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The shock discontinuity problem is analyzed in the case of elasto-plastic materials ;
the jump relations for internal state variables cannot be exhibited directly. For this
purpose, we solve the internal shock structure problem, assuming that the shock
front is a continuous transition in a thin layer, taking account of dissipative effects.
The shock generating function P is introduced. The canonical equations of the shock
structure are determined in the general case when the evolution of plasticity is derived
from a pseudo-potential of dissipation D. The plane wave is analyzed for an isotropic
material obeying a von Mises criterion, assuming that inside the shock the material
is under pure axial compression: the existence and uniqueness results are established.

1. Introduction

The description of the thermo-mechanical state of a body subjected to
a shock loading process is an important issue in the case of explosive forming of
metals. Such a process includes the propagation of a shock front which can be
represented as a strong discontinuity of material characteristics. In this paper, we
intend to solve the problem of moving discontinuities in the case of elasto-plastic
solids, in order to derive the jump of internal state variables across the shock
front; these variables are useful to describe the microstructural transformations
of the material during the shock phase and its subsequent behavior.

The problem of propagation of strong discontinuities has already been solved
in hydrodynamics: the Hugoniot curve is derived from the equation of state of
the fluid and from the classical conservation laws written in terms of relations on
discontinuities. Given the downstream state (−) and the flux of mass through the
discontinuity, there exist one and only one possible upstream state (+) provided
that the equation of state of the fluid satisfies the assumptions of Weyl [16].
For a proper choice of the mass flux, this state also satisfies the positivity of
the jump of entropy. Gilbarg [8] proved that these upstream and downstream
states were also the extremities of a continuous transition profile representing
the shock front, in the case when diffusive mechanisms (like viscosity and heat
conductivity) can no longer be neglected when gradients tend to become infinite.
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This approach was extended by Germain [4, 6] to magneto-hydrodynamics.
Among the various possible states (+) satisfying the jump relations, he showed
that the only admissible ones were those which were actually the extremities
of such transition profiles and remained so when the diffusive coefficients tend
towards zero in any manner.

In the case of elasto-plasticity, the shock problem is even more complex. The
Hugoniot curve cannot be obtained unless strong hypotheses are made on both
the equations of state and the evolution of internal state variables across the
discontinuity. Mandel [9] exhibited a Hugoniot curve for a nonlinear problem
reduced to one-dimensional space. In this case the stress tensor remains radial
during the loading path inside the discontinuity and characterisation of the strain
hardening can be reduced to the axial plastic strain. Germain and Lee [5]
considered a transition profile in which total strain and plastic strain remained
uniaxial. The shock solution was taken as the limit of this profile when diffusive
coefficients linked to visco-plasticity tend to zero.

Drugan and Shen [1] and Nguyen and Maigre [10] studied elasto-plastic
shocks in isothermal conditions, in the three-dimensional case and without so
restrictive assumptions on the plastic behavior. They could not derive a unique
solution. Nonetheless for generalized standard materials the existence of a tran-
sition profile ensures the definition of a lower bound for the dissipation inside
the shock front, thanks to the maximum dissipation principle [10].

In this work, we give a solution for the shock problem in the case of elasto-
plastic materials whose thermo-mechanical behavior is ruled by two potentials:
a free energy and a dissipation pseudo-potential.

As an introduction, the equations of state of an elasto-plastic material are
defined in a general manner. Then, the set of conservation laws, written in the
form of jump relations along the discontinuity, is recalled. These relations are
not sufficient to solve the problem of the moving discontinuity. It is necessary to
introduce complementary relations for the jump of the internal state variables
which describe microstructural changes due to plastic deformation.

In the second section, these additive relations are derived by studying the
internal structure of the shock front and the evolution of the internal state vari-
ables in it. As in the previous works, the front is considered as a continuous
transition in a thin layer between states (+) and (−), compatible with the pres-
ence of viscosity and thermal conductivity. At the scale of this transition, the
problem is supposed to be plane and in a steady state. When inside the shock
front the evolution of internal state variables is ruled by a pseudo-potential of
dissipation, the equations of the shock transition profile can be written using
a shock generating function P and a potential of dissipation D, as proposed in
Stolz [13, 14].
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These results are applied in the uniaxial strain and isothermal case to an
elasto-plastic material obeying a von Mises yield function and a normality law.
Conditions for the existence and uniqueness of the solution are established: they
are expressed in a compact form in terms of the shock generating function P .
First, the case of one internal state variable is considered and then the results are
extended to materials for which the free energy is a function of several internal
state variables.

Finally we analyze briefly how the solution of the shock structure problem
can be used to elaborate the constitutive laws for the activation of plasticity
and strain hardening inside the shock. From the mechanical characterization of
specimens shocked in plane configuration, we can estimate experimentally the
jump relations for the internal state variables across the shock front; then, we
go back to plasticity laws under shock by solving the inverse problem of the one
of the internal shock structure. The case of shock-loaded copper was studied in
Centre d’Etudes de Gramat and has been developed elsewhere [11].

2. Jump relations

2.1. Equations of state for an elasto-plastic material

In a small displacement analysis according to the local accompanying state
hypothesis (Germain [7]), the thermodynamical state of the material is de-
scribed by a set of state variables:

• the total strain tensor ε,
• the temperature T ,
• a set of internal state variables α which describes the evolution of internal

microstructure and of stored energy due to plastic deformation or other
irreversible process.

Each of the internal parameters may be a scalar or a tensor, for example the
plastic strain εp is an element of this set. Attached to the parameters are the
internal energy density e and entropy density s.

For a thermodynamical description, as proposed in [15], the constitutive law
is defined through a given free energy w defined per unit mass as a function of
the state variables:

(2.1) w = w(ε, α, T ).

The local expression of energy conservation is then deduced

(2.2) ρė = σ : ε(v) − div q.

ρ is the mass density, σ is the Cauchy stress tensor which verifies the momentum
conservation, v is the rate of displacement, q is the heat flux.



394 J.L. Dequiedt, C. Stolz

In nonlinear mechanics the internal state is generally associated with irre-
versibility. Then the fundamental inequality of thermodynamics implies that the
internal entropy production must be non-negative.

We assume that the choice of state parameters is a normal set of variables
in the Gibb’s sense: in a thermodynamic transformation in which the evolution
of temperature is imposed, the total strain being kept constant, the plastic strain
and the internal state variables also remain constant.

In this case, a variation of temperature doesn’t induce variations of kinetic
energy, so the internal production of entropy can be split into two parts: one due
to internal mechanical irreversibility

(2.3) Dm = ρṡ+
1

T
div q ≥ 0

and the second due to thermal conduction

(2.4) Dth = −
q · ∇T

T
≥ 0.

By introducing the conservation of energy, we can use the free energy w instead
of internal energy w = e+ Ts in the expression of Dm:

(2.5) Dm = σ : ε(v) − ρ(ẇ + sṪ ) ≥ 0.

This inequality must be satisfied by any real evolution of the body from the state
characterized by the actual value of the state variables (ε, α, T ). Then, we can
deduce that

(2.6) s = −
∂w

∂T
.

Moreover, assuming that the local behaviour doesn’t depend on the strain rate
ε(v), i.e. there is no viscosity, the inequality (2.5) implies:

(2.7) σ = ρ
∂w

∂ε

.

In an analogous way, introducing the thermodynamic forces A associated with
the internal state variables α through

(2.8) A = −
∂w

∂α
,

the dissipation is then reduced to

(2.9) Dm = Aα̇ ≥ 0.
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2.2. Jump relations along a strong discontinuity front

Now, we study the properties of a moving surface inside the material. Let us
consider a surface of discontinuity Γ . In any point M of this surface, φ and ν de-
note respectively the shock velocity and the vector normal to Γ . The propagation
of the surface is then governed by c = φν. The exponents (+) and (−) denote
the values of state variables immediately behind and ahead of the discontinuity,
respectively (Fig. 1).

Fig. 1. Shock front represented as a discontinuity surface.

In any point M of Γ , the conservation laws are rewritten in the form of jump
relations between the states (+) and (−). For any quantity b, [ b ]Γ = b− − b+

denotes the jump of the quantity b.
When [ b ]Γ = 0, the quantity b is conserved. If the value is known on one

side and the value is the same on the other side, then the quantity is constant
for the shock. At least three constants for the shock exist, each one is associated
to the classical laws of conservation.

The mass conservation implies that if the mass flux m = ρφ is continuous
along Γ , then m is a constant for the shock.

The conservation of momentum has the form:

(2.10) [σ]Γ .ν +m[v]Γ = 0

then the quantity mT d given by

(2.11) −mT d = σ
±.ν +mv±

is also a constant. From the expression of conservation of energy:

(2.12) m

[

w + Ts+
1

2
v2

]

Γ

+ ν.[ σ.v ]Γ − [ q ]Γ .ν = 0,
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where q denotes the heat flux, taking account of the equality1):

(2.13)
1

2
m[v2]Γ = mv̄.[v]Γ

and using the conservation law of the momentum

(2.14) mν.[σ.v]Γ −
1

2
m[v2]Γ = mν.σ̄.[v]Γ ,

we obtain:

(2.15) m[w + sT ]Γ + ν.σ̄.[v]Γ − [q]Γ .ν = 0.

The third constant, denoted by Qd, is associated with the conservation of energy:

(2.16) mQd = mw± +m(Ts)± + νσ̄.v± − q±.ν.

The conservation laws are henceforth characterized by the values m, T d, Qd

which are named the constants of the shock.
These values and the jumps of any mechanical quantities must be compatible

with the positivity of entropy production:

(2.17) −m[s]Γ +
[ q

T

]

Γ
.ν ≥ 0.

2.3. Compatibility condition

The continuity of the displacement along the surface Γ leads to classical rela-
tions between the gradient of displacement and velocity fields (Hadamard [2]):

(2.18) [v]Γ + φ[∇u]Γ .ν = 0

and

(2.19) [∇u]Γ .eα = 0

The last property is true for all vectors eα tangent to the discontinuity surface Γ .
Contrary to the case of hydrodynamics, the set of jump relations is not suf-

ficient to solve the shock problem in the following way: in one point M of the
shock front, if we know the shock velocity φ, the normal ν and the values of
all state variables in state (−), the constants of shock are determined, but an
infinite number of values for the state (+) exists.

This indetermination is essentially due to the presence of irreversibility.

1)The classical notation f̄ =
1

2

�
f

+ + f
−
�

is adopted.
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The number of equations and unknown variables is such that we could find
a solution for different choices of plastic strain and internal state variable. Each
possible answer is parametrized by the internal state.

Therefore it is not possible to exhibit jump relations for the internal para-
meters directly since their own evolution laws are expressed in an incremental
manner; the loading path inside the shock front must be known. We must de-
termine the loading path during the transition from the (−) state to the (+)
state.

The solution of the internal state variables across the shock can be determined
by the resolution of a particular rate boundary value problem. It is the purpose
of the next section.

For the sake of simplicity, we assume now that these shock waves are adia-
batic, that is to say that there is no heat transfer immediately behind and ahead
the discontinuity.

3. The internal structure of the shock front

3.1. The shock transition: change of scale

To determine the jump of internal variables we study the internal structure
of the shock front by solving a particular rate boundary value problem.

At a lower scale, the shock front is described as a continuous transition be-
tween states (+) and (−), contained in a thin layer around the line of discon-
tinuity. The existence of this continuous transition is justified by viscosity and
thermal conductivity, which we have neglected up to now. In such a description,
we implicitly make two hypotheses:

• the local accompanying state model is still valid; in other words, even if
the strain rates are very high during the transition, each particle of the
material is considered in a thermodynamic equilibrium at each time;

• even if the thickness of the transition profile is smaller than the size of
heterogeneities, as the grain size of a metal for example, we use classical
constitutive laws determined for an homogeneous material.

Let us consider a point M of the surface of discontinuities and an elementary
volume around this point, with a space characteristic length xvef during a short
time interval of the characteristic time scale tvef (see Fig. 2). These two scales
are characteristic scales of the shock transition which characterize the continuous
transition of matter from the downstream state (−) to the upstream state (+).
Moreover, we admit that the following orders of magnitude are fulfilled:

• xvef is one order of magnitude smaller than the radius of curvature of
the discontinuity surface; so, on the width of scale xvef , the discontinuity
surface can be considered as a part of a plane;
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• xvef is one order of magnitude smaller than the characteristic length of vari-
ation of mechanical variables along the discontinuity surface near point M ;

• tvef is one order of magnitude smaller than the characteristic time of evo-
lution of states (+) and (−).

Fig. 2. Shock and boundary conditions.

The rate boundary value problem is based on the research of steady solution
in the frame of the discontinuity. We write the equations of the shock transition
in a referential moving at velocity φ in direction ν. So, the particles are located
with the following time and space coordinates in referential:

(3.1) X = x− φt, Y = y, Z = z.

Then any function F (x, y, z, t) = f(X,Y, Z) has time derivative such that

(3.2) Ḟ = −φ
∂f

∂X
= −φ

∂F

∂x
= −φF

,X
.

The steady state is subjected to a particular boundary condition. Far from
the thin layer, for X → ∞, the (−) state is imposed, in the scale of time tvef

this state is a constant. The mechanical quantities are defined by

(3.3) b− = lim
X→∞

b(X,Y, Z),

then the constants of the shock are determined for a given propagation rate φ.
For X → −∞, the mechanical state is defined by b+ = lim

X→−∞

b(X,Y, Z) we

are just looking for.

3.2. Matching conditions

The mechanical quantities must satisfy the jump relations written on the
shock and then they are related with the two shock constants T d and Qd and
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constraints with the Hadamard compatibility relations. The jump at the macro-
scopic scale [b]Γ = b−−b+ is obtained by considering that at the scale of the layer
b− = lim

X→∞

b(X,Y, Z) and b+ = lim
X→−∞

b(X,Y, Z). Then for the shock structure

we have the boundary conditions:

v+ + φ∇u+ .ν = v− + φ∇u− .ν,(3.4)

∇u+ .eα = ∇u− .eα.(3.5)

Moreover, the steady state conditions implies v + φ∇u.ν = 0. Henceforth ac-
cording to the adiabaticity condition q±.ν = 0, the equations of conservation are
reduced to:

−mT d = σ
± .ν −mφ∇u± .ν,(3.6)

mQd = mw± +m(Ts)± +
1

2
m(φ∇u2)± − φν .(σ .∇u)± .ν.(3.7)

We search a steady state solution for the transition profile, assuming that any
state variables b depend only on the coordinate X.

3.3. The material behavior inside the shock front

To solve the problem for the shock transition, constitutive relations are
choosen to govern the evolution of the internal state variables inside the shock
front. Let us note that these relations, written in a formalism of mechanics of
continuum, are different from those used outside the shock. This allows us to
describe the microstructural mechanisms activated only in the shock transition
due to high rates of loading. Moreover, both the viscosity and the heat conduc-
tivity which are neglected outside the shock, can no longer be neglected inside
the front because the strain rates and temperature gradients are very high.

To describe the irreversible processes, we introduce a dissipation pseudo-
potential Ω, characteristic for the behavior inside the shock, which is a convex
function of the evolution rates of the state variables.

We assume then that the evolution is defined by the normality law:

(3.8) A =
∂Ω

∂α̇
, σir =

∂Ω

∂ε̇

.

The heat flux q is assumed to be proportional to the temperature gradient
(Fourier’s law):

(3.9) q = −K.∇T.

Then the state of stress inside the layer is defined by:

(3.10) σ = σr + σir = ρ
∂w

∂ε

+
∂Ω

∂ε̇

.
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3.4. The shock generating function

With the former assumptions on the material behavior inside the front, we
search steady state solutions for the transition obeying the boundary conditions
imposed by the jump relations and leading to the downstream state (–) in ∞.
These solutions satisfy equations which can be written in a compact form using
both the shock generating function and a potential of dissipation introduced by
Stolz [13]:

G(∇u, α, T, φ) =
m

T

(

−Qd + T d.u
,X

+ w(ε(u), α, T ) −
1

2
φ2u2

,X

)

,(3.11)

D(ε
,X
, α

,X
, T

,X
, φ) =

1

T

(

Ω(−φε
,X
,−φα

,X
) +

1

2

K

T
T 2

,X

)

.(3.12)

The conservation of the momentum for a steady state evolution is given by

(3.13) ∇σ.ex = ρφ2u,xx,

then by integration and taking account of the boundary condition we obtain:

(3.14) σ.ex − ρφ2u
,X

= −ρφT d.

The problem being plane, the strain is:

(3.15) ε =
1

2
(u

,X
⊗ ex + ex ⊗ u

,X
) + εαβeα ⊗ eβs

;

the components εαβ are then uniform. We obtain finally, for any variations

ε
∗ =

1

2

(

u∗
,X

⊗ ex + ex ⊗ u∗
,X

)

,

∂G

∂u
,X

u∗
,X

=
m

T

[

φT d +
σr

ρ
.ex − φ2u

,X

]

u∗
,X
,(3.16)

∂D

∂ε
,X

: ε
∗ = −

φ

T
σir :

[

ex ⊗ u∗
,X

]

.(3.17)

Hence σ = σr + σir, then

(3.18)
∂G

∂u
,X

−
∂D

∂ε
,X

.ex =
m

T

[

φT d +
σ

ρ
.ex − φ2u

,X

]

= 0.

This is the first canonical equation for the shock, which expresses the conserva-
tion of the momentum.
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In the same manner, the normality rule is rewritten as

(3.19)
∂G

∂α
= −

m

T

A

ρ
=

∂D

∂α
,X

.

The conservation of energy is easily written as

(3.20)

(

m

(

e +
1

2
v2

)

+ ν.σ.v − q.ν

)

,X

= 0.

Besides:

(3.21)
∂G

∂T
= −

m

T 2

((

w − T
∂w

∂T

)

− Qd + φT d.u
,X

−
1

2
φ2u2

,X

)

= −
1

T 2

(

m(w + Ts) − φν.σ.u
,X

+
1

2
mφ2u2

,X
−mQd

)

,

(3.22)
∂G

∂T
,X

=
KT

,X

T 2
=
q.ν

T 2
.

So, with the boundary condition, the conservation of energy is written:

(3.23)
∂G

∂T
=

∂D

∂T
,X

.

The dissipation throughout the transition is linked to the evolution of G:

(3.24) −m[s]Γ + ν.
[ q

T

]

Γ
=

∞
∫

−∞

−
φ

T

(

σir : ε
,X

+A : α
,X

+
KT 2

,X

T 2

)

dX.

So

(3.25) −m[s]Γ + ν.
[ q

T

]

Γ
= [G]Γ .

The convexity of the pseudo-potentials D ensures the positivity of the entropy
production.

Finally, the possible stationary solutions for the shock transition lead to
upstream states (+) compatible with:

• the conservation laws across the front (jump relations);
• the positivity of the jump of entropy;
• the material behavior inside the shock front.
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It now remains to show that such solutions actually exist. We restrict our
analysis of existence of solution to a particular case. In the following paragraph,
we develop the equations of the shock transition in a one-dimensional case. We
study a material with an isotropic elastic behavior and a von Mises plastic cri-
terion with isotropic strain hardening.

4. Existence and uniqueness of the shock transition

in a one-dimensional isothermal case

4.1. Constitutive laws

In isothermal conditions we assume that the elastic behavior of the material
is isotropic and that it is not affected by plastic deformation, but the elastic
behavior is not linear: the hydrostatic elastic modulus increases in compression,
the shear modulus being a constant:

w(εe, α) = we(εe) + wp(α),

with

(4.1)

ρwe(εe) = ρwH(ωe) +Gee : ee,(4.2)

where the notations correspond to:

(4.3) ωe = Tr ε
e, ee = ε

e −
ωe

3
I,

and G is the shear modulus. The elastic moduli are chosen so that:

(4.4)
dK

dωe
≤ 0, where K = ρ

∂2wH

∂ωe∂ωe
.

The stored energy is supposed to saturate with strain hardening:

(4.5) H(α) = ρ
d2wp

dα2
= −

dA

dα
,

so we suppose that

(4.6)
dH

dα
≤ 0.

We shall see further that the non-linearities of the behavior are essential to
prove the existence of a steady-state profile.

The viscosity is supposed to be linear in the strain rate:

(4.7) σir = H : ε̇.

H is considered to be isotropic.
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The plastic flow is defined by a von Mises criterion and a generalized nor-
mality law, with the yield surface defined by:

(4.8) f(σ, A) = J2 +A− Yo = 0, J2 =

√

3

2
sijsij .

The flow rule is given by:

(4.9) ε̇p = λ
∂f

∂σ

, α̇ = λ
∂f

∂A
.

4.2. Equations of the shock transition

We are interested in the propagation of plane shocks in a material in which
the state (−) is a state of uniaxial strain.

Moreover, this elasto-plastic shock is arriving after an elastic precursor so
that in state (−) the stress is on the yield surface but the plastic strain and
internal variable are zero.

Even in this configuration, the study of all possible transition profiles rep-
resenting the internal structure of the front still remains a difficult question.
So, in the following, we choose to restrict ourselves to the profiles satisfying the
following assumptions introduced by Mandel:

• the stress tensor always remains on the yield surface,
• the material is always in axial compression (without elastic release), the

deviatoric stress tensor and plastic strain rate remaining transversally
isotropic all over the profile.

In such profiles, it can be derived that the strain tensor is always uniaxial.
So the strain, plastic strain, internal variable and the stress take the form:

(4.10) ε = εex ⊗ ex, εp = εp
(

ex ⊗ ex −
1

2
(ey ⊗ ey + ez ⊗ ez)

)

.

The hardening α is exactly −εp. The state of stresses is defined by

(4.11) σ = σex ⊗ ex + σtt(ey ⊗ ey + ez ⊗ ez).

The free energy has a simple form

(4.12) ρw(ε, α) = ρwH(ε) +
3

2
G

(

2

3
ε+ α

)3

+ ρwp(α).

The axial stress satisfies the condition

(4.13) σ = ρ
∂w

∂ε
+ ηε̇ = σr + σir.
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In this uniaxial configuration and with the hypothesis that the stress remains
on the yield surface, there exists a pseudo-potential for plasticity, recalling that
the thermodynamical force associated to α is

(4.14) A = −ρ
∂w

∂α
= σeq + A.

The associated dissipation being Yoα̇, we obtain:

(4.15) A = Yo.

For the steady-state transition profile, the shock generating function and the
potential of dissipation are given by:

G(ε, α) = ρφ
(

φεTd + w(ε, α) −
1

2
φ2ε2

)

,(4.16)

D(ε
,X
, α

,X
) =

1

2
η(−φε

,X
)2 − Yoφα,X

.(4.17)

In isothermal conditions, the equations of the profile are the conservation of
momentum and the relation governing the plastic flow:

(4.18)
∂G

∂ε
=

∂D

∂ε
,X

,

(4.19)
∂G

∂α
=

∂D

∂α
,X

.

The condition of continuous loading in compression is α
,X
< 0. The constants

of the shock are given by the boundary condition in +∞. State (−) is known
and satisfies the condition

(4.20)
∂G

∂ε
= 0,

that is exactly the determination of T d, state (+) satisfies also the equality
∂G

∂ε
= 0 and the boundary condition in −∞ is then fulfilled.

4.3. Existence and uniqueness of the steady-state solution in visco-elasticity

In visco-elasticity, there remains only one state variable ε and one equation,
the conservation of momentum:

(4.21)
∂G

∂ε
=

∂D

∂ε
,X

= ηφ2ε
,X
,
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where

(4.22)
∂G

∂ε
= φ(σr − ρφε+mTd)

such that
∂G

∂ε
(−) = 0.

According to the hypotheses on the elastic modulus, the second derivative of
dG

dε
is negative, which is

dK

dε
. So, for a proper choice of φ, there exists one and

only one possible state (+) satisfying:

ε+ < ε−,
∂G

∂ε
(+) = 0,(4.23)

∂G

∂ε
(ε) > 0, in [ε+, ε−].(4.24)

The choice of φ and the associated state (+) also satisfy the inequalities:

(4.25)
d2G

dε2
(ε+) > 0

and

(4.26)
d2G

dε2
(ε−) < 0,

what means that the shock velocity is larger than the wave velocity in state (–)
and smaller than the wave velocity in state (+).

With the initial condition ε(0) =
1

2
(ε+ + ε−), according to the sign of

∂G

∂ε
in

the interval [ε+, ε−], there exists a solution with the following properties:

(4.27) ε
,X
> 0, ε(−∞) = ε+, ε(∞) = ε−.

The uniqueness of the profile is established in the following sense: let us consider
two close solutions differing by an amount δu with boundary conditions δu = 0
at ±∞; these conditions exclude all translations of the former profile which
are obviously other solutions for the shock structure. Then the perturbation δu
satisfies:

(4.28)
∫

(

d2G

dε2
δε−

d2D

dε2
,X

δε
,X

)

δu dX = 0,

which, integrated by parts, gives:

(4.29)
∫
(

d

dX

(

d2G

dε2

))

1

2
δε2 dX =

∫

d2D

dε2
,X

(δε)2 dX ≥ 0.

Since the wave velocity decreases with X, the first term is ≤ 0, what implies
that δu = 0.
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4.4. Extension to elasto-plasticity

The results of the former subsection can be extended to elasto-plasticity in
the following way: the internal variable α is considered as a function of ε in
the conservation of momentum and the previous results are applied; this is due
essentially to the hypothesis of continuous loading.

To be more precise:

∂

∂α

(

∂G

∂α
−

∂D

∂α
,X

)

=
∂2G

∂α2
= φ

(

3G+ ρ
d2wp

dα2

)

> 0,(4.30)

∂

∂ε

(

∂G

∂α
−

∂D

∂α
,X

)

=
∂2G

∂ε∂α
= 2φG > 0.(4.31)

The solution satisfies the conditions:

(4.32)
∂G

∂α
=

∂D

∂α
,X

which is an implicit relation between α and ε. The variations of ε and α are with
opposite sign.

It can be derived from the former paragraph that there exists a unique profile
which satisfies ε

,X
> 0 and α

,X
< 0 under the condition that:

(4.33)
d2

dε2

(

∂G

∂ε
(ε, α(ε))

)

< 0.

Let us develop this last condition:

(4.34)
d2

dε2

(

∂G

∂ε

)

=
∂3G

∂ε3
+

∂2G

∂ε∂α

d2α

dε2
.

From this relation, according to the properties of functional G we have:

(4.35)
d2α

dε2
= −

4G2

(3G+H)3
dH

dα
> 0.

This condition is not always satisfied. It is, when the increase of elastic modulus
in compression dominates the effect of strain hardening saturation in plasticity.

4.5. Case of several internal state variables

The former results could be extended to the case of several internal state vari-
ables, each of them being associated with one particular irreversible mechanism
of plastic deformation possessing its own yield stress (Halphen and Nguyen [3].
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Under isothermal uniaxial strain conditions, we admit that the axial plastic strain
is the sum of −αi:

(4.36) εp = −
∑

i

αi, and wp = wp(αi).

Each αi satisfies normality rule of the same type as that previously defined by
different threshold value Yio.

Under the assumption that all these variables are activated continuously in
the profile, the relations for plasticity are written:

(4.37)
∂G

∂αi
=

∂D

∂αi
,X

.

The conditions on which the αi can be written as functions of ε are linked to
the second derivatives of wp. Assume that the αi are uniquely defined when the
effects of self-strain hardening prevail on the effects of strain hardening due to
coupling of the different mechanisms.

The existence and uniqueness of the shock profile is guaranteed when the
following inequality is fulfilled:

(4.38)
d2

dε2

(

∂G

∂ε

)

= m

(

∂3wH

∂ε3
+ 2G

∑

i

d2αi

dǫ2

)

< 0.

The analysis of implications of this relation is very complex, we can only guess
that the inequality is satisfied when the effect of elastic stiffening is greater than
the effect of saturation of the different strain hardening moduli.

In the last sections, we have managed to give a solution to the shock problem
in the case of one-dimensional elasto-plasticity (when conditions for existence
and uniqueness are fulfilled). Given the constitutive laws which apply inside the
shock front, the result analogous to a Hugoniot curve can be deduced from the
study of the internal shock structure; so, we define a constitutive relation for
the shock front (relation between the jump of all the state variables and the
shock velocity) and then we can deduce the initial conditions for the post-shock
behavior.

5. Elaboration of constitutive laws for the behavior inside the shock

The elaboration of constitutive models for plasticity inside the shock fronts
relies on the solution of the inverse problem. Various shock tests are carried out
on the selected material. The simultaneous analysis of annealed and pre-shocked
samples allows first to identify the variables which are necessary to characterize
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the internal state of the material in both states and secondly, to establish jump
relations for these variables across a shock front, as long as the loading path
during the shock experiment is sufficiently simple. Then, one intends to go back
to the constitutive laws which rule the evolution of the internal state variables
inside the shock structure.

Such relations are derived to be used in the numerical solution of mechanical
problems including both shock phases and other types of the loading phases. At
the present time, numerical codes represent both the internal structure of shock
fronts and the thermo-mechanical evolution outside the fronts.

This identification process has been carried out on copper in Centre d’Études
de Gramat (C.E.G.) [11]. The thermo-mechanical formalism is slightly different
from the one adopted above but the analysis has been conducted in the same
spirit.

6. Conclusion

The first aim of this study on the propagation of strong discontinuities in
elasto-plastic solids was to give a sort of a constitutive relation for the evolution
of shock fronts: in each point of the front, this constitutive relation should link
the shock velocity and the jump of all state variables. In other words, it would
give a parametric equation to build a Hugoniot curve just like in hydrodynamics.

Because of the incremental formulation of plasticity laws, it is not possible to
derive the jump relations for internal state variables and to exhibit directly such
a constitutive relation. The solution adopted results from the assumption that
the shock front is in fact a continuous transition which can be studied in the
framework of thermo-mechanics, although the constitutive laws may be specific.

The fundations for the study of the internal shock structure were built in
the general case of elasto-plastic materials for which irreversible processes are
ruled by a pseudo- potential of dissipation. With the assumption that this local
problem is plane and stationary, the equations of thermo-mechanics are written
in a compact form with the help of the shock generating function (playing the
role of a potential energy for steady-state problems) and a pseudo-potential of
dissipation.

The derivations were carried out in one-dimensional conditions in the case of
standard materials with a von Mises loading surface. The existence and unique-
ness of a steady-state profile for a shock in compression were proved, when the
non-linearity of the material behavior is such that the wave velocity increases
continuously: in other words, the effect of elastic stiffening must dominate the
opposite effect of strain hardening saturation. We find again the well-known
result that the existence of a steady-state profile relies on the equilibrium be-
tween the increase of elastic modulus in compression, which tends to stiffen the
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wave fronts, and the diffusive effects (just like viscosity and thermal conduction),
which prevent gradients from being infinite. Moreover, we have established that
the value of the viscosity coefficient does not affect the extremities of the profile,
that is to say the upstream state (+), but only its thickness.

The experimental and numerical work using shock tests on copper illustrated
the possibility of identifying the behavior inside the shock front by an inverse
method. Generally, it is not possible to follow the evolution of state variables
inside the shock fronts since their evolution rates are too high. We are only able to
evaluate the mechanical characteristics (plastic behavior) in both unshocked and
pre-shocked states. So, we are able to define an equation of state for the material
in both states and to evaluate the changes of the internal state variables during
the shock loading sequence. If the loading path during the test is simple enough,
we manage to go back to state (+) of the shock front, state (−) being the state
of the annealed material before the test.

Of course, the complete identification of plasticity laws which apply inside the
shock is not possible when only state (+) and state (−) are known (it is obvious
that the inverse problem formulated this way is not well-posed!). Nonetheless,
bibliographic data on shock-loading can allow to postulate a general formulation
for these laws; the values of various coefficients are then fitted in such a way that
the solution of the shock structure problem gives the correct description of state
(+). When the selected plasticity laws are quite complex, numerical simulation
is useful to solve the problem of the internal shock structure.

However, in the future it would be useful to analyze more precisely how
the jump of the different internal state variables across a shock discontinuity
depends on different coefficients of the plasticity laws which apply inside the
shock, especially when several strain hardening mechanisms are activated. Such
an analysis would help to solve, in a more systematic way, the inverse problem
giving the plastic laws for the shock structure from post-shock characteriza-
tion.

Moreover, to justify the solutions exhibited here for the shock structure, we
would have to prove that the steady-state solutions are stable and that the
relaxation time for perturbations is smaller than the time characteristic for the
shock transition.
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