) A+ (1 —v)Ae — Vn}Eﬁn] COS2(91)} sin <01> ,

2 2
K[] (& )1/2
~ — —(1-2
Hya Za b (27r ( v)

+ [1 + {(1 — 20)Aer + (1= v)Aer — vn}Eﬁn} sin® (%) }COS (021> )

and the singular parts of local stresses, Maxwell stresses and electric fields are

I _ Kir

Otaa ™~ = {2[1+ {0=20) 40+ (1 - ) A - %n}Efm}

+ [1 + {(1 — ) Acr + (1= v)Aez — Vn}Eﬁn} cos (021> cos <3§1> }

X sin ﬁ #
2 ) (2mr)1/?’

{ [1 n {(1 — ) Aot + (1 — v)Agp — %U}Eﬁn]

(5.14) . K

Ogya ™

Zq

_ [1 + {(1 —2v)Ae1 + (1 —v)Ae2 — V”}Eﬁzﬂn} sin (%) sin <S?> }

X €08 <91> #
2 (271'7”1)1/2’
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K . (0
(5.14) gyLya ~ ZH [1 + {(1 —20)Ae1 + (1 —v)Aex — un}Ein} sin <1)

[cont.] ” 2
X COS ﬁ cos 3—91 ;
2 2 ) (27r)1/2°
K 1 0
M IT -2 . 1
O-{E:L'a, ~ 22a Eu(]_ — 27/)W Sin <2> s
K 1 0
M 11 2 1
(515) Orya ~ — 22(1 Eﬂ(l — 2V)(1 + n>W COS <2) s
K 1 0
M _ II 92 _ . 71
o ~ ~ 3B -+ 2 (%)),
K 0
Eyy ~ #1/2 (1 — 2v) nEq cos <21> ,
(5.16) Zalt (27171)
' Kip AS
Eyj~———""—-(1—-2v)nEysin < ,
ve Za b (27r7’1)1/2 2
where

1
(517)  zo=14|(1=20)Aa+ (1 -1)Ae— (L —v)n—5(1- zy)]nEg.
The stress intensity factor of Mode II, Ky, is defined by

(518) K= lim {2n(e —a)}* {ol, + ol

2(1 —v)z, .
= (Wa)l/Z C;'l(_‘_nE')OG2/JJTM COS¢ SlIl’(ZJ .

6. Evaluation of the path-independent integral

PAK and HERRMANN have derived a path-independent integral for elastic
dielectric materials [4]. It follows that

(6.1) = / (03 + ®)60 — (0 + oM Yuie + D] myde
r

where I" is a contour in the undeformed configuration as shown in Fig. 2, n; is
a unit vector normal to I', p is density of mass in the deformed state, 3. denote
the stored energy function of deformation and polarization, and

1
(6.2) b= _§5r¢,i¢,i +¢iF;,
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2 A
(6.3) pE(EZ'j, Pz/p) = 2;8)70775ijﬂiﬂj + {25ij5kl + %(@kéﬂ -+ 51l5]k)} Ez'jEkl s

_ 04idBjuap + 0pidajup A

Ei; = 2 )
6.4
(6.4) - (04i + 6Biua,B)Pa .
P
¥
A dc
——] X
O
[’
n

Fi1c. 2. Contours for the path-independent integrals.

Evaluating the integral J with the solutions given in Eqs. (4.16)—(4.19) along
a small circular contour enclosing the crack tip, we obtain the following value
of J for Mode I loading:

1 K?

65) = (1—2v) 12822

{ClsEﬁ + Oy B2 +64(1 — v)(1 — 2y)} ,

where

Cis = 2k5, + k3, + 4(1 — 20)kskss + 2(1 — 20)kiskas + (1 4 4v)kgskas
+4(1 = v)(1 — 2v)n{kas — 2nkss},

Cas = 4(1 — 2v) [3k1s — dvkgs — 3kss

+2(1 = v){12 — 16v + (7 — 8v)n — 8(1 — v)n*}n],

(6.6)

k1s = {2(1 = 2v)Ae1 + 2(1 — v) Aea — 1},
(6.7) kas = {(1—2v)(24c1 + 1) +2(1 —v)Ae2}n,
kas = {(1—2v)(24c1 + 1) — 2(1 — v)Aca}n.
We also obtain the value of J for Mode II loading; that is
1 K%,
(1 —2v) 12822

6.8) J= {ClaEﬁ + Co B2+ 64(1 — v)(1 — 21/)},
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where

Cra = —2{2k§a +2k2, — 24(1 — 20)k1aksa — Svksaksa + 4(1 — 20)k1aksa

— (1= 20)2(L + )nkaa + 2(1 — 20)2(3 + 2n)nk3a} :
(6.9)
Ca = 4(1 — 21/){2(13 — 160)k1a — (4 — 50)kq + 6ki1a

—(1—20)(11 — 16v)n — (1 — 20)(9 — 161/)772} :

kia = {(1 — 2V)A61 -+ (1 — I/)Aez — 77/2}7’],
(6.10) koo = {(1—=2v)Acr + (1 —v) A — v},
k3a = {(1 —2v)Ae1 + (2 —3v)Ac2 — (1 —v)n}n.

To examine the electroelastic interactions in the J-integral, we consider
a crack of length @ = 1 mm embedded in a polymethylmethacrylate (PMMA)
material. The material properties are listed in Table 1 [5], and g9 = 8.85
x10712 C/Vm. Table 2 lists the J-integrals under Mode I and Mode II loadings
for T'= 10 MPa. It can be seen that the J-integral under the Mode I depends on
the electric field. The effect of electric field on the J-integral under the Mode 11
is smaller than that under the Mode I, and the electric field effects are important
in the case of the Mode I.

Table 1. Material properties of PMMA.

p (N/m?) v Aer Ae2 n Er
PMMA 1.1 x 10° 0.4 0 3.61 2 3

Table 2. J-integrals for the Mode I and Mmode II loadings.

N 0 [ w/a | w2
J-integral (N/m)
Mode I Eo=0 GV/m 0 21.4 85.6
Eo=0.5 11.1 64.1 161
FEy=1 183 333 529
Mode II Ey=0 GV/m 0 21.4 0
Ey=0.5 0 21.5 0
FEy=1 0 22.7 0
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