
Arch. Mech., 56, 5, pp. 357–376, Warszawa 2004

Maysel’s formula in the generalized linear micropolar

thermoviscoelasticity

AHMED S. EL-KARAMANY

Department of Mathematics, Faculty of Education,

Rustaq- 329, P. O. Box 272,

SULTANATE OF OMAN

e-mail: aelkaramani@yahoo.com

Generalizations of Maysel’s formula to generalized linear micropolar thermo-
viscoelasticity is given. Fundamental solutions in the Laplace transform domain are
obtained. The results are applicable to the following generalized thermoelasticity the-
ories: Lord–Shulman theory with one relaxation time, Green–Lindsay theory with two
relaxation times, Green–Naghdi theory of type III, and the Chandrasekharaiah and
Tzou theory with dual-phase lag, as well as to the dynamic coupled theory. The cases
of generalized linear micropolar thermoviscoelasticity of the Kelvin–Voigt model, and
the generalized linear micropolar thermoelasticity can be obtained from the given re-
sults.
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Notations

ui components of displacement vector,

σij components of force stress tensor,

mij components of couple stress tensor,

eij components of strain tensor,

εij components of micro-strain tensor,

ri components of rotation vector,

ωi components of micro-rotation vector,

e = ekk = εkk dilatation,

Mi mass couple vector,

Fi mass force vector,

ρ density,

J micro-inertia coefficient,

δij Kronecker delta,

∈ijk permutation tensor,

a coefficient of linear thermal expansion,

t time,

λ, µ, k, α, β, γ elastic coefficients,

γ̂ = (3λ + 2µ + k)a,

Rξ(t), ( ξ = λ, µ, k, α, β, γ) relaxation functions,
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ω = ωii = ωi,i,
τq phase-lag of heat flux,
τθ phase-lag of temperature gradient,
T absolute temperature,

T0 reference temperature chosen so that
|T − T0|

T0

≪ 1,

Θ = T − T0,
∧

Θ = Θ + ν Θ̇,
K thermal conductivity,

C
E

specific heat at constant strain,
Q intensity of applied heat source per unit mass;

n∗, n1, n0, t1, t2, ν, τ0 constants,
λv retardation period of the Kelvin–Voigt model.

1. Introduction

The general theory of linear and nonlinear micropolar continuum mechanics
was given by Eringen and Suhubi [1, 2], Eringen [3, 4]. It was extended to
include thermal effects by Nowacki [5], Eringen [6, 7], Tauchert et al. [8],
Tauchert [9] and Nowacki and Olszak [10]. One can refer to Dhaliwal

and Singh [11] for a review on the micropolar thermoelasticity and a historical
survey of the subject, as well as to the “continuum physics” series by Eringen

and Kafadar [12] in which the general theory of micromorphic media has been
summed up. The micropolar viscoelasticty theory was investigated by many au-
thors (e.g. Eringen [13]).

Biot [14] formulated the theory of coupled thermoelasticity to eliminate the
paradox inherent in the classical uncoupled theory that elastic changes have no
effect on the temperature. The heat equations for both theories are of parabolic
type, predicting infinite speeds of propagation for heat waves contrary to physical
observations. Hetnarski and Ignaczak in their survey article [15] examined
five generalizations to the coupled theory and obtained a number of important
analytical results. The first generalization is due to Lord and Shulman [16]
(L–S theory). The second generalization to the coupled theory is known as the
generalized theory with two relaxation times (G–L theory) [17]. One can refer to
Ignaczak [18] for a review, presentation of the two theories and some important
results obtained in this field. The third generalization to the coupled theory is
known as the thermoelasticity without energy dissipation, proposed by Green

and Naghdi [19] (G–N theory of type II ). The so-called Green–Naghdi theory
of type III, can be derived from Green and Naghdi [20, 21]. The fourth Gen-
eralization is the low temperature thermoelastic model due to Hetnarski and
Ignaczak (the H–I theory), which is characterized by a system of nonlinear field
equations. The fifth generalization to the coupled theory is known as the dual-
phase-lag thermoelasticity, proposed by Chandrasekharaiah and Tzou [22]
(C–T theory), which can be considered as an extension of the L–S theory [15].
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The technique frequently used in isothermal elasticity [23], known as Betti’s
method, has been extended to thermoelasticity by V.M. Maysel [24], who de-
duced on the basis of reciprocity theorem a method of integration of the bound-
ary value problems of thermoelasticity. The Maysel formula to determine the
displacements uj(x) in a body D, due to the action of a steady temperature

field T , has the form uj(x) = a

∫

D

T (y)σ
(j)
kk (y,x)dV (y), where σ(j)

kk is the sum

of normal stresses, at the point y of the elastic body in the isothermal state
(T = 0), due to the action of a concentrated unit force located at the point x in
the direction of the xj-axis.

Maysel’s formula (published in Russian) became known to a wider audi-
ence through Nowacki’s famous monograph [25], where it was used also for the
quasi-static problems. Extensions of Maysel’s method to quasi-static problems
for viscoelastic bodies were given by Nowacki [26]. Nowacki generalized Maysel’s
formula to the dynamic coupled thermoelasticity [27], to uncoupled micropolar
thermoelasticity [28] and obtained the Green functions for the micropolar ther-
moelasticity [29]. Maysel’s method is used extensively in the theory of plates and
shells. One can refer to Franz Ziegler and Hans Irschik [30] for the methods of
solutions in thermoelasticity, based on Maysel’s formula and its implementation
in the direct boundary integral equation methods.

In the present work, the mathematical model of generalized linear micropolar
thermoviscoelasticity is given. Generalizations of Maysel’s formula to the given
model are established. Fundamental solutions in Laplace transform domain are
obtained.

2. Mathematical model

Assume a linear micropolar thermoviscoelastic material occupies a regular
region D with a smooth boundary surface B in the three-dimensional Euclidian
space. The material is assumed to be microisotropic and isotropic. In this paper,
a rectangular coordinate system (x1, x2, x3) is employed. x is the position vector
and t the time. All the functions are considered to be functions of (x, t), defined
on D(= D ∪B) × [0,∞). A superposed dot denotes differentiation with respect
to time, while a comma denotes partial differentiation with respect to the space
variables xi. The summation notation is used. The system of governing equations
of a linear micropolar thermoviscoelastic solid [5, 10, 13, 31] consists of:

• Equations of motion (on D × (0,∞))

(2.1) σji,j + ρFi = ρ
∂2ui

∂ t2
, ∈ijp σjp +mji,j + ρMi = Jρ

∂2ωi

∂ t2
.



360 Ahmed S. El-Karamany

• Kinematic relations (on D × (0,∞))

(2.2) εij = eij− ∈ijp (rp − ωp), eij =
1

2
(ui,j + uj,i), ri =

1

2
∈ipq uq,p.

• Constitutive laws (on D × (0,∞))

(2.3) σij = λ
⌣

Rλ(e)δij + (2µ
⌣

Rµ + k
⌣

Rk)(eij) + k
⌣

Rk(∈ijp (rp − ωp))

− (3λ
⌣

Rλ + 2µ
⌣

Rµ + k
⌣

Rk)(aΘ̂)σij ,

(2.4) mij = α
⌣

Rα(ω)δij + β
⌣

Rβ(ωi,j) + γ
⌣

Rγ(ωj,i),

where the operator
⌣

Rξ(f), (ξ = λ, µ, k, α, β, γ) is defined for any function f(x, t)
of class C1, as

(2.5)
⌣

Rξ(f) =
⌣

Rξ(f(x, t)) =

t
∫

0

Rξ(t− τ)
∂ f(x, t)

∂ τ
dτ

and where Rξ(t) are six relaxation functions.
Using the kinematic relations, Eq. (2.3) takes the form

(2.6) σji = λ
⌣

Rλ(up,p)δij + (µ
⌣

Rµ + k
⌣

Rk)(ui,j) + µ
⌣

Rµ(uj,i) + k
⌣

Rk(∈ijp ωp)

− (3λ
⌣

Rλ + 2µ
⌣

Rµ + k
⌣

Rk)(aΘ̂)δij .

From Eqs. (2.1)–(2.4) we get

(2.7) (λ
⌣

Rλ + µ
⌣

Rµ)(uj,ji) + (µ
⌣

Rµ + k
⌣

Rk)(ui,jj) + k
⌣

Rk(∈ijp ωp,j)

− (3λ
⌣

Rλ + 2µ
⌣

Rµ + k
⌣

Rk)(aΘ̂,i) = ρ(üi − Fi),

(2.8) (α
⌣

Rα+β
⌣

Rβ)(ωj,ji)+γ
⌣

Rγ(ωi,jj)+k
⌣

Rk(∈ijp up,j)−2k
⌣

Rk(ωi) = ρ(Jω̈i−Mi).

The heat equation (on D × (0,∞))

(2.9) K

(

n∗ + t1
∂

∂ t

)

Θ,ii = ρCE(n1Θ̇ + τ0Θ̈ + t22
...
Θ)

+ T0a(3λ
⌣

Rλ + 2µ
⌣

Rµ + k
⌣

Rk)(n1ė+ n0τ0 ë+ t22
...
e ) − (n1Q+ n0τ0Q̇+ t22Q̈).
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Equations (2.7)–(2.9) are the field equations (on D×(0,∞)) of the generalized
linear micropolar thermoviscoelasticity, applicable to the coupled theory in four
generalizations, and to several special cases as follows:

1. The equations of the coupled linear micropolar thermoviscoelasticity, when

(2.10) n∗ = n1 = 1, t1 = t2 = τ0 = ν = 0, n0τ0 = 0.

2. The equations of the generalized linear micropolar thermoviscoelasticity
with one relaxation time (L–S theory), when

(2.11) n∗ = n1 = 1, n0 = 1, t1 = t2 = ν = 0, τ0 > 0,

where τ0 is relaxation time.
3. The equations of the generalized linear micropolar thermoviscoelasticity

with two relaxation times (G–L theory), when

(2.12) n∗ = n1 = 1, n0 = 0, t1 = t2 = 0, ν ≥ τ0 > 0,

where ν and τ0 are two relaxation times.
4. The equations of the generalized linear micropolar thermoviscoelasticity

in case of the linearized G–N theory of type III, when

(2.13) n∗ > 0, n1 = 0, n0 = 1, t1 = 1, t2 = ν = 0, τ0 = 1.

Here n∗ = const has the dimension of [1/sec], and (n∗K = K∗) is a characteristic
constant of this theory. It is worth noting that the linearized G–N theory of type
I, reduces to the parabolic heat equation, and only the theory of type II involves
no energy dissipation [19].

5. The equations of the generalized linear micropolar thermoviscoelasticity
with dual phase-lag (C–T theory), when

(2.14)

n∗ = n1 = n0 = 1, t1 = τθ > 0, τ0 = τq > 0,

t22 =
1

2
τ2
q , ν = 0, τq > 0, τθ > 0.

6. The equations of the generalized linear micropolar thermoviscoelasticity
of Kelvin–Voigt model can be obtained from the above equations by replacing

the operator
⌣

Rξ(f) with

(2.15) R
(v)
ξ (f(x, t)) =

(

1 + λv
∂

∂ t

)

f(x, t),

where λv > 0 is the retardation period of the Kelvin–Voigt model [32].
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7. The equations of the generalized linear micropolar thermoelasticity can be
obtained from the equations (2.3), (2.4), (2.6)–(2.14) by replacing the operator
⌣

Rξ(f) with the function f(x, t). The heat equation (2.9) in this case takes the
form

(2.16) K

(

n∗ + t1
∂

∂ t

)

Θ,ii = ρCE

(

n1Θ̇ + τ0Θ̈ + t22
...
Θ
)

+ T0γ̂
(

n1ė+ n0τ0 ë+ t22
...
e
)

−
(

n1Q+ n0τ0Q̇+ t22Q̈
)

.

For example, the heat equation of the generalized linear micropolar ther-
moelasticity without energy dissipation (the linearized G–N theory of type II ),
can be obtained from Eq. (2.16) when

(2.17) n∗ > 0, n1 = 0, n0 = 1, t1 = t2 = ν = 0, τ0 = 1.

8. The corresponding equations of the generalized linear thermoviscoelasticity
can be obtained from the above system by setting k = 0, ωi = 0, Mi = 0.

9. The corresponding equations of the generalized linear thermoviscoelasticity
of the Kelvin–Voigt model can be obtained from Eqs. (2.3), (2.4), (2.6)–(2.14)
by setting k = 0, ωi = 0, Mi = 0 and replacing the operator (2.5) by the
operator (2.15).

10. The corresponding equations of the generalized linear thermoelasticity

can be obtained from the equations (2.3), (2.4), (2.6)–(2.14) by replacing
⌣

Rξ(f)
by f , and setting k = 0, ωi = 0, Mi = 0.

The system of equations (2.7)–(2.9) is completed by the initial and boundary
conditions.

The Initial conditions will be assumed homogeneous

(2.18) ui(x, t) = 0, ωi(x, t) = 0, Θ(x, t) = 0, x ∈ D, t ≤ 0,

(2.19)
∂nui(x, t)

∂ tn
= 0,

∂nωi(x, t)

∂ tn
= 0,

∂nΘ(x, t)

∂ tn
= 0,

x ∈ D, t ≤ 0, (n ≥ 1).

The boundary conditions

σjinj = fi(xσ, t) on Bσ × (0,∞);
(2.20)

ui = gi(xBu , t) on Bu × (0,∞),

mjinj = Γi(xBm , t) on Bm × (0,∞);
(2.21)

ωi = Ξi(xBω , t) on Bω × (0,∞),
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(2.22) Θ = Φ(xB1
, t) on B1 × (0,∞); Θ,n = G(xB2

, t) on B2 × (0,∞),

where the functions fi, gi, Γi, Ξi, Φ and G are given functions, equal to zero when
t ≤ 0. (Bu, Bσ), (Bω, Bm) and (B1, B2) are three partitions of the boundary
surface B such that B = Bu ∪Bσ = Bω ∪Bm = B1 ∪B2, Bu ∩Bσ = Bω ∩Bm =
B1 ∩ B2 = φ, and ni = ni(xB) are the components of the outer normal vector
to the surface at xB.

3. The formulation of the problem in the Laplace transform domain

Performing the Laplace transform defined as f(x, s) =

∞
∫

0

e−s tf(x, t)dt over

Eqs. (2.1), (2.4) and (2.6) with homogeneous initial conditions and omitting the
bars, we obtain

σji,j = ρ(s2ui − Fi); ∈ijl σjl +mji,j = ρ(Js2ωi −Mi),

σji = λ1ul,lδij + (µ1 + k1)ui,j + µ1uj,i + k1 ∈ijl ωl − γ̂1η2Θδij ,(3.1)

mji = α1ωδij + β1ωj,i + γ1ωi,j .(3.2)

The field equations (2.7)–(2.9) in Laplace transform domain take the form

(λ1 + µ1)uj,ji + (µ1 + k1)ui,jj + k1 ∈ijl ωl,j − γ̂1η2Θ, i = ρ(s2ui − Fi),(3.3)

(α1 + β1)ωj,ji + γ1ωi,jj + k1 ∈ijl ul,j − 2k1ωi = ρ(Js2ωi −Mi),(3.4)

Kη3Θ,ii = ρCEsη1Θ + T0sη γ̂1 ui,i − η Q,(3.5)

where

ξ1 = s ξ Rξ(s); (ξ = λ, µ, k, α, β, γ); γ̂1 = (3λ1 + 2µ1 + k1)a;(3.6)

(3.7)
η = n1 + n0τ0s+ t22s

2, η1 = n1 + τ0s+ t22s
2,

η2 = 1 + νs, η3 = n∗ + t1s.

Rξ(s) is the Laplace transform of the relaxation functions Rξ(t). (ξ1 = ξ(1+λvs)
for the Kelvin–Voigt model and ξ1 = ξ for the generalized linear micropolar ther-
moelasticity). The boundary conditions (2.20)–(2.22) in the Laplace transform
domain are

σji(xBσ , s)nj = fi, ui(xBu , s) = gi, mji(xBm , s)nj = Γi,

ωi(xBω , s) = Ξi, Θ(xB1
, s) = Φ, Θ,i(xB2

, s)ni = G.
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The reciprocity relation in the Laplace transform domain for the generalized
micropolar thermoviscoelasticity theory is [31]:

(3.8) T0sηρ





∫

D

F
(1)
i u

(2)
i dV +

∫

D

M
(1)
i ω

(2)
i dV



− ηη2

∫

D

Q(1)Θ(2) dV

+ T0sη





∫

Bu

σ
(1)
ji nj g

(2)
i dA+

∫

Bσ

f
(1)
i u

(2)
i dA+

∫

Bω

m
(1)
ji njΞ

(2)
i dA

+

∫

Bm

Γ
(1)
i ω

(2)
i dA



−Kη3 η2





∫

B1

Θ(1)
,n Φ

(2) dA+

∫

B2

G(1)Θ(2) dA



 = S12
21 .

Here S12
21 indicates the same expression as that on the left-hand side, except that

superscripts (1) and (2) are interchanged.

4. Generalizations of Maysel’s formula

The problem to be solved will consist in determination of ui(x, t), ωi(x, t) and
Θ(x, t), x ∈ D, t > 0, i.e. the solution of the system of equations (2.7)–(2.9), sub-
jected to the homogeneous initial conditions (2.18) and (2.19), and the boundary
conditions:

(4.1)
ui(xB, t) = gi(xB, t), ωi(xB, t) = Ξi(xB, t),

Θ,n(xB, t) = G(xB, t), xB ∈ B2 = Bu = Bω,

(4.2)
σij(xB, t)nj(xB) = fi(xB, t), mij(xB, t)nj(xB) = Γi(xB, t),

Θ(xB, t) = Φ(xB, t), xB ∈ B1 = Bσ = Bm,

where gi(xB, t), Ξi(xB, t), Φ(xB, t), fi(xB, t), Γi(xB, t) and G(xB, t) are given
functions.

Consider now the three cases:

Case 1. We assume that Fi = 0, Mi = 0 and that an instantaneous source
of heat located at xi = yi where y ∈ (D∪B), is acting upon a linear micropolar
viscoelastic body, i.e. we assume Q = Q0δ(R) δ(t), Fi = 0, Mi = 0, where Q0 > 0
is constant, R =

√

(xi − yi) (xi − yi) and δ(...) is a Dirac delta function. Thus
in the Laplace transform domain (omitting the bars) we have

(4.3) Q = Q0δ(R), Fi = 0, Mi = 0.
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The corresponding fundamental solutions of the system of Eqs. (3.4)–(3.6) are

(4.4) u
(1)
i , ω

(1)
i , Θ(1).

Case 2. We assume now that Q = 0, Mi = 0 and an instantaneous concen-
trated body force Fi = F

(j)
i = F0δ(x − y) δ(t) δij is acting at the point xi = yi,

where y ∈ (D∪B), in the direction of xj-axis, where F0 > 0 is constant. Taking
the Laplace transform of Fi and omitting the bars, we have

(4.5) Fi = F
(j)
i = δijF0δ(R), Q = 0, Mi = 0.

The corresponding fundamental solutions (Green’s functions) are

(4.6) u
(j)
i , ω

(j)
i , Θ(j).

Case 3. We assume now that Q = 0, Fi = 0 and an instantaneous con-
centrated body couple force Mi = M

(q)
i = M0δ(x − y) δ(t) δiq is acting at the

point xi = yi, where y ∈ (D ∪ B), in the direction of xq-axis, where M0 > 0 is
constant. The Laplace transform of Mi is

(4.7) M
(q)
i = δiq M0δ(R), Q = 0, Fi = 0.

The corresponding fundamental solutions are

(4.8) u
(q)
i , ω

(q)
i , Θ(q).

Assuming the boundary conditions to be satisfied by the fundamental solutions
(4.4), (4.6) and (4.8) in the form:

g
(l)
i (xB, s) = Ξ

(l)
i (xB, s) = G(l)(xB, s) = 0, xB ∈ B2 = Bu = Bω,(4.9)

f
(l)
i (xB, s) = Γ

(l)
i (xB, s) = Φ(l)(xB, s) = 0, xB ∈ B1 = Bσ = Bm;(4.10)

where l = 1, j, q, and substituting from Eqs. (4.1)–(4.10) into the reciprocity
relation (3.8), one obtains the generalizations of Maysel’s formula, in the Laplace
transform domain, to the generalized micropolar thermoviscoelasticity theory in
the form:

(4.11) ηη2Q0Θ(x, s) = ηη2

∫

D

QΘ(1)dV − T0ρsη

∫

D

Fi u
(1)
i dV

+Kη3η2





∫

B2

GΘ(1)dA−

∫

B1

ΦΘ(1)
,n dA





+ T0sη





∫

B2

giσ
(1)
ji njdA−

∫

B1

fiu
(1)
i dA



 ,
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(4.12) F0T0ρsηuj(x, s) = −ηη2

∫

D

QΘ(j)dV

+ T0ρsη





∫

D

Fiu
(j)
i dV +

∫

D

Miω
(j)
i dV





+ T0sη





∫

B1

fiu
(j)
i dA−

∫

B2

giσ
(j)
ki nkdA+

∫

B1

Γiω
(j)
i dA−

∫

B2

Ξim
(j)
ki nkdA





+Kη3η2





∫

B1

ΦΘ(j)
,n dA−

∫

B2

GΘ(j)dA



 ,

(4.13) ρM0ωq(x, s) = ρ





∫

D

Fiu
(q)
i dV +

∫

D

Miω
(q)
i dV





+

∫

B1

fiu
(q)
i dA−

∫

B2

giσ
(q)
ki nkdA+

∫

B1

Γiω
(q)
i dA−

∫

B2

Ξim
(q)
ki nkdA.

For all the considered generalized theories we have in view Eqs. (2.9)–(2.14),
(2.16), (2.17) and (3.7): νt1 = νt2 = νn0t0 = 0 and therefore

(4.14)
ηη2 = (n1 + ν2s+ t22s

2), η2η3 = (n∗ + ν1s),

ν1 = (νn∗ + t1), ν2 = (νn1 + n0τ0).

Inverting Eqs. (4.1)–(4.13) we obtain the generalizations of Maysel’s formula in
the form

(4.15)
L1(Θ(x, t)) = WM

1 (x, t); L2(uj(x, t)) = WM
2 (x, t),

ωq(x, t) = WM
3 (x, t); x ∈ D

where WM
1 (x, t), WM

2 (x, t), and WM
3 (x, t) are listed in the Appendix.

L1(f(x, t)) =

(

n1 + ν2
∂

∂t
+ t22

∂2

∂t2

)

f (x, t) ,

L2(f(x, t) =

(

n1 + n0τ0
∂

∂t
+ t22

∂2

∂t2

)

f(x, t).
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From Eqs. (4.15) we obtain the following generalizations of Maysel’s formula:
(i) For the dynamic coupled theory:

Θ(x, t) = WMC
1 (x, t),

uj(x, t) = WMC
2 (x, t), ωq(x, t) = WMC

3 (x, t).

(ii) For the L–S theory:

Θ(x, t) =
1

τ0
e−t/τ0

t
∫

0

eτ/τ0WMLS
1 (x, τ)dτ,

uj(x, t) =
1

τ0
e−t/τ0

t
∫

0

eτ/τ0WMLS
2 (x, τ)dτ,

ωq(x, t) = WMLS
3 (x, t).

(iii) For the G–L theory:

Θ(x, t) =
1

ν
e−t/ν

t
∫

0

eτ/νWMGL
1 (x, τ)dτ,

uj(x, t) = WMGL
2 (x, t), ωq(x, t) = WMGL

3 (x, t).

(iv) For the G–N theory of Type III:

Θ(x, t) =

t
∫

0

WMGN3

1 (x, τ)dτ,

uj(x, t) =

t
∫

0

WMGN3

2 (x, τ)dτ, ωq(x, t) = WMGN3

3 (x, t).

(v) For the C–T theory:

Θ(x, t) =
2

τq
e−t/τq

[

Θ1 sin(t/τq) −Θ2 cos(t/τq)
]

,

uj(x, t) =
2

τq
e−t/τq

[

u1 sin(t/τq) − u2 cos(t/τq)
]

,

ωq(x, t) = WMCT
3 (x, t).
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Here

Θ1 =

t
∫

0

eτ/τq cos(τ/τq)W
MCT
1 (x, τ)dτ,

Θ2 =

t
∫

0

eτ/τq sin(τ/τq)W
MCT
1 (x, τ) dτ,

u1 =

t
∫

0

eτ/τq cos(τ/τq)W
MCT
2 (x, τ) dτ,

u2 =

t
∫

0

eτ/τq sin(τ/τq)W
MCT
2 (x, τ) dτ.

(vi) For the G–N theory of Type II (for the micropolar thermoelasticity theory):

Θ(x, t) =

t
∫

0

WMGN2

1 (x, τ)dτ,

uj(x, t) =

t
∫

0

WMGN2

2 (x, τ)dτ, ωq(x, t) = WMGN2

3 (x, t).

5. The fundamental solutions

According to the Helmholtz theorem [25], the displacement and the body
forces can be expressed in the form:

(5.1) ui = φ,i + ∈ijk Ψk,j , Ψi, i = 0; Fi = X,i + ∈ijk Yk,j , Yi, i = 0,

(5.2) ωi = Ω,i + χi, χi,i = 0; Mi = J(Z, i +Ni), Ni, i = 0,

where ϕ, X, Ω, Z are the scalar potentials and Ψk, Yk, χk, Nk are the vector
potentials of the vector fields ui, Fi, ωi and Mi respectively. Equations (5.1) and
(5.2) with Eqs. (3.3)–(3.5) lead to

(5.3)

(∇2 − P 2
1 )ϕ− b1Θ = −

X

C2
1

; (∇2 − P 2
2 )Ψi + b2χi = −

Yi

C2
2

;

(∇2 − a2
3)Ω = −

Z

C2
3

, (∇2 − a2
4)χi − b4∇

2Ψi = −
Ni

C2
4

;

(∇2 − P 2)Θ − b∇2ϕ = −b0Q,
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where, taking into consideration Eqs. (3.6) and (3.7), a2
3 = P 2

3 +b3, a2
4 = P 2

4 +2b4
and

C2
1 =

(λ1 + 2µ1 + k1)

ρ
, C2

2 =
µ1 + k1

ρ
,

C2
3 =

α1 + β1 + γ1

ρJ
, C2

4 =
γ1

ρJ
,

Pn =
s

Cn
, (n = 1, 2, 3, 4);

P 2 =
ρCEs η1

Kη3
, b0 =

η

Kη3
,

b =
γ̂1T0s η

Kη3
, b1 =

γ̂1η2

ρC2
1

,

b2 =
k1

µ1 + k1
, b3 =

2k1

α1 + β1 + γ1
, b4 =

k1

γ1
.

To obtain u(1)
i , ω(1)

i , Θ(1) in the Laplace transform domain, we substitute the re-
lation (4.3) into the system of the governing equations (5.3), using the Helmholtz
equation [33]

(5.4)
1

∇2 −m2
n

[δ(R)] = −
1

4πR
e−mnR

and introducing the notations

En = (−1)n−1e−mnR, ξn = (−1)n−1

(

1

R
+mn

)

e−mnR,

Vn = 3ξn +m2
nREn, A1 =

Q0b0b1
4π(m2

1 −m2
2)

we obtain for an infinite region, with the homogeneous initial conditions [27]
the result:

Ω(1) = 0, Ψ
(1)
i = 0, χ

(1)
i = 0, ω

(1)
i = 0, r

(1)
i = 0, mij = mji = 0

ϕ(1) =
A1

R

2
∑

1

En, u
(1)
i = −

A1R, i

R

2
∑

1

ξn, Θ(1) =
A1

b1R

2
∑

1

(m2
n − P 2

1 )En,

where m2
1,m

2
2 are the roots of the characteristic equation:

m4 − (P 2
1 + b1b+ P 2)m2 + P 2

1 P
2 = 0.

The fundamental solutions u(j)
i , ω(j)

i , Θ(j) are obtained by substituting from

Eqs. (4.5) into Eqs. (5.3). Taking into consideration that ∈ilk Y
(j)
k,li = 0 and
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∈iqp X
(j)
,iq = 0, using Eq. (5.4) with mn = 0 and Eq. (5.1)2 with Eqs. (4.5),

we obtain X(j) = −
F0

4π

(

δij
R

)

,i

and Y
(j)
k =

F0

4π
∈iqk

(

δqj

R

)

,i

. The governing

Eqs. (5.3) now lead to:

ϕ(j) =
B0 δij R,i

R2
+
δij R,i

R

2
∑

1

ςnξn, Θ(j) = −
B1δijR,i

R

2
∑

1

ξn,

where

ςn =
(m2

n − P 2)F0

4πC2
1m

2
n(m2

2 −m2
1)

and B0 =
F0

4πs2
, B1 =

bF0

4πC2
1 (m2

1 −m2
2)
,

χ
(j)
i =∈jik

(

A2b4R,k

R

4
∑

3

ξn

)

, Ψ
(j)
i = ∈ijk

(

R,k

R

)

[

B0

R
−

4
∑

3

ς∗nξn

]

,

u
(j)
i (x, y, s) =

U1δij
R2

−
U2R,iR,j

R2
,

ω
(j)
i = χ

(j)
i = ∈jil

(

A2b4R,l

R

4
∑

3

ξn

)

, ω
(j)
i, i = 0,

where m2
3 and m2

4 are the roots of the following second characteristic equation:

m4 −
(

P 2
2 + a2

4 − b2b4
)

m2 + a2
4P

2
2 = 0,

A2 =
F0

4πC2
2 (m2

3 −m2
4)
, ς∗n =

A2

(

m2
n − a2

4

)

m2
n

,

U1 =
2
∑

1

ςnξn +
4
∑

3

ς∗n(ξn +Rm2
nEn), U2 =

2
∑

1

ςnVn +
4
∑

3

ς∗nVn.

To determine the Green functions u
(q)
i , ω(q)

i ,Θ(q) we substitute from Eqs. (4.7)
into the governing equations (5.3), and we obtain, for an infinite region, taking
into consideration the homogeneous initial conditions ϕ(q) = 0, e(q) = 0 and
Θ(q) = 0.

From Eqs. (4.7) and (5.2) we get

Z(q) =
M0δiqR,i

4πJR2
, N

(q)
i =

M0

J

[

δiqδ(R) +
1

4π

(

1

R

)

,iq

]
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from which and Eq. (5.3)3 we obtain Ω(q) =
A3R,iδiq
R2

[

1 − (1 + a3R)e−a
3
R
]

,

therefore

Ω
(q)
,i = −

A3(3R,iR,q − δiq)

R3

[

1 − (1 + a3R)e−a
3
R
]

+
A3a

2
3R,iR,q e

−a3R

R
,

Ψ
(q)
i =

U3(3R,iR,q − δiq)

R3
−

2A4δiq
3R

4
∑

3

En,

χ
(q)
i = −

U4(3R,iR,q − δiq)

b2R3
+

2δiqA4

3b2R

4
∑

3

(

m2
n − P 2

2

)

En,

u
(q)
i = ∈ilq

(

A4R,l

R

4
∑

3

ξn

)

, ω
(q)
i = Ω

(q)
,i + χ

(q)
i .

Here

U3 = B3 +
A4R

3

4
∑

3

Vn

m2
n

, U4 = −P 2
2B3 +

A4R

3

4
∑

3

(

m2
n − P 2

2

m2
n

)

Vn,

A3 =
M0

4πJC2
3a

2
3

, A4 =
M0b2

4πJC2
4 (m2

3 −m2
4)
,

and

B3 =
M0b2

4πJC2
4m

2
3m

2
4

.

6. Conclusions

1. For the linear micropolar thermoviscoelasticity and the generalizations of
Maysel’s formula to the dynamic coupled theory, four generalized theories are
obtained. The corresponding generalizations to the linear micropolar thermovis-
coelasticity of Kelvin–Voigt model and to the linear micropolar thermoelasticity
can be obtained from the given results as special cases.

2. The Green functions for an infinite region are obtained in Laplace trans-
form domain. Appropriate numerical methods for evaluating the corresponding
expressions should be applied for the implementations of the generalizations of
Maysel’s formula.
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Appendix

WM
1 (x, t) =

1

Q0

t
∫

0

∫

D

Q(y, t− τ)L1(Θ
(1) (y,x, τ)) dV (y) dτ

−
T0ρ

Q0

t
∫

0

∫

D

Fi (y, t− τ)
∂L2 (u

(1)
i (y,x, τ))

∂τ
dV (y) dτ

+
T0

Q0





t
∫

0

∫

B2

gi(y, t− τ)
∂L2(σ

(1)
ji (y,x, τ)nj)

∂τ
dA(y) dτ

−

t
∫

0

∫

B1

fi (y, t− τ)
∂ L2(u

(1)
i (y,x, τ))

∂τ
dA(y) dτ





+
K

Q0





t
∫

0

∫

B2

G(y, t− τ)L3 (Θ(1)(y,x, τ)) dA(y) dτ

−

t
∫

0

∫

B1

Φ(y, t− τ)L3(Θ
(1)
,n (y,x, τ)) dA(y) dτ



 ;

WM
2 (x, t) =

1

F0

t
∫

0

∫

D

Fi(y, t− τ)L2 (u
(j)
i (y,x, τ)) dV (y)dτ

+
1

F0

t
∫

0

∫

D

Mi(y, t− τ)L2 (ω
(j)
i (y,x, τ)) dV (y)dτ

−
1

F0T0ρ

t
∫

0

∫

D

Q(y, t− τ)L∗

1(Θ
(j)(y,x, τ)) dV (y) d τ

+
K

F0T0ρ





t
∫

0

∫

B1

Φ(y, t− τ)L∗

3(Θ
(j)
,n (y,x, τ)) dA(y) dτ

−

t
∫

0

∫

B2

G(y, t− τ)L∗

3(Θ
(j)(y,x, τ)) dA(y) dτ




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[cont.] +
1

F0ρ





t
∫

0

∫

B1

fi (y, t− τ) L2 (u
(j)
i (y,x, τ))dA(y) dτ

−

t
∫

0

∫

B2

gi(y, t− τ)L2(σ
(j)
ki (y,x, τ)nk) dA(y) dτ





+
1

F0ρ





t
∫

0

∫

B1

Γi (y, t− τ) L2 (ω
(j)
i (y,x, τ)) dA(y) dτ

−

t
∫

0

∫

B2

Ξi (y, t− τ)L2(m
(j)
ki (y,x, τ)nk) dA(y) dτ



 ;

WM
3 (x, t) =

1

M0





t
∫

0

∫

D

Fi(y, t− τ)u
(q)
i (y,x, τ) dV (y)dτ

+

t
∫

0

∫

D

Mi(y, t− τ)ω
(q)
i (y,x, τ)dV (y)dτ





+
1

M0ρ





t
∫

0

∫

B1

fi (y, t− τ)u
(q)
i (y,x, τ)dA(y) dτ

−

t
∫

0

∫

B2

g (y, t− τ)σ
(q)
ji (y,x, τ)njdA(y) dτ





+
1

M0ρ





t
∫

0

∫

B1

Γi (y, t− τ)ω
(q)
i (y,x, τ)dA(y) dτ

−

t
∫

0

∫

B2

Ξi (y, t− τ)m
(q)
ji (y,x, τ)njdA(y) dτ



 ,

where

L3(f(x, t)) =

(

n∗ + ν1
∂

∂t

)

f(x, t),
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L∗

1(f) =

τ
∫

0

L1(f(y,x, ς))dς,

L∗

3(f) =

τ
∫

0

L3(f(y,x, ς))dς,

L1(f) = L2(f) = L3(f) = f (for the DCT),

L1(f) = L2(f) =

(

1 + τ0
∂

∂t

)

f, L3(f) = f (for L–S theory),

L1(f) = L3(f) =

(

1 + ν
∂

∂ t

)

f, L2(f) = f (for G–L theory),

L1(f) = L2(f) =
∂f

∂t
,

L3(f) =

(

n∗ +
∂

∂t

)

f

(for G–N theory of Type III)

L1(f) = L2(f) =

(

1 + τq
∂

∂t
+
τ2
q

2

∂2

∂t2

)

f,

(for C–T theory), and

L3(f) =

(

1 + τΘ
∂

∂t

)

f,

L1(f) = L2(f) =
∂f

∂t
, L3(f) = n∗f (for G–N theory of Type II).
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