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This article presents the foundations of Newton-Euler rigid body dynamics and its
generalized forms in the light of the objectivity principle. We prove that most of the
features of dynamics may be directly deduced from this principle and from properties
of the group defining the geometry. In particular, these deductions seem to close the
conjectures about the relevance of the objectivity principle to dynamics.

Notations

R real number field,

G connected Lie group (acting on S from the left), see Sec. 2,

T closed normal commutative Lie subgroup of G (translation group),
see Sec. 4,

S configuration space of a rigid body, see Secs. 2 and 3,

TS and T ∗
S tangent and cotangent spaces of S, see Sec. 2,

Gkin and Ggal group of kinematics and Galilée group, see Sec. 4,

g and g∗ Lie algebra of G and its dual,

t Lie algebra of T (a commutative ideal of g),

[·, ·] Lie bracket in g,

[[·, ·]] Lie bracket of vector fields (on S),

{·, ·} coadjoint Lie bracket in g∗, see Sec. 2,

Ad and Ad ∗ adjoint and coadjoint representations of G in g and g∗, see Sec. 2,

ϑr or ϑ right Maurer–Cartan form of S, see Secs. 2 and 3,

ϑℓ left Maurer–Cartan form of S, see Secs. 2 and 3,

∇ natural connection of S, see Sec. 2,

F (F1, F2 and so on) frames of reference (inertial or kinematical), see Sec. 4,

H (resp. Hs) inertia operator of a body (resp. in position s ∈ S), see Secs. 6.1,
and 6.2,

C (resp. Cs) see Sec. 6.3,

jF (t) and JF (t) inertial forces observed with respect to a frame F , see Sec. 6.3,

D Euclidean displacement group in dimension 3, see Sec. 7.1,

d Lie algebra of D, see Sec. 7.1,

[· | ·] Klein form on d, see Sec. 7.1.
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1. Introduction

Expositions of mechanics based on the principle of frame indifference (in
the sequel, we will say “principle of objectivity”) appeared in W. Noll [20]
and [21]. Afterwards, this principle has played an important role in many works
on constitutive relations in continuum mechanics. However, to our knowledge,
it was not actually focused on the consequences of the principle regarding the
mathematical form of inertial forces in rigid body dynamics. In fact, whether
or not this principle is relevant to dynamics is a matter of controversy (see
for example C. Speziale [29]). On the one hand, as soon as we consider non-
inertial frames of reference and want to strictly preserve its form, the well-known
Newton’s second law in dynamics of particles

(1.1) m
d2x

dt2
= f ,

is not frame indifferent. On the other hand, to express the laws of dynamics
with respect to non-inertial frames necessitates a specification of the effect of a
general change of frame on the mathematical representation of forces appearing
to the right in Newton’s law. This is actually the role of an axiom stating that
forces are objective quantities and, in a consistent theory, it must concern all
forces, including inertial forces. Note that the addition to the right of Coriolis
and induced inertial forces, as explained in standard textbooks, leads to correct
dynamic equations and preserves the mathematical form of the left hand side
but does require such an axiom for specifying what becomes of f through the
changes of frame. The remark extends to dynamics of a rigid body with Euler
equations for rotations. To clarify this matter it is inevitable to return to the
interpretation of the left-hand side of (1.1) not only for particles but for realistic
models of body, with “forces” and “torques”, what is much more complicated.

The natural framework of such investigation is the group theory, commonly
used in other parts of mechanics and almost unavoidable here. After the arti-
cle [1] by V. Arnold many articles appeared on Lie groups and dynamics of
various models of generalized rigid bodies. The article by Y.N. Fedorov and
V.V. Kozlov [10] emphasizes the relevance of such research and contains many
historical references. The idea of a rigid body in n-dimensional space or of an
affinely deformable body was in fact older (see for example Chetayev [3] and
H. Weyl [31]), however, with [1] the subject was entering into a new mathe-
matical framework. More recent works on these subjects have appeared, in par-
ticular V. V. Kozlov and D. Zenkov [15], J. Slavianowski [27] and [28]
and A. Martens [19], C. Vallée and coauthors [30], A.A. Bourov and
D.P. Chevallier [2]. Dynamics of affinely-rigid body of infinitesimal size in Rie-
mannian spaces was investigated by A. Golubowska [11] and [12]. The Hamil-
tonian view point, with applications to various interesting physical models, were
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synthesized in C-M. Marle [17]. Similar problems were treated by J. Mars-

den, T. Ratiu and coauthors (see for example [18, 24] and [25]).
These works have dealt with the analysis of the mathematical form of given

dynamic equations and their integrability but, to our knowledge, no attempt to
point out links with the fundamental principles of Newtonian dynamics them-
selves and geometry of Lie groups has been made.

We will prove that the principle of objectivity, as a principle of invariance
not only with respect to the Galilée group but with respect to the general group
of kinematics, involves strong constraints on the description of the inertia of
a rigid body (say the relation between velocity and momentum) and implies a
lot of properties of dynamics such as the mathematical structure of dynamics
in non-inertial frames and properties of gyroscopic and Coriolis forces. For an
ordinary body in 3 dimension (as far as we consider symmetric positive definite
inertia operators) the constraints involved in objectivity determine one and only
one model: the Newton-Euler rigid body dynamics.

The paper is organized as follows:
Sections 2 and 3 expose the mathematical framework of generalized rigid

body kinematics based on differential geometry. In it we attempt to sum up in
a few lines a complete set of tools for reasoning and calculating with Lie groups
and dynamics of rigid body.

Section 4 aims at endowing the word “objectivity” with a precise meaning, to
explain the mathematical description of the various objects we have to consider
and the relations between their representations with respect to different frames
of reference. To take geometry into account, no more than a Lie group G and
a commutative Lie subgroup, the translation group T will be used. With G, T

and time (the absolute time of Newton mechanics) we can construct the general
group of kinematics Gkin and its subgroup Ggal, the Galilée group. We can also
construct the configuration space of a rigid object, within the meaning of the
transformation group G, that is a manifold S with a transitive and free left action
of G on S (a “principal homogeneous space of G”).

Section 5 summarizes, in the very compact form provided by Lie groups and
principal homogeneous spaces, some formulas in kinematics of composed motions
of ordinary or generalized rigid bodies for further use. In particular we introduce
a new formalism for composition of accelerations.

Section 6 contains the main results of the paper regarding ordinary or gen-
eralized bodies: the condition for the existence of objective inertial forces (The-
orem 1), the structure of the inertial forces in non-inertial frames (Theorem 2)
and their consequences. In particular we show how some kinds of “absolute”
kinematical quantities may be pointed out in the universe of Newton and that
objectivity of inertial forces means that they are functions these absolute quan-
tities (Theorem 5).
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Inertia of a rigid body may be described by standard mathematical objects of
differential geometry. Either a left invariant Riemannian structure on S defining
the kinetic energy as in [1] or, which is slightly more general, an “invariant vector
bundle homomorphism” H : TS → T ∗

S ; if a velocity of a body is described by a
tangent vector v of the configuration space S, then the momentum is a cotangent
vector H(v) and the relation between v and H(v) has two properties: first it is
invariant by the action of the group G and second, for a given position of the body
in S, it is linear. At this stage nothing more is assumed on the mathematical
form of H. Of course each of the words velocity, momentum and force must
be understood now in a broad sense. For an ordinary rigid body v describes
linear and angular velocity, H(v) describes linear and angular momentum, forces
mean ordinary forces and torques. For a generalized rigid body, as an affinely
deformable body, they describe more general kinematical or dynamical objects.

The law of dynamics with respect to an inertial frame may be similar to
Newton’s second law, “the derivative of the momentum equal the force”, and
turns out to be an equality in T ∗

S

∇

dt
H(v) = f with v =

ds

dt
,

where t 7→ s(t) ∈ S describes the motion of the body, ∇ is a well-defined canonical
connection on S and f is the force acting on the body. The objectivity of this
law raises the following questions: is it possible to associate with any motion

an objective inertial force j (t) defined in any frame such that j (t) = −
∇

dt
H(v)

whenever the frame is inertial? What is the expression of j (t) with respect to
non-inertial frames? The necessary and sufficient objectivity condition is reduced
to an additional algebraic condition to be verified by H, namely:

for all u∈ t, all v∈g and all s∈S: {u, Hs(v)}+ {v, Hs(u)}+Hs([u,v]) = 0 (⋆)

(where g and t are the Lie algebras of G and T and, for s ∈ S, the Hs are linear
operators from g to g∗ describing inertia in a given position s of the body, the
bracket {., .} is defined in Sec. 2).

According to Secs. 5 to 6 many features of dynamics require no more as-
sumptions on geometry of “space” and “spacetime” than the groups G, T and
Gkin, Ggal, and no more information on the configurations of our rigid bodies
than the action of G on S.

In Sec. 7 we apply the previous results to the particular case of the three-
dimensional Euclidean group D and we prove that the sole (symmetric positive)
solutions to (⋆) are operators Hs defined by a number, the position of a point
and a tensor, that are rightfully interpreted as the mass, the center of inertia and
the tensor of inertia of the body as in the Newton–Euler model (this connection
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was mentionned in [6]). This result appears here as a pure consequence of the
principle of objectivity and of some features of the Euclidean group. In particular,
no model of a mass distribution or of aggregate of massive particles in space was
required.

Let us make some additional remarks. After [1], most of the works on rigid
body mechanics described the positions of the body in a group. Here they are
described as points of a principal homogeneous space S of a group, what is
slightly more technical but provides a more accurate picture of the properties of
a rigid body than the group itself.

In this article, the same group G defines rigidity for the frames and for our
rigid object. It would also be relevant to consider objects that are “rigid” in
the sense of a larger group as in Chevallier [4] where S must be replaced
by a principal fiber bundle of G. However, this leads to a more complicated
mathematical treatment which is beyond the scope of this article.

If we understand that G is always the Euclidean group, this article provides
a complete and new analysis of the principles of dynamics of the ordinary rigid
body in the light of group theory and the objectivity principle. When more gen-
eral G are considered, the article points out the conditions permitting to conceive
extensions preserving most of the features of ordinary rigid body dynamics.

Henri Poincaré in [22] and [23] explained that the origin of geometry lies
in a group detected through the changes of position of (perfectly) rigid objects
and that space and geometry are deduced from properties of this group. Finally,
this article explains how such an idea applies to a direct deduction of dynamics.

It is noteworthy that group-theoretical background is also present in mod-
ern mechanics of continua. Following the fundamental work of Cosserat, various
models, such as micromorphic media introduced by A.C. Eringen, use orthogonal
or, more generaly, linear or affine groups in order to describe the positions of the
elements of a continuum. Complete references regarding those connections be-
tween groups and mechanics is beyond the scope of this article. We only mention
the proceedings [16], including many contributions where groups and differential
geometry appear explicitly or not, and J.C. Simo and L. Vu–Quoc [26] for the
theory of rods.

2. Geometry of a principal homogeneous space

In this section we summarize the mathematical background used for devel-
oping rigid body dynamics in the framework of differential geometry (see also
the article [9]). The mechanical interpretation will be explained in Sec. 3.

Let G be a (real) Lie group, g its Lie algebra, [·, ·] the Lie bracket in g (that is
to say: G is a group endowed with a manifold structure such that the operations
of the group are differentiable. As a set, g = TeG is the tangent vector space of G
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at the identity and the theory of Lie groups proves that there exists a natural
Lie algebra structure on TeG).

Let Ad and Ad ∗ be the adjoint and coadjoint representations of G in g and g∗

(for g ∈ G, Ad g is the linear operator in g such that Ad .u is the value on u ∈ g

of the tangent map to x 7→ gxg−1 at x = e). Here, the definition of coadjoint
representation is Ad ∗g = t

(

Ad g−1
)

(and differs from that of [1]). If u ∈ g we
note adu the map v 7→ [u,v] and ad ∗u = −t(adu) : g∗ → g∗ the transposed
operator of −adu so that < ad ∗u.z,v >= − < z, adu.v > for v ∈ g, z ∈ g∗. In
the following we will also use the coadjoint bracket notation defined by

{u, z} = ad ∗u.z for u ∈ g, z ∈ g∗.

A principal homogeneous space of G is a set S (in due form a pair (S; G)!)
where G is acting transitively and freely by the left on S. More specifically, each
g ∈ G defines a transformation of S denoted by Lg : s 7→ Lg(s) = g.s such
that e.s = s and h.(g.s) = (h.g).s and, for any fixed element s of S, the map
σs : g 7→ g.s is one-one and onto.

There exists a unique manifold structure on S such that, for all s, the bijection
σs is an analytic diffeomorphism (then the action of G on S is analytic). When
S will be considered as a manifold we will always refer to this structure. As
manifolds G and S are equivalent, the difference lies in the algebraic structure:
in some sense S is “a Lie group whose unit element has been lost”. Since σs ◦
Lg = Lg ◦ σs (noting also Lg the left translation by g in G), the principal
homogeneous spaces (S; G) and (G; G), where G acts on itself by left translations,
are isomorphic by the map σs.

In the following, TS (resp. T ∗
S) will denote the tangent (resp. cotangent)

space of S and < ·, · > the duality bracket between TS and T ∗
S. These spaces

have natural vector-bundle structures with base S and with projections o from
TS (resp. T ∗

S) onto S; o maps each tangent vector x (resp. tangent covector z)
onto its origin o(x) = s (resp. o(z) = s). The action of G on S may be lifted into
left actions of G on TS and T ∗

S ; we will note LT
g (x) = g.x (resp. (LT

g )∗(z) = g.z)

the action of g ∈ G on x ∈ TS (resp. z ∈ T ∗
S), where LT

g is the tangent map. If
x and z have the same origin s in S, then < z,x >=< g.z, g.x >.

2.1. Maurer–Cartan differential forms

The infinitesimal action of G on S takes the form g×S → TS and is defined as:

u.s =

(

d

dt
exp(tu).s

)

t=0

where exp denotes the exponential map of G. An equivalent definition of u.s is
the value of the tangent map of g 7→ g.s at g = e on u ∈ TeG (= g). Since for
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each s, σs is a diffeomorphism from G onto S mapping e to s, we deduce that the
map u 7→ u.s is a linear isomorphism from g = TeG to TsS ; in other words every
element x of TsS is of the form u.s with a uniquely defined u ∈ g. Right and
left Maurer-Cartan forms ϑr and ϑℓ are the g-valued differential forms defined
for x ∈ TS by:

(2.1)

{

ϑr(x) = u ⇔ x = u.s

ϑℓ(x) = u ⇔ g−1.x = u.so

if s = o(x) = g.so .

In other words g−1.x ∈ Tso
S and ϑℓ is defined by ϑℓ(x) = ϑr(g

−1.x). The
definition of the form ϑℓ assumes the choice of an origin so in S (“reference
position”) whereas ϑr is intrinsically defined; in the following we will often write
ϑ for ϑr. Maurer–Cartan forms and their exterior differentials verify the following
properties:

(2.2)

{

ϑℓ(h.x) = ϑℓ(x), ϑr(h.x) = Adh.ϑr(x), h ∈ G,

ϑr(x) = Ad g.ϑℓ(x) when o(x) = g.so,

(2.3) dϑr = [ϑr, ϑr], dϑℓ = −[ϑℓ, ϑℓ] (Maurer–Cartan formulas)

(For example, the first formula (2.3) means that dϑr(x,y) = [ϑr(x), ϑr(y)] if x

and y ∈ TsS).

2.2. Parallelizations of TS and T ∗
S

The Maurer–Cartan forms lead to parallelizations of the tangent and cotan-
gent bundles of S corresponding to the top and the bottom of the following
diagrams:

(2.4)

S × g x 7→ (s, ϑr(x))
ր

TS ↑
ց

G × g x 7→ (g, ϑℓ(x))

S × g∗ z 7→ (s, ϑ∗r(z))
ր

T ∗
S ↑

ց
G × g∗ z 7→ (g, ϑ∗ℓ (z))

The vertical arrows represent the maps (g,u) 7→ (g.so,Ad g.u) and (g, µ) 7→
(g.so,Ad ∗g.µ). The upper part of the diagrams is intrinsical whereas the lower
part depends on the choice of so. The right-hand diagram is the dual of the left
hand one and the maps ϑ∗r and ϑ∗ℓ are determined by:

< z,x >=< ϑ∗r(z), ϑr(x) >=< ϑ∗ℓ(z), ϑℓ(x) > for z ∈ T ∗

s S, x ∈ TsS,
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so that, on each cotangent fiber T ∗
s S, ϑ∗r (resp. ϑ∗ℓ ) is the contragredient isomor-

phism of the isomorphism from TsS onto g defined by ϑr (resp. ϑℓ). Relations
(2.2) imply:

(2.5)







ϑ∗r(h.z) = Ad∗h.ϑ∗r(z), ϑ∗ℓ (h.z) = hϑ∗ℓ (z), h ∈ G

ϑ∗r(z) = Ad∗g.ϑ∗ℓ (z) when o(z) = s = g.so.

A consequence of the parallelizations is that any differentiable tensor field (we
will merely say “tensor” rather than tensor field) on S may be represented by a
map from S to a tensor space on g (or to a space of multilinear maps built with
g and g∗). So a contravariant and covariant of degree 1 tensor H is described by
a differentiable map s 7→ Hs ∈ L(g). A contravariant of degree 1 and covariant
of degree 2 tensor B is described by a map s → Bs ∈ L2(g × g; g). The tensors
themselves may be reconstructed with the relations ϑr

(

H(x)
)

= Hs

(

ϑr(x)
)

or
ϑr

(

B(x,y)
)

= Bs

(

ϑr(x), ϑr(y)
)

if x and y ∈ TsS.

2.3. Left invariant vector fields and fundamental vector fields

As for any manifold we can define the set X(S) of differentiable vector fields
which classically is a Lie algebra under the Lie bracket of vector fields. In the
present case, due to the particular structure of S, X(S) contains two important
vector subspaces:

i) Fundamental vector fields, defined through the infinitesimal action of g on
S, are of the form Xu : s 7→ u.s = Xu(s) where u ∈ g is fixed. They make a
Lie algebra Xr(S), with the bracket [[·, ·]], that is isomorphic to the opposite
of g, in fact (see [13] chap. I.4):

[[Xu, Xv]] = X−[u,v], (u, v ∈ g).

In other words [[Xu, Yu]](s) = −[u,v].s (with the bracket of g on the right-
hand side).

ii) Left invariant vector fields X : S → TS verifying X(g.s) = LT
g (X(s)) for

all s ∈ S and g ∈ G and making a Lie subalgebra Xℓ(S) of X(S).
The Lie algebra Xℓ(S) is isomorphic with g and, for each s ∈ S, there is a

natural Lie algebra structure on TsS. The construction is similar to the classical
definition of the Lie algebra of a Lie group G as a structure on TeG isomorphic
to the Lie algebra of left invariant vector fields on G, except that we now con-
sider TsS at the current point of S. On the one hand, for each fixed s in S the
evaluation map X 7→ X(s) is a linear isomorphism between Xℓ(S) and TsS. On
the other hand, transporting the structure, TsS turns into a Lie algebra with Lie
bracket [·, ·]s such that

[x,y]s = [[X,Y ]](s) for X and Y ∈ Xℓ(S) such that X(s) = x and Y (s) = y.
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(Of course, the relation [x,y]s = [[X,Y ]](s) should be untrue for vector fields
which are not left invariant.) It is easy to prove that the Lie algebra TsS is
isomorphic with g and that

ϑr ([x,y]s) = [ϑr(x), ϑr(y)] for x and y ∈ TsS.

As on the Lie algebra of a Lie group we also define the coadjoint bracket {·, ·}s

< {x, z}s,y >= − < z, [x,y]s > for x,y ∈ TsS, z ∈ T ∗

s S.

2.4. Left and right differentials

The parallelizations of TS, allowing to identify TS with a product of mani-
folds S× g, simplify the differential calculus on S. In the sequel we only consider
the left and right derivatives of a derivable motion t 7→ s(t) (t ∈ R is the time)
in S

dr

dt
s(t) = ϑr

(

ds

dt
(t)

)

,
dℓ

dt
s(t) = ϑℓ

(

ds

dt
(t)

)

.

The derivative inside the parenthesis is a vector of Ts(t)S which is transformed
by ϑr and ϑℓ into elements of g. So, the first order differential calculus with
“motions” is reduced to operations on functions from R to the fixed vector-space g

what is much more simple than to calculate on maps from R to TS.

2.5. Canonical connections on a principal homogeneous space

There exist two natural connections ∇(r) and ∇(ℓ) on S which may be defined
by the following conditions (where X denotes any vector field):

• ∇(r)

X Y = 0 whenever Y is a fundamental vector field on S,

• ∇(ℓ)

X Y = 0 whenever Y is a left invariant vector field on S.

The proof is straightforward: there exist bases B = {Y1, . . . , Yn} of the mod-
ule X(S) of all the differentiable vector fields made with fundamental or with
left invariant vector fields and every Y ∈ X(S) is expanded in the form Y =
f1Y1 + · · · + fnYn where f1, . . . , fn are differentiable functions on S. A connec-
tion ∇ is completly defined as soon as the ∇XYk are known, in particular if they
vanish.

Other forms of the definition of ∇(r) and ∇(ℓ), useful for calculations, are

ϑr

(

∇(r)

X Y ) = X.ϑr(Y ), ϑℓ

(

∇(ℓ)

X Y ) = X.ϑℓ(Y ),

ϑr

(

∇(r)
x Y (s)

)

= d (ϑrY ) (x) for x ∈ TsS and Y ∈ X(S)

(for example, ϑr(Y ) denotes the map s 7→ ϑr(Y (s)) from S to g and X.ϑr(Y ) =
dϑr(Y )(X) the derivative of this map evaluated on the vector field X. The vector
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field ∇(r)

X Y or the tangent vector ∇(r)
x Y (s) are well defined by these relations and,

as it is readily verified, a connection on S is well defined in this way). Note two
important properties we will use in the following (where ∇ = ∇(r)):

• If X and Y ∈ Xℓ(S) then ∇XY = [[X,Y ]],

• If x ∈ TsS and Y ∈ Xℓ(S) then ∇xY (s) = [x, Y (s)]s.

2.6. Particular case

The previous mathematical developments may be applied to a Lie group G

acting on itself by left translations (that is to the principal homogeneous space
(G; G)). Maurer–Cartan forms are then the classical right and left forms ϑrg.g

−1,
ϑℓ = g−1.dg of Lie group theory:

ϑr(x) = x.g−1, ϑℓ(x) = g−1.x when x ∈ TgG,

and, the fundamental vector fields are nothing but right invariant vector fields
on G. Differentiation of the adjoint and coadjoint representations leads to very
important relations (where x ∈ TgG):

dAd (x) = adϑr(x) ◦ Ad g ≡ Ad g ◦ adϑℓ(x),(2.6)

dAd ∗(x) = ad ∗ϑr(x) ◦ Ad ∗g ≡ Ad ∗g ◦ ad ∗ϑℓ(x).(2.7)

3. Mechanical interpretation

After a frame of reference was choosen, two given positions of a rigid object
are related by one and only one transformation belonging to a group and, when
so is a fixed reference position, each position s is determined by the element of
the group transforming so into s. In other words, the positions of the body are
described in a principal homogeneous space.

For instance, the right-hand orthonormal frames in an Euclidean affine space
make a concrete principal homogeneous space that is commonly used to de-
scribe positions of rigid bodies in mechanics. The parameters used in practice to
describe the positions of a rigid body are nothing but coordinates on S. For ex-
ample s↔ (x, y, z, θ, ϕ, ψ) where x, y, z are the Cartesian coordinates of a point
of the body and θ, ϕ, ψ are Euler angles specifying the position of a body fixed
frame with respect to a reference position. In fact the meaning of this process is
that (x, y, z, θ, ϕ, ψ) are coordinates, in the Euclidean group, of the displacement
transforming the reference position so into s. However, it is possible to carry on
all the reasoning intrinsically without coordinates as in the following.

Most of the works on dynamics of rigid body and geometry, to say the least,
assume that the configuration space itself is a Lie group, what comes down to
assuming the choice of a reference position so and to identifying (S,G) and (G,G)
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by the isomorphism σso
. The picture referring to a principal homogeneous space

rather than a Lie group is more faithful since the principles of dynamics are
independent of such a choice and it turns out that they rely on the canonical
objects associated with the principal homogeneous space structure (Maurer–
Cartan form ϑ = ϑr, canonical connection ∇ = ∇(r), left invariant Riemannian
structures or left invariant homomorphisms to describe inertia, which are specific
of the action of the group on S).

For an ordinary rigid body, G is the Euclidean group of a three-dimensional
affine Euclidean space E . Generalizations rely on other groups, for instance G is
an affine group for affinely deformable bodies. Mechanics in n-dimensional space
also deserves research. In all these cases the Lie algebra g is isomorphic with an
algebra of vector fields on a space E (moment fields or others).

Tangent vectors of S describe velocities v = ṡ of motions t 7→ s(t) in S. In
concrete situations the right and left derivatives ϑr(v) = V and ϑℓ(v) = W rep-
resent vector-fields on a space E (“twists” or “screws” comprising linear and angu-
lar velocities, see Sec. 7.1). Cotangent vectors f may for example describe forces
(say “torsors”, “motors” or “wrenches” comprising ordinary forces and torque)
more precisely that is ϑ∗r(f) and ϑ∗ℓ (f) which correspond to those familiar things.
An element δg of g = TeG may be interpreted as an “infinitesimal” element
of the group G and δs = δg.s, such as ϑr(δs) = δg, describes an “infinitesimal
displacement of the body” in position s.

From the Eulerian standpoint, that is the picture of mechanics with respect
to “space-fixed” (inertial) frames, kinematics relies on the upper isomorphisms of
diagram (2.4), the left action of G on TS ≃ S×g and T ∗

S ≃ S×g∗, the canonical
connection ∇ = ∇(r) and so on. For instance, the connection is involved in the
statement of the fundamental law of dynamics for taking the derivative of the
momentum with respect to inertial frames. From the Lagrangian standpoint, the
picture of mechanics with respect to body-fixed frames, a reference configura-
tion so is fixed and one uses the lower isomorphisms of (2.4), the right action of
G on G × g and G × g∗ and so on. The connection ∇(ℓ) and other left invari-
ant connections play a role in Levi–Civita connections for left invariant metrics.
(The mathematical aspects of relations between the Eulerian and Lagrangian
points of view are studied in more detail in [9].)

4. Galilean and kinematic groups. Frames of reference and objects
in the Newtonian Dynamics

The statement of the Galilean properties of invariance requires further prop-
erties of the group G. In fact we need a subgroup to play the role of the translation
group and, from now on, to develop kinematics we will assume that

(4.1)
G is a connected Lie group,

T is a closed normal commutative Lie subgroup of G.
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The consequence at the level of Lie algebras is:

t (the Lie algebra of T) is a commutative ideal of g.

Note that, since G is connected, t is an invariant subspace for the adjoint rep-
resentation of G in g. A map of the form t 7→ exp(tu) with u ∈ t describes a
uniform motion of translation and if A and B ∈ G and u and v ∈ t, then for
all t ∈ R:

A exp(tu) = exp(tAdA.u)A,

(B exp(tv))−1A exp(tu) = B−1A exp(tw) with w = u − Ad (A−1B).v (∈ t).

2 The first formula is standard in the Lie group theory. The second one follows
from:

(B exp(tv))−1A exp(tu) = exp(−tv).(A−1B)−1 exp(tu)

= B−1A exp
(

− tAd (A−1B).v
)

exp(tu) = B−1A exp
(

tu − tAd (A−1B).v
)

(this transformation of the exponentials is licit according to a general result since
u and Ad (A−1B).v are in t and their Lie bracket vanishes).

Those formulas justify the statement of the following definitions:
Definition 1.

1) The group of kinematics is the group Gkin = C∞(R; G) (with the natural
group structure).

2) The subgroup Ggal of Gkin whose elements are of the form t 7→ A. exp(tu)
or, what is equivalent, of the form t 7→ exp(tu).A with A ∈ G, u ∈ t, is the
Galilée group.

It is worth noting that our definition of the group of kinematics and the
Galilée group are not exact generalizations of the standard definitions. According
to the standard definitions, those groups should operate on a space-time, in the
present case R × S. For instance the form of the elements of the Galilean group
should be (t, s) 7→ (kt + a,A. exp(tu).s) (k > 0) including changes of unit and
origin of time. However, such a group contains a normal subgroup isomorphic
with Ggal and, in the sequel, invariance under translations of time or change
of time unit will be obvious. In other words, according to the assumption of an
absolute time in Newtonian mechanics, we may assume that a measure of time
was choosen once for all, that our frames will always use synchroneous clocks,
so that the interesting invariance groups to consider are Ggal and Gkin.

A frame of reference is thought of as a material system, say axes linked with
a rigid body, including a clock and used by an “observer” to attach time and
position to various objects (or “events”). Two classes of frames of reference are
used for observing the events in the universe: kinematical frames and inertial
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(or Galilean) frames. For the mathematical development of dynamics it is suffi-
cient to know the following outline of the theory of frames and observations (the
way to a more complete formalization was presented in [5]):

1. To any pair (F1,F2) of kinematical frames is associated a unique element
A12 of Gkin.

2. If F1, F2 and F2 are kinematical frames then A13 = A23.A12 (in the
group Gkin).

3. If F1 and A ∈ Gkin are given, there exists a unique frame F2 such that
A12 = A.

4. The class of inertial frames is a non-empty subclass of the kinematical
frames.

5. If F1 is inertial and F2 is any frame, then F2 inertial ⇔ A12 ∈ Ggal.
Observers translate their observations into a common mathematical language
and two observers can decide whether or not they are observing the same object
and measuring the same thing according to the following rules, which are the
cornerstone of the concept of objectivity:

6. To each object is associated a space X left operated by the group G.
7. With respect to a (kinematical) frame, “events” regarding an object are

described by pairs (t, x) ∈ R×X (time and “location” of the object observed
from the frame).

8. If (t1, x1) and (t2, x2) describe the same event relative to frames F1 and
F2 then

t2 = t1, x2 =A12(t1).x1

(where . means the action of G on X according to 1).
It should be possible, and necessary for other purposes, to take into account
more general laws for the changes of frames including the changes of origin or
unit of time (and perhaps of unit of length).

Example 1. When the “events” are positions of a rigid body, the space X

will be a principal homogeneous space S. With respect to a frame, a position of
the body at some time will be described by a pair (t, s) ∈ R×S and the positions
with respect to frames F1 and F2 will be related by s2 = A12(t).s1. This relation
creates the opportunity to specify the meaning of A12: if the body is fixed with
respect to F1 in position s1, then s2 is a function R → S which describes the
motion of the body seen from F2. Hence, the function t 7→ A12(t) describes the
motion of the frame F1 observed with respect to F2.

Example 2. When the “events” we consider are forces acting on a rigid body,
the space X will be T ∗

S; with respect to a frame, a force will be described by
an element f ∈ T ∗

s S where the origin s in S is the position of the body subjected
to the force (Here force again means generalized force, including ordinary forces
and torques and described by “wrenches” or “motors”). A fundamental principle of
dynamics states that forces are objective quantities. Objectivity of forces means
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that if (t1, f1) and (t2, f2) describe the same force relative to two given frames
F1 and F2 then

t1 = t2 = t, f2 = A12(t).f1

where, to the right, the operation is the natural left action of G on T ∗
S. Using the

parallelization (2.4) of the cotangent bundle of S, from the Eulerian standpoint,
a force is also described by the pair (s,F) ∈ S × g∗ (s = o(f ),F = ϑ(f )). The
law of change of frames now reads

F2 = Ad ∗A12(t).F1.

Another definition of forces could rely on the spaces X = TS and S×g and leads
to f2 = A12(t).f1 with the natural left action of G on TS and F2 = AdA12(t).F1

with the adjoint action. The former definition fits the D’Alembert-Lagrange form
of mechanics where forces are defined through the work or power they expand in
virtual displacements or virtual velocities. The latter definition fits the Newton-
Euler form of mechanics where forces are described as “motors”. Both definitions
are equivalent when G has a left and right invariant pseudo-Riemannian structure
as the Euclidean group.

Example 3. Inertia operators generalizing the inertia tensors will be de-
fined as objects described in X = L(g, g∗) with the left action of G defined as
g.H = Ad ∗g ◦ H ◦ Ad g−1 (for more details see Secs. 7 and 7.3).

5. Composition of motions in the space S

In this section we summarize the laws of composition of velocities and accel-
erations in the framework of Sec. 2 and 3. With respect to kinematical frames F1

and F2, a motion of a rigid body is observed as t 7→ s1 = s1(t) and t 7→ s2 = s2(t)
so that s2 = A12(t).s1 (in the rest of this section we will generally omit to men-
tion the time-dependance for positions, velocities and accelerations). Taking the
derivative we obtain the relation between velocities with respect to F1 and F2

as an equality in Ts2S

(5.1) v2 = LT
A12

(t).v1 + U12.s2 with U12 = ϑ

(

dA12

dt

)

.

We recognize the velocity relative to F1 transformed into an observation from
F2 and the induced velocity of F1 relative to F2 (velocity with respect to F2 of
a body which should be at the same position and fixed relative to F1). Putting
ϑ(v1) = V1 and ϑ(v2) = V2, relations (5.1) and (2.2) imply

V2 = AdA12(t).V1 + U12,(5.2)

V̇2 = AdA12(t).V̇1 + U̇12 + [U12(t),AdA12(t).V1].(5.3)
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Induced velocities at time t are values of a fundamental vector field U12(t) on S,
the velocity field of F1 relative to F2 depending on the two frames and defined by
U12(t)(s) = U12(t).s (with the infinitesimal action of g on S). For three frames
F1, F2 and F3, the induced velocities verify:

U13(t) = U23(t) + AdA23(t).U12(t),

U̇13(t) = U̇23(t) + AdA23(t).U̇12(t) + [U23(t),AdA23(t).U12(t)].

In the following we will use some remarks for shortening the calculations.
1) When F1 = F3 we obtain U21(t) = −AdA21(t).U12(t). Then U12 denotes

an observation from the frame F2. Put W12(t) = AdA21(t).U12, an observation
from F1 regarding objects fixed relative to F2, then formulas (5.2) and (5.3) and
relations for induced velocities read:

V2 = AdA12(t). (V1 +W12) ,(5.4)

V̇2 = AdA12(t).
(

V̇1 + Ẇ12 + [W12, V1]
)

,(5.5)

W13 = W12 + AdA21.W23,(5.6)

Ẇ13 = Ẇ12 + AdA21.Ẇ23 + [AdA21.W23,W12, ].(5.7)

2) When F1 and F2 are inertial frames, A12(t) = exp(tu).A, with u ∈ t and
A ∈ G independent of t. Taking into account the properties of the one-parameter
subgroups of G, we obtain

U12(t) = u, U21(t) = −AdA−1.u, W12 = AdA−1.u, W21 = −u.

3) The previous formulas also suggest to define an operation ⊙ on g × g by:

(u,u′) ⊙ (v,v′) = (u + v,u′ + v′ + [u,v]).

It is easy to prove that, endowed with this operation, g × g becomes a non-
commutative group denoted by g(2) and whose identity element is (0, 0). The
inverse of (u,u′) in g(2) is expressed as

(u,u′)−1 = (−u,−u′).

The adjoint representation of G in g extends into a representation of G in the
group g(2) with

Ad g.(u,u′) = (Ad g.u,Ad g.u′) for g ∈ G.

In fact, due to the properties of the adjoint representation and the Lie bracket,
Ad g, acting to the left as in the previous definition, is an automorphism of the
group g(2):

Ad g.
{

(u,u′) ⊙ (v,v′)
}

= (Ad g.(u,u′)) ⊙ (Ad g.(v,v′)).
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With the associative law ⊙, relations (5.4), (5.5), (5.6) and (5.7) for composition
of velocities and accelerations of a rigid body with respect to kinematical frames
F1 and F2 may be condensed into the very compact and efficient form (similar
relations exist for the induced velocities Uij)

(V2, V̇2) = (U12, U̇12) ⊙ AdA12.(V1, V̇1)(5.8)

= AdA12.
{

(W12, Ẇ12) ⊙ (V1, V̇1)
}

,

(W13, Ẇ13) = (AdA21.(W23, Ẇ23)) ⊙ (W12, Ẇ12).(5.9)

6. Foundations of dynamics

In Secs. 6.1 and 6.2 we propose two approaches to introduce inertial mass.
They fit the two classical ways of developing mechanics namely the D’Alembert–
Lagrange standpoint based on kinetic energy and the Euler standpoint based
on the relation velocity-momentum and they turn out to be almost equivalent
when G possesses a property which is verified for the Euclidean group in three
dimensions. At the next stage, in Sec. 6.3, we will study the “inertial forces”
acting on a body and the problem of their objectivity and of Galilean invariance
of the law of dynamics. The mathematical structure of the law with respect to
non-inertial frames will be studied in Sec. 6.4. In Sec. 6.6 we suggest definitions
of “absolute” quantities and point out their links with the previous results.

From now on, ϑ and ∇ will denote the Maurer–Cartan form ϑr and connec-
tion ∇(r).

6.1. The definition of mass in generalized rigid body dynamics

The first point of view for defining the “mass” is based on the bilinear form
associated with the kinetic energy, that is on the following assumption:

(M) (· | ·) is a left invariant Riemannian structure on TS.

An equivalent statement is:

(M) H is a left invariant symmetric positive vector bundle homomor-
phism from TS to T ∗

S.

These forms of (M) are related by < H(x),y >= (x |y) for (x,y) ∈ TS ×S TS

and H(v) is the (generalized) momentum associated to the velocity v. The ki-

netic energy is the quadratic form
1

2
(v | v) =

1

2
< H(v),v > and conversely, this

quadratic form determines the Riemannian structure.
An equivalent way to determine a symmetric left invariant vector bundle

homomorphism H : TS → T ∗
S is to give an analytical map from S to L(g, g∗)
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denoted by s 7→ Hs and such that:

ϑ∗
(

H(x)
)

= Hs

(

ϑ(x)
)

for x ∈ TsS,(6.1)

Hg.s = Ad ∗g ◦Hs ◦ Ad g−1 for g ∈ G, s ∈ S,(6.2)

< Hs(u),v > =< Hs(v),u > for u, v ∈ g, s ∈ S.(6.3)

According to (6.1) Hs is the linear map from TsS to T ∗
s S induced by H when

TsS and T ∗
s S are identified with g and g∗; this is a generalization of the covariant

inertia tensor of a rigid body in position s. Our assumption on H means only two
things. First, in a fixed position s of the body, the relation velocity-momentum
is linear (and symmetric positive definite here), second the “mass” is linked with
the body, a natural property expressed by (6.2) (invariance property relating
inertia operator to position).

Formula (6.2) may be derived from H(g.x) = g.H(x), (2.2) and (2.5):

ϑ∗
(

H(g.x)
)

= Hg.s

(

ϑ(g.x)
)

= Hg.s

(

Ad g.ϑ(x)
)

,

ϑ∗
(

g.H(x)
)

= Ad ∗g.
(

ϑ∗H(x)
)

= Ad ∗g.Hs

(

ϑ(x)
)

,

so that Hg.s ◦ Ad g = Ad ∗g ◦ Hs. Taking the differential of (6.2) with respect
to g at g = e and using (2.6) and (2.7), we obtain the formula for the derivative
of s 7→ Hs: for any x in TsS

(6.4) dHs(x) = ad ∗ϑ(x) ◦Hs −Hs ◦ adϑ(x),

(note that both sides of (6.4) are linear operators from g to g∗). Formula (6.4)
may be interpreted in the framework of canonical connection on S: the covariant
derivative in the canonical connection of a left invariant vector bundle mor-
phism H from TS to T ∗

S is expressed as:

(6.5) (∇xH)(y) = {x, H(y)}s −H ([x,y]s) for x, y ∈ TsS,

(where the brackets [·, ·]s and {·, ·}s were defined in Sec. 2). Another interpreta-
tion is that, for two left invariant vector fields X and Y on S:

(6.6) (∇XH) (Y ) = {X,H(Y )} −H([[X,Y ]]).

6.2. Alternative description of inertial mass

Another statement of the basic assumption on “mass” could be

(M′) H is a left invariant vector bundle endomorphism of TS.

That is a direct definition of a relation velocity-momentum: the momentum as-
sociated with the velocity v is now defined as a tangent vector H(v) of S without
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assumption regarding symmetry or positivity of H. An equivalent definition is a
map from S to L(g) denoted by s 7→ Hs and such that:

(6.7) ϑ
(

H(x)
)

= Hs

(

ϑ(x)
)

for x ∈ TsS,

(6.8) Hg.s = Ad g ◦Hs ◦ Ad g−1 for g ∈ G, s ∈ S.

Now the operator Hs is the generalization of the mixed inertia tensor (or inertia
operator) of a rigid body in position s. Taking the differential of (6.8) at g = e
we obtain

(6.9) dHs(x) = adϑ(x) ◦Hs −Hs ◦ adϑ(x).

In the framework of canonical connections on S, formula (6.9) means that the
covariant derivative in the canonical connection of a left invariant vector bundle
endomorphism H of TS is expressed as:

(6.10) (∇xH)(y) = [x, H(y)]s −H ([x,y]s) , x, y ∈ TsS,

or, for two left invariant vector fields X and Y on S:

(6.11) (∇XH)(Y ) = [[X,H(Y )]] −H([[X,Y ]]).

In general, the statements (M) or (M′) are mathematically irrelevant one to
the other. Nevertheless, whenever there exists on g inner product [· | ·]g which
is invariant by the operators Ad g, then G and S may be endowed with a left
and right invariant pseudo-Riemannian structure also denoted by [· | ·]. This
structure on S is defined by

[x | y] = [ϑ(x) | ϑ(y)]g for (x,y) ∈ TS ×S TS.

Now it is possible to relate (M) and (M′) by

(6.12) [H(x) | y] = (x | y).

When (M) is assumed, relation (6.12) defines a symmetric and positive left in-
variant endomorphism H ∈ L(TS). Conversely, when (M′) is assumed with ad-
ditional properties of symmetry and positivity of the left-hand side, (6.12) leads
to a Riemannian structure on S. Symmetry, if it is used, means that the relation
velocity-momentum is determined as soon as the kinetic energy is given. The
Euclidean group in dimension 3 possesses such a structure so that, for an ordi-
nary rigid body, the statements (M) and (M′) plus symmetry and positivity of
H are equivalent.

In Sec. 6 we chiefly refer to the first point of view. Meanwhile the results
proved with (M) thereafter may be transposed to the second point of view up
to slight changes: keeping the notation H in both cases it is only necessary to
change the bracket {·, ·} into [·, ·], the bracket < ·, · > into [· | ·] and the coadjoint
representation into the adjoint representation and sometimes to specify some
additional properties of symmetry and positivity when (M′) is used.
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6.3. Necessary and sufficient condition for objectivity of inertial forces

Consider a motion of a rigid body observed with respect to an inertial frame
and described by a function t 7→ s(t) ∈ S. In accordance with Newton–Euler
mechanics, the inertial force will be defined at every time as minus the derivative
of the momentum, that is the cotangent vector of S

j (t) = −
∇

dt
H(v(t)) where v =

ds

dt
.

Then the motion of a rigid body subjected to a force f is governed by the differ-
ential equations

(6.13)
∇

dt
H(v) = f , v =

ds

dt
.

In particular, the inertial motion of a free body with respect to an inertial frame
is governed by

(6.14)
∇

dt
H(v) = 0, v =

ds

dt
.

However, any operator H cannot lead to inertial force verifying the principle of
objectivity of forces. The mathematical object playing the role of a cornerstone is
a left invariant tensor field C, covariant of degree 2 and contravariant of degree 1,
on S or what is the same, the bilinear maps Cs : g × g → g∗ (s ∈ S) defined by

Cs(u,v) = {u, Hs(v)} + {v, Hs(u)} +Hs ([u,v]) (u, v ∈ g).

Within the framework of assumption (M′) j(t) and f would be tangent vectors
rather than cotangent vectors of S defined in the same way, the bilinear maps
should be Cs : g × g → g defined by

Cs(u,v) = [u, Hs(v)] + [v, Hs(u)] +Hs ([u,v]) .

The bilinear maps Cs enjoy remarkable properties and they also play an impor-
tant role in the mathematical structure of the dynamic equations for multibody
systems (see [8]). In Sec. 6.5 we will meet the tensor C in another way and
prove that (6.14) describes geodesics of the left invariant metrics on S: this is
the general “principle of inertia” of rigid body dynamics, similar to the first
Newton’s law.

Theorem 1. For a rigid body the inertia of which is described according to
assumption (M) (or (M ′)), the following properties 1 and 2 are equivalent:

1. For all inertial frames F , all motion of the body described by t 7→ sF(t)
with respect to F and all time t, there exists an objective force represented
in F by jF(t) ∈ Ts(t)S such that:
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(6.15) jF(t) = −
∇

dt
H(vF(t)), vF(t) =

d

dt
sF(t)

or, what is equivalent, by the “motor” JF(t) = ϑ(jF(t)) ∈ g such that:

(6.16) JF (t) = −
d

dt
HsF (t)(VF (t)), VF(t) = ϑ

(

vF(t)
)

.

2. Cs(u,v) = 0 for all s ∈ S, all u ∈ t and all v ∈ g.

In Property 2 the bilinear map and the quantification (∀u ∈ t, ∀v ∈ g)
are not symmetric. Due to invariance by the transitive action of G on S, the
statement with “there exists s ∈ S” instead of “for all s ∈ S” is equivalent (it
is sufficient to remark that (6.2) (or (6.8)) implies that Cg.s(Ad g.u,Ad g.v) =
Ad ∗g.Cs(u,v) and that t is invariant under the adjoint representation).

Theorem 1 means that objectivity of inertial forces, a property a priori in-
volving differential calculus, is reduced to an algebraic property of H (or of the
Riemannian structure) defining the velocity-momentum relation. In fact, the re-
sult makes sense under the assumption that H is a vector-bundle morphism and
needs no assumption regarding symmetry or positivity. The proof of Theorem 1
relies on two lemmas. The first lemma reduces Property 1 to a property involving
inertial frames only:

Lemma 1. A necessary and sufficient condition for condition 1 from Theo-
rem 1 holds is that for all motions and all pairs of inertial frames F1 and F2:

(6.17)
d

dt
Hs2(V2) = Ad ∗A12(t).

(

d

dt
Hs1(V1)

)

.

2 Since objectivity means that relation JF2(t) = Ad ∗A12(t).JF1(t) holds
for all pairs of frames, condition (6.17) is necessary. Conversely when (6.17) is
verified JF may be defined in every inertial frame by (6.15) and, when F1 et F2

are inertial frames and F3 is any kinematical frame, we have

Ad ∗A13(t).JF1(t) = Ad ∗A23(t).AdA12.JF1(t) = Ad ∗A23(t).JF2(t), (∗)

so that
Ad ∗A13(t).JF1(t) = Ad ∗A23(t).JF2(t).

If the objective force exists it is necessarily represented without ambiguity in
a frame F = F3 by

JF(t) = Ad ∗A13(t).JF1(t),

where F1 is any inertial frame. Now, this relation is a consistent definition of
JF(t) since we have just proved that the right-hand side is independent of the
choice of F1. Finally, the first equality (∗), actually true when F2 is any frame,
proves that JF3(t) = AdA23(t).JF2(t) for all pairs of kinematical frames, what
is required by the definition of objective forces.
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Lemma 2. When F1 is an inertial frame and F2 is any frame,

(6.18) ∀ t ∈ R : Ad ∗A12(t).JF1 =



















−
(

Hs2

(

V̇2

)

+ {V2, Hs2(V2)}
)

− Cs2(W21, V2)

−
(

Hs2

(

Ẇ21

)

+ {W21, Hs2(W21)}
)

.

where, according to (6.16):

JF1 = −
d

dt
Hs1(V1) = −

(

Hs1

(

V̇1

)

+ {V1, Hs1(V1)}
)

.

2 The proof of Lemma 2 is a sequence of straightforward transformations
starting from (5.4) and (5.5) (where the roles of F1 and F2 are exchanged) and
from property (6.2).

2 For proving Theorem 1, remark that if F1 and F2 are inertial frames, W12

is independent of t and belongs to t so that relation (6.18) reduces to:

Ad ∗A12(t).JF1 = JF2 −
(

{W21, Hs2(W21)} + Cs2(W21, V2)
)

.

Therefore, condition (6.17) is equivalent to the cancellation of the term inside
the parenthesis for all motions of the body and and all frames, that is to say all
values of W21 and V2:

∀ s ∈ S, ∀u ∈ t, ∀v ∈ g : Cs(u,v) + {u, Hs(u)} = 0.

Since Cs(u,u) = 2{u, Hs(u)}, the second term must be equal to zero and this
condition is equivalent to property 2 from theorem.

6.4. Law of dynamics in inertial and non-inertial frames

Objectivity of the inertial forces permits a direct statement of the second
law of dynamics for a rigid body (needing no preliminary development of the
principles of particle dynamics):

i) For every rigid body, at each time and with respect to any kinematical
frame F :

JF(t) + FF(t) = 0 (equality in g∗)

where JF and FF ∈ g∗ are respectively the inertial and external forces
acting on the body.

ii) With respect to an inertial frame, the inertial force is expressed as:

JF(t) = −
d

dt
Hs(VF) ≡ −

(

Hs

(

V̇F

)

+ [VF , Hs(VF)]
)

,
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so that, in an inertial frame, the law of dynamics reads

Hs

(

V̇F

)

+ [VF , Hs(VF)] = FF(t).

This is the “motor” (or “torsor”) form of the law, the most useful to mechanicians.
The law might also be expressed in T ∗

S: it suffices to replace the preceding
relations by:

jF(t) + fF(t) = 0 (an equality in T ∗

s(t)S),

jF(t) = −
∇

dt
H(v) with respect to an inertial frame.

Dynamics in non-inertial frames, that is calculation of inertial forces with respect
to any frame, is based on Lemmas 2 and 3:

Lemma 3. When the conditions of Theorem 1 are verified, if F(= F2) is a
kinematical frame and W (= W21) ∈ g is the relative velocity of F with respect
to an inertial frame F1, then, for s ∈ S and V ∈ g, the quantities

Cs(W,V ) and Hs(Ẇ ) + {W,Hs(W )}

are independent of the choice of F1 among inertial frames (they depend only
on F).

2 When the Condition 1 from Theorem 1 is verified, according to Lemmas 1
and 2, the right-hand side of (6.18) is independent of the choice of F1. Therefore,
for all motion

Cs(W21, V2) +Hs(Ẇ21) + {W21, Hs(W21)}

= Cs(W20, V2) +Hs(Ẇ20) + {W20, Hs(W20)}.

Since the equality is true for any motion, choosing V2 = 0 we obtain

Hs(Ẇ21) + {W21, Hs(W21)} = Hs(Ẇ20) + {W20, Hs(W20)}.

Equality Cs(W21, V2) = Cs(W20, V2) follows.

Theorem 2. When the Conditions of Theorem 1 are verified, with every
kinematical frame F are associated two functions

Jc
F

: S × g → g∗, Je
F

: S → g∗

such that:
i) Jc

F
and Je

F
vanish when F is an inertial frame,

ii) the inertial force acting on the body observed with respect to F is ex-
pressed as

JF(t) = Jr
F
(s, V, V̇ ) + Jc

F
(s, V ) + Je

F
(s),
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with






















Jr
F
(s, V, V̇ ) = −

(

Hs(V̇ ) + {V,Hs(V )}
)

= −
d

dt
Hs(V ),

Jc
F
(s, V ) = −Cs(W,V ),

Je
F
(s) = −

(

Hs(Ẇ ) + {W,Hs(W )}
)

,

where s and V = ϑ (ṡ) are the position and the velocity of the body with
respect to F , W is the induced velocity with respect to any inertial frames,
the choice of which is immaterial.

(In the framework of (M’) the functions Jc
F

and Je
F

should take their values
in g and the bracket {., .} should be replaced by [., .]).

Theorem 2 is a straightforward consequence of Lemmas 2 and 3. The part
Jr

F
(s, V, V̇ ) is the relative inertial force calculated as if F should be inertial. The

part Jc
F
(s, V ) is the complementary inertial force, in practice the Coriolis force

and gyroscopic torque resulting from the rotation of the frame with respect to
inertial frames and the velocity of the body with respect to F . The part Je

F
(s) is

the induced inertial force equal to the inertial force acting on a body at rest in
position s with respect to F ; it is composed of a force due to acceleration and a
centrifugal force which is a quadratic function of the induced velocity. Remark
that, for a symmetric H, say within assumption (M), by simple calculations:

< Cs(w,v),v >= 0 for all v and w in g,

so that we find the property of the complementary inertial forces to be orthogonal
to the relative velocity with respect to the non-inertial frame (and to expand
no work).

6.5. Inertial motions and geodesics

As it was explained in Arnold [1], the motions of a free rigid body observed
with respect to an inertial frame is described by the geodesics of a left invariant
Riemannian structure on a Lie group. In this section we prove that, within
the framework of assumption (M) of Sec. 6.1, equations (6.14) actually define
geodesics and we meet the tensor C in another way. We also prove that those
equations define as well the geodesics of a connection ∇(o) with a vanishing
curvature and a remarkable torsion (a fact which, to our knowledge, has not
been noticed).

Theorem 3. The solutions of (6.14) are the geodesics of the Riemannian
metrics (· | ·) on S.

2 The proof amounts to calculate the Levi–Civita connection ∇(m) of the
metrics γ(x,y) = (x | y) defined in (M). Due to general properties, the difference
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of two connections is a tensor and this connection is of the form

∇(m)

X Y = ∇(ℓ)

X Y +B(X,Y )

where B is a tensor we must calculate and which is covariant of degree 2 and con-
travariant of degree 1. By definition, the torsion of ∇(m) vanishes and ∇(m) γ = 0.
The condition on the torsion means

∇(m)

X Y −∇(m)

Y X − [[X,Y ]] = 0

for all vector fields X and Y ∈ X(S). Since the left-hand side is a tensor, it
is sufficient to write down the condition for left invariant vector fields, so that
∇(m)

X Y = B(X,Y ) and

(6.19) B(X,Y ) −B(Y,X) = [[X,Y ]] for left invariant X and Y

determining the skew-symmetric part of B. The condition ∇(m)γ = 0, again for
left invariant vector fields, leads to



















γ(B(X,Y ), Z) + γ(Y,B(X,Z)) = 0,

γ(B(Y, Z), X) + γ(Z,B(Y,X)) = 0,

γ(B(Z,X), Y ) + γ(X,B(Z, Y )) = 0,

hence, by the combination + + − and taking account of (6.19),

2γ(B(X,Y ), Z) = γ([[X,Y ]], Z) + γ([[Z,X]], Y ) − γ([[Y, Z]], X),

what is valid for all Z and determines B(X,Y ). Putting u = ϑr(X(s)), v =
ϑr(Y (s)), w = ϑr(Z(s)), so that ϑr([[X,Y ]](s)) = [u,v], and taking the value at
the point s of S we easily obtain

2 < Hs ◦Bs(u,v),w >=< Hs([u,v]) + ad ∗u.Hs(v) + ad ∗v.Hs(u),w >,

hence

Bs(u,v) =
1

2
H−1

s

(

Cs(u,v)
)

.

The geodesics of ∇(m) are the curves t 7→ s(t) verifying ∇(m)

ṡ ṡ = 0, that is

(6.20) ∇(ℓ)

ṡ ṡ+B(ṡ, ṡ) = 0.

For transforming this equation remark that, using (2.6):

(6.21)
d

dt
ϑr(ṡ) = Ad g.

(

d

dt
ϑℓ(ṡ)

)

.
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Applying ϑr = Ad g.ϑℓ to both sides of (6.20) and taking (6.21) into account
and then applying Ad g−1, we derive two forms of the equation of geodesics:

d

dt
ϑr(ṡ) +Bs(ϑr(ṡ), ϑr(ṡ)) = 0,(6.22)

d

dt
ϑℓ(ṡ) +Bso

(ϑℓ(ṡ), ϑℓ(ṡ)) = 0.(6.23)

Equations (6.20) and (6.22) or (6.23) are equivalent to systems with dynamic
and kinematic equations

Hs

(

dV

dt

)

+ {V,Hs(V )} = 0, ϑr

(

ds

dt

)

= V.(6.24)

Hso

(

dW

dt

)

+ {W,Hso
(W )} = 0, ϑℓ

(

ds

dt

)

= W.(6.25)

A fixed operator Hso
appears in Eqs. (6.25), whereas in (6.24) there were opera-

tors depending on s. These equations correspond to the Eulerian form (relative
to “space fixed” frames) and the Lagrangian form (relative to body fixed frames)
of the dynamic equations.

Theorem 4. Let B(o) be the tensor field such that

B(o)
s (u, v) = H−1

s ({u, Hs(v)}) .

The motion of a free rigid body is also described by the geodesics of the left
invariant connection ∇(o) such that

∇(o)

X Y = ∇(ℓ)

X Y +B(o)(X,Y ).

The curvature of this connection vanishes and its torsion is defined by (6.26)
below.

2 It is evident that the inertial motions are also geodesics of ∇(o). The cur-
vature is defined by

R(X,Y, Z) = ∇(o)

X ∇(o)

Y Z −∇(o)

Y ∇(o)

X Z −∇(o)

[[X,Y ]]Z,

and corresponds to the following trilinear maps from g × g × g to g

R(o)
s (u,v,w) = H−1

s

(

ad ∗u.ad ∗v.Hs(w)−ad ∗v.ad ∗u.Hs(w)−ad ∗[u,v].Hs(w)
)

.

These maps vanish according to the relation ad ∗[u,v] = ad ∗u.ad ∗v−ad ∗v.ad ∗u

(easily derived from ad [u,v] = adu ◦ adv − adv ◦ adu by transposition). If
we define the “coboundary” dF of any linear map F : g → g∗ by dF (u,v) =
{u, F (v)} − {v, F (u)} − F ([u,v]), then the torsion tensor of ∇(o) is defined by

(6.26) T (o)
s (u,v) = H−1

s ({u, Hs(v)}) −H−1
s ({v, Hs(u)}) − [u,v]

= H−1
s (dHs(u,v)) .
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6.6. Algebraic aspect of Theorems 1 and 2 and “absolute” quantities

Although kinematical quantities are essentially frame-dependent, the prin-
ciples of Newtonian mechanics refer to “absolute” quantities and some kind of
“absolute motion” which are in some sense independent of the choice of an iner-
tial frame of reference. For example the acceleration of a particle relative to an
inertial frame or the angular velocity of a frame of reference relative to “fixed
stars”. The possibility of linking “absolute” velocities or accelerations to rigid
motions of bodies or frames is a consequence of the existence of the class of in-
ertial frames and some considerations on groups; the results of Secs. 6.3 and 6.4
suggest that inertial forces depend only of such absolute kinematic quantities.
We will not try to state a general definition of absolute quantities in Newtonian
mechanics and limit our study to a few mathematical definitions relevant to the
context of the article.

First of all we consider the quotient Lie algebra r = g/t, also defined by
the equivalence relation X ∼ Y ⇐⇒ Y − X ∈ t, that is isomorphic to the
Lie algebra of the quotient G/T. Concretly, projections G → G/T and t → r

delete the contribution of translations to displacements and velocities. We also
need a process to delete the contribution of uniform translations at the level of
accelerations and in order to do this we refer to the group g(2) defined in Sec. 5.
The subset t × {0} = u is a subgroup of g(2) isomorphic to the additive group t

and invariant by the action of G. Hence, by the standard way we can define the
right invariant equivalence relation ≈ associated to u in g(2) by

(v,v′) ≈ (u,u′)
∆

⇐⇒ (v,v′)⊙(u,u′)−1 ∈ u ⇐⇒ v−u ∈ tandv′−u′+[u,v] = 0.

The equivalence class of (u,u′) is the subset of g(2) such that

u ⊙ (u,u′) =
{(

u + w,u′ + [w,u]
)

| w ∈ t
}

= (u,u′).

We define the coset space a = g × g/ ≈= g(2)\u and we have the following
commutative diagram:

g × g −→ a

p1 ↓ ↓ (canonical projection)
g −→ r

where the vertical arrow to the right maps the class (u,u′) (according to ≈) onto
the class u (according to ∼). Since t and u are invariant by Ad g, we deduce two
actions of G on a and r such that

Ad g.(u,u′) = Ad g.(u,u′), Ad g.u = Ad g.u.
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The reason to introduce the group u is the following: when F1 and F2 are inertial
frames (U12, U̇12) = (U12, 0) ∈ u, so that relation (5.8) shows that for any rigid
body at every time

(V2, V̇2) ≈ AdA12(t).(V1, V̇1).

Let us define the “absolute” velocity and acceleration. With respect to an inertial

frame put Γ = (V, V̇ ) ∈ a so that we deduce from (5.8) that for two inertial
frames:

Γ2 = AdA12(t).Γ1.

Now, if F3 is a kinematical frame we deduce from A13(t) = A23(t).A12(t)
a relation

Γ3 = AdA13(t).Γ1 = AdA23(t).Γ2

permitting a consistent definition of Γ3 depending only on F3 and the motion
of the body but not of the choice of a particular inertial frame. The just proved
property means that, after the class of inertial frames was defined: for all rigid
body, at every time t, there exists a well defined “absolute acceleration”, which is
an object of the type (a,G) such that, with respect to an inertial frame F

ΓF = (VF , V̇F).

With respect to a kinematical frame F , ΓF = AdAF1F(t).ΓF1 where F1 is any
inertial frame the choice of which is immaterial. By the projection a → r we
deduce from ΓF the “absolute velocity” of the body, an element ΩF of r that
may be interpreted as the angular velocity of the body relative to “fixed stars”.
Similar reasonings on the induced velocities with formula (5.9) in the form

(W32, Ẇ32) = (AdA13.(W12, Ẇ12)) ⊙ (W31, Ẇ31)

and, with inertial F1 and F2, lead to the following conclusion: to every kinemat-
ical frame F is associated a well–defined induced “absolute acceleration” Γ e

F
∈ a

defined by:

Γ e
F

= (WFF1 , ẆFF1), where F1 is any inertial frame.

Whenever F is an inertial frame, Γ e
F

= 0 (since we can take F1 = F). Projecting
Γ e

F
onto r we obtain the induced “absolute“ velocity Ωe

F
∈ r of the frame F , which

vanish for all the inertial frames and may be interpreted as the angular velocity
of the frame relative to the “fixed stars”.

Theorem 5 below, where H may denote any operator Hs with s ∈ S, clarifies
the role played in dynamics by those “absolute” kinematical quantities and the
algebraic meaning of Property 2 in Theorem 1:
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Theorem 5. Let H be a linear operator from g to g∗ and C : g × g → g∗ be
the bilinear map defined by C(u,v) = {u,H(v)}+ {v,H(u)}+H([u,v]). Then,
the following properties are equivalent:
(a) For all u ∈ t and for all v ∈ g : C(u,v) = 0.
(b) There exists a function C : r × g → g∗ such that C(u,v) = C

(

u,v
)

.

(c) There exists a function J : a → g∗ such that H(u′)+[u,H(u)] = J
(

(u,u′)
)

.

Property (c) means that the map (u,u′) 7→ H(u′)+{u,H(u)}, appearing in the

expression of the inertial forces, splits into a composed map g×g −→ a
J

−→ g∗.
2 Equivalence between (a) and (b) is evident. Property (c) means that

(u,u′) ≈ (v,v′) =⇒ H(u′) + {u,H(u)} = H(v′) + {v,H(v)}.

Taking the definition of equivalence ≈ into account, property (c) also means

∀ u ∈ t, ∀ v ∈ g : {u,H(v)} + {v,H(u)} + H([u,v]) + {u,H(u)} = 0.

Choosing v = 0 we see that (c) implies {u,H(u)} = 0 for u ∈ t and (a).
Conversely, since C(u,u) = 2{u,H(u)}, (a) implies that the left-hand side of
the preceding equality cancels and (c).

Now the map Js : a → g∗ associated with Hs as in Theorem 5 (c) is well-
defined for all s ∈ S and it is readily proved that, for all g ∈ G and s ∈ S:

Ad ∗g ◦ Js = Jg.s ◦ Ad g

where to the right Ad g is the induced action on a. Property (c) implies that,
when the conditions of Theorem 1 are verified, the inertial force is expressed by

JF = Js

(

(VF , V̇F)
)

= Js(ΓF) in an inertial frame, a function of the “absolute”

acceleration only. However, objectivity of inertial forces means that if F2 is any
frame and F1 is an inertial frame then at every time J2 = AdA12.J1. That is
to say

J2 = AdA12.Js1

(

Γ1

)

= JA.s1

(

AdA12.Γ1

)

= Js2

(

Γ2

)

.

Finally, in any frame, the inertial force acting on a body is a function of its
“absolute” acceleration only (this is meaningful according to the definition of
this acceleration as an object of the type (a,G)!). Theorem 2 tells us that with
respect to a non-inertial frame F , the complementary force Jc

F
depends only on

the “absolute velocity” of the frame and on the relative velocity of the body and
the induced inertial force Je

F
depends only on the “absolute acceleration” of the

frame and on the position of the body. All these properties of the mathematical
structure of dynamics appear as logical consequences of objectivity of inertial
forces. (Remark that, since absolute kinematical quantities might be interpreted
as relative to the faraway matter, the “fixed stars”, they might also be used to
be more specific about the links between the basic principles of dynamics in
Newton’s universe and Mach’s principle).
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7. Deduction of the mathematical form of inertia operators
from the objectivity principle

7.1. Some properties of the Euclidean displacement group and its Lie algebra

In this section, we point out some connections between the Lie group
theory and well-known properties in kinematics and mechanics. Let E be the
3-dimensional Euclidean affine space and E be the associated vector space (so
that to every ordered pair (a, b) of points belonging to E is associated with a vec-

tor
−→
ab ∈ E with usual properties). In E the scalar product will be denoted by ·

and the vector product by ×. An alternative presentation of the affine space E
states that the additive group of the vector space E acts freely and transitively
on E by an operation denoted (E ,E) ∋ (a,x) 7→ a+ x ∈ E . In fact b = a+ x is

also the point such that
−→
ab = x. In the sequel, according to circumstances, we

will refer to the most convenient of those equivalent points of view.
An affine transformation of E is a map A : E → E such that there exists

A ∈ L(E), the linear part of A denoted by the same letter in boldface, verifying
the equivalent properties:

A(a+ x) = A(a) + A(x) (or
−−−−−−→
A(a)A(b) = A

(−→
ab

)

).

A displacement of E is an affine map such that A ∈ SO(E) (the special orthogonal
group of E). The displacements make a classical Lie group D of transformations
of E containing a normal Lie subgroup T, the group of translations (translations
are of the form a 7→ a + t with a fixed t ∈ E, they are the affine maps such
that A = 1, so that T is isomorphic to the additive group of E). For each
point c ∈ E let Rc be the subgroup of rotations about c. For every c ∈ E ,
D = T × Rc (semi-direct product).

We will now describe the Lie algebra of D. First of all, due to the affine
structure, the tangent space of the manifold E may be identified with E × E so
that a vector field on this manifold “is” merely a map: E → E. A standard result
in “torsor” theory states that the following properties of a vector field X on E
are equivalent:

(i) For all a and b ∈ E : X(a) ·
−→
ab = X(b) ·

−→
ab,

(ii) there exists ω ∈ E such that for all a and b ∈ E : X(b) = X(a) + ω ×
−→
ab,

(the uniquely defined vector ω will be denoted by ωX if necessary). Property (i)
characterizes skew-symmetric vector fields and appears for instance in calcula-
tion of the velocities of the particles of a rigid body: it is a straightforward
consequence of preservation of the distance under displacements. Property (ii)
characterizes the moment fields. Equivalence between (i) and (ii) points up the
angular velocity and the instantaneous axis of rotation and translation (existing
when ωX 6= 0).
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The vector fields X with properties (i) and (ii) make a vector space D(E)
over R. If X and Y are in D(E), the field [X,Y ] = U such that

(7.1) U(a) = ωX × Y (a) − ωY ×X(a), a ∈ E

is also in D(E) with ω[X,Y ] = ωX × ωY and, endowed with the bracket [·, ·],
D(E) is a Lie algebra. Moreover, the natural image A∗X of a field X ∈ D(E)
under displacement A ∈ D is the vector field defined by

(7.2) A∗X(a) = A
(

X(A−1(a))
)

, a ∈ E

and it is readily proved that A∗X ∈ D(E) and that A 7→ A∗ is a linear repre-
sentation of the group D in the Lie algebra D(E) (in particular [A∗X,A∗Y ] =
A∗[X,Y ]).

The Lie algebra D(E) has remarkable properties. First, there exists on D(E)
an inner product [· | ·] (non-degenerate bilinear symmetric form), the Klein form,
that is invariant under the action of D on D(E) ([A∗X | A∗Y ] = [X | Y ]) and
defined by

[X | Y ] = ωX · Y (a) + ωY ·X(a)

where the choice of the point a in E is immaterial. The following theorem specifies
the relations between the general Lie group theory and the familiar mathematical
objects in kinematics:

Theorem 6. D is a Lie group and
1. The Lie algebra d of D (according to the general theory) is isomorphic to

the Lie algebra D(E) endowed with the bracket defined as in (7.1);
2. The adjoint representation of D is equivalent to the representation A 7→ A∗

defined in (7.2).

The theorem follows from a general property of an effective action of a Lie
group on a manifold: there exists a one–to–one relation between the Lie algebra
of the group and the Lie algebra of fundamental vector fields and the adjoint
representation is equivalent to the transformation of fundamental vector fields by
ordinary image (see [13], T. I, Chap. 1, Proposition 4.1). Here, the fundamental
vector fields of the action of D on E are the skew-symmetric vector fields.

At the level of Lie algebras the splitting of the group into a semi-direct
product implies:

1. The Lie algebra t of the subgroup T (according to the general theory) is
commutative and isomorphic to the ideal of D(E) whose elements are the
constant vector fields such that ωX = 0;

2. The Lie algebra zc of the subgroup Rc is isomorphic to the Lie subalgebra
of D(E) whose elements are the skew-symmetric fields such that X(c) = 0;

3. For every c, d = t × zc (semi-direct product of Lie algebras corresponding
to the semi-direct product T × Rc).
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From now on we will identify d with D(E), zc and t with the isomorphic
subalgebra or ideal of D(E). As a Lie algebra zc is isomorphic with the Lie
algebra (E,×) (the isomorphism is X 7→ ωX). As a vector space t is isomorphic
with E. When c is a fixed point in E , any member of d may be described by the
pair of vectors (X(c),ωX) ∈ E × E (Plücker vectors at c corresponding to the
components in t and zc).

Another important property of d we will use in what follows is to be an algebra
over the dual number ring (this structure is the base of the algebra developed
by Kotelnikov and Dimentberg to express the “screw theory” for the needs of
kinematics, see [7] for an exposition in accordance with the standpoint of this
article). Recall that the dual numbers are the “numbers” of the form z = x+ ǫy
where x and y ∈ R and ǫ verifies ǫ2 = 0 and they make a commutative ring ∆
where addition and multiplication are defined in the natural way. The product
of a dual number z by in element X of d is such that ǫX ∈ t is the constant
vector field equal to ωX so that ωǫX = 0, (ǫ2)X = ǫ(ǫX) = 0 for all X and t is
the set of elements such that ǫX = 0. In general,

zX = xX + yωX (vector field a 7→ xX(a) + yωx).

It is readily verified that ǫ[X,Y ] = [ǫX,Y ] = [X, ǫY ] and, more generally,
z[X,Y ] = [zX, Y ] = [X, zY ] for all z ∈ ∆, X and Y ∈ d. Endowed with these
operations d is a module and a Lie algebra over ∆.

In the following we will use this property:
Lemma 4. A necessary and sufficient condition for a R-linear function

f ∈L(d) to verify [X, f(X)] = 0 for all X ∈ d is that there exists a dual number
µ such that f(X) = µX for all X ∈ d.

We will not explain all the details of the proof needing a lot of elementary
calculations in the Lie algebra d over ∆. Say that this result may be derived
from the following remark:

If X 6= t then [X,Y ] = 0 ⇐⇒ there exists µ ∈ ∆ such that Y = µX,

(meaning in screw theory that Y has the same axis as X if Y /∈ t and is directed
as the axis of X if Y ∈ t). After it is easy to prove that if f(X) = µXX for
all X /∈ t then µX = µY for linearly independent pairs (X,Y ) over ∆ and to
conclude.

7.2. Inertia operators

According to condition 2 of Theorem 1, under assumption (M’), we will say
that a linear operator H ∈ L(d) is an inertia operator if

for all U ∈ t and for all V ∈ d: [U,H(V )] + [V,H(U)] + H([U, V ]) = 0.
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A necessary and sufficient condition for the statement of the law of dynamics
of Sec. 6.4 which agrees with the principle of objectivity is that, for a reference
position so ∈ S of a rigid body, Hso

should be an inertia operator H within the
preceding meaning. Then

Hs = AdA ◦ H ◦ AdA−1 when s = A.so, A ∈ D

will be an inertia operator for all s. Since a canonical Ad -invariant inner product,
for instance the Klein form, is defined on the Lie algebra d of D, the left invariant
Riemannian structure on S is defined by the linear operator H ∈ L(d) such that
(x | y) = [H(ϑℓ(x)) | ϑℓ(y)] and H must be symmetric and positive definite
according to the Klein form on d, that is to say for all X and Y in d:

[X | H(Y )] = [H(X) | Y ], [X | H(X)] > 0 for X 6= 0.

The Riemannian structures on S leading to a law agreeing with the objectivity
principle are defined by inertia operators verifying this condition (see Sec. 6.2).

7.3. Structure of inertia operators

Theorem 7. A linear operator H in d is an inertia operator if and only if
there exist real numbers m and q and maps P : E → E, I : E → L(E) such that if
L = H(V ), the Plücker vectors of V and L at a are related by:

(7.3)

[

ωL

L(a)

]

=

[

∼

P a m1

Ia q1−
∼

P a

]

×

[

ωV

V (a)

]

where
∼

P a is the operator “vector product by Pa” in E and, for a and b in E : Pb

= Pa +m
−→
ab,

Ib(x) = Ia(x) +m
−→
ab×

(

x ×
−→
ab

)

+ q
(−→
ab × x

)

+
(−→
ab × x

)

×Pa + (Pa × x)×
−→
ab.

In (7.3) ωL is the linear momentum (mass×velocity of the center of mass for
non-singular operators, see below) and L(a) is the angular momentum at a. The
form (7.3) of the inertia operators is coordinate-free, however we can consider E

to be R
3,

∼

P a and Ia to be 3 × 3 matrices, ω and V (a) to be 3 × 1 matrices,
what comes down to chose coordinates in E. In consequence of (7.3), there exist
several kinds of inertia operators according to m equal zero or not.

1) Singular inertia operators (such that m = 0). Then the vector Pa is
independent of a and

(7.4)

Ib(x) = Ia(x) + q
(−→
ab × x

)

+
(−→
ab × x

)

× P + (P × x) ×
−→
ab,

[

ωL

L(a)

]

=

[

∼

P 0

Ia q1−
∼

P

]

×

[

ωV

V (a)

]

.

Note that such an operator is never invertible.
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2) Inertia operators such that m 6= 0. There exists a unique point c ∈ E

such that Pc = 0 and, putting −→ac = a, Pa = −ma, Ia = Ic −m
∼
a 2 − q

∼
a (so

that Ia is known for all a as soon as Ic is known) and

(7.5)

[

ωL

L(a)

]

=

[

−m
∼
a m1

Ic −m
∼
a 2 − q

∼
a q1 +m

∼
a

]

×

[

ωV

V (a)

]

In particular, the relation between the Plücker vectors of V and L at c is:

(7.6)

[

ωL

L(c)

]

=

[

0 m1

Ic q1

]

×

[

ωV

V (c)

]

.

Note that, in all cases, ωL = m
(

−−→ac×ωV +V (a)
)

= mV (c). Such an operator
is invertible if and only if Ic ∈ Gl(E) and we deduce that:

[X | H(Y )] = mX(c) · Y (c) + ωX · Ic (ωY ) + qωX · Y (c).

3) Symmetric inertia operators such that m 6= 0 (according to the
Klein form):

1. H is symmetric if and only if q = 0 and Ic is symmetric and then:

(7.7)

[

ωL

L(c)

]

=

[

0 m1

Ic 0

]

×

[

ωV

V (c)

]

.

1. H is symmetric positive (resp. definite) if and only if q = 0, m > 0 and Ic

is a symmetric positive (resp. definite) operator in E.

We recognize that the symmetric positive definite inertia operators are those
of the Newton–Euler rigid body mechanics: m > 0 represents the total mass,
c ∈ E – the center of inertia and Ic ∈ L(E) – the central inertia operator (or
“tensor”, see also Sec. 7.5.). The symmetry assumption, which is necessary to
find exactly the classical theory, is very natural: it means that the kinetic energy
defined by the quadratic form 1/2 [X | H(X)] determines the inertia operator
and conversely.

The inertia operator Hs depends on the position s of the body according
to (6.8). Its matrix expression depends on the choice of the point a ∈ E where
the Plücker vectors are calculated. It is convenient to use only the central tensors,
formula (7.5) when a 6= c, and to denote the central tensor Ics

of the body in
position s by Is. The maps s 7→ cs ∈ E and s 7→ Is ∈ Ls(E) are equivariant:

(7.8) cD.s = D(cs), ID.s = D ◦ Is ◦ D−1

for D ∈ D (D ∈ L(E), linear part of D).
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In particular we deduce with (6.8) and the above results that the invariant
Riemannian structures on (S; D) agreeing with the objectivity of inertial forces
are necessarily of the form

(x | y) = mX(cs) ·Y (cs)+ωX ·Is(ωY ), s = o(x) = o(y), X = ϑ(x), Y = ϑ(y).

In Case 2, the Plücker vectors of Cs(W,V ) = G at c is expressed by

[

ωG

G(c)

]

=

[

2mωW × V (c)

ωW × Ic(ωV ) + ωV × Ic(ωW ) + Ic(ωW × ωV ) + 2qωW × V (c)

]

with q = 0 in the symmetric case 3. It is evident that Cs(W,V ) = 0 whenever
W ∈ t.

7.4. Proof of Theorem 7

The theorem results from several lemmas pointing up successively the total
mass m of the body, the number q (vanishing for symmetric inertia operators)
and the center of mass (when m 6= 0).

Lemma 5. In order to make H an inertia operator, it is necessary and suffi-
cient that the following two properties should be verified: (a) There exists a dual
number µ such that H(ǫX) + ǫH(X) = µX for all X ∈ d.

(b) [H(X), Y ] + [X,H(Y )] − H([X,Y ]) ∈ t for all X and Y ∈ d.
Remark that, if µ = m+ǫq, condition (a) implies in particular that ǫH(U) =

mU when U ∈ t. Condition (b) means that dH(X,Y ) ∈ t for all X and Y ∈ d.
2 First of all, since t = {ǫX | X ∈ d}, the condition for H to be an inertia

operator reads

(7.9) for all X and all Y in d: [ǫX,H(Y )] + [Y,H(ǫX)] + H(ǫ[X,Y ]) = 0.

(We have used [ǫX,Y ] = ǫ[X,Y ]). Condition (7.9) for Y = X implies that:

[ǫX,H(X)] + [X,H(ǫX)] = [X,H(ǫX) + ǫH(X)] = 0.

Lemma 4 applied with f : X 7→ H(ǫX) + ǫH(X) leads to (a). Substituting (a),
namely H(ǫX) = µX − ǫH(X), into (7.9) and using the bilinearity of the Lie
bracket over ∆ leads to:

ǫ
{

[H(X), Y ] + [X,H(Y )] − H([X,Y ])
}

= 0, (∗)

what is equivalent to the statement that the element inside the braces is in t, that
is (b). Conversely, if conditions (a) and (b) hold, we can reverse the calculations
to prove that (7.9) is verified.
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If a and b ∈ E and Uab ∈ t is the constant vector field equal to
−→
ab then

the map 1 + adUab is an isomorphism of Lie algebras from za onto zb (the
reciprocal isomorphism being 1 − adUab). This property is readily proved by
direct calculations, in particular, if Z ∈ d and Z(a) = 0 we have

(1 + adUab).Z(b) = Z(b) − ωZ ×
−→
ab = Z(a) = 0.

(This is linked with the general theory of Lie groups: the translation T ∈ T

mapping a on b is expUab = T and AdT = Ad expUab = exp adUab = 1+adUab

because adUab is nilpotent of order 2.) If a ∈ E , the map Z ∈ za 7→ ǫZ ∈ t is
a linear isomorphism (equivalent to Z 7→ ωZ). We will note Na : t → za the
reciprocal isomorphism, so that ǫNa(U) = U for U ∈ t and πa : d → za the
projection of d onto za according to the direct sum d = t⊕za. It is readily proved
that, for Z ∈ za, Na([U,Z]) = [Na(U), Z] (since ǫ[Na(U), Z] = [ǫNa(U), Z] =
[U,Z]) and that

Lemma 6. Let ∆a ∈ L(za) be the restriction of πa ◦ H to za (∆a(Z) =
πa (H(Z)) for Z ∈ za). If condition (a) holds then the following conditions (b ′)
or (b ′′) are equivalent to condition (b)

(b ′) There exists a in E such that ∆a is a derivation of the Lie algebra za.
(b ′′) For all a in E, ∆a is a derivation of the Lie algebra za.
Then, for a and b ∈ E, the following property is verified:

∆b − (1 + adUab) ◦ ∆a ◦ (1 − adUab) = m adNb(Uab).

Remark that ∆a and ∆b operate in different spaces and to compare them it is
necessary to transmute ∆a with the natural isomorphism from za onto zb.

2 We shall prove that (b)⇒(b ′′)⇒(b ′)⇒(b). Relation (∗) also reads

ǫ
{

[πaH(X), Y ] + [X,πaH(Y )] − πaH([X,Y ])
}

= 0

(the contributions of the projections on t are killed by the product by ǫ as
ǫX = ǫπaX for all X) so that, taking X and Y in za, we obtain

ǫ
{

[∆a(X), Y ] + [X,∆a(Y )] − ∆a([X,Y ])
}

= 0

and the content of the braces, that is the member of za, must vanish, proving (b ′′)
and (b ′) that is an evident consequence. Let us prove (b ′)⇒(b). The proof relies
on the following property:

If condition (a) holds, then dH(X,Y ) ∈ t when at least one of the elements X
and Y is in t.
It suffices to prove that dH(U, Y ) ∈ t if for instance U ∈ t. Now

ǫdH(U, Y ) = ǫ
{

[H(U), Y ] + [U,H(Y )] − H([U, Y ]
}

= [ǫH(U), Y ] − ǫH([U, Y ] = [mU, Y ] −m[U, Y ] = 0.
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If (b′) holds, when U and V are in t, X and Y are in za:

ǫdH(U +X,V + Y ) = ǫdH(X,Y ) = ǫd∆a(X,Y ) = 0

and, as d = t ⊕ za, condition (b) is verified. Let Z ∈ zb, put

Z ′ = {∆b − (1 + adUab) ◦ ∆a ◦ (1 − adUab)} (Z).

Taking into account ǫπaX = ǫX and part (a) of Lemma 5, we deduce that

ǫZ ′ = ǫ {πbH(Z) − πaH(Z) + πaH([U,Z])}

= ǫπaH([U,Z]) = ǫH([U,Z]) = m[U,Z].

This relation is equivalent to Z ′ = mNb([U,Z]) = m[Nb(U), Z], proving the last
part of the lemma.

Lemma 7. If condition (a) holds then for all a ∈ E there exists a unique
ξa ∈ za such that ∆a = ad ξa restricted to za, put Pa = ωξ

a

. For a and b ∈ E

and if Uab ∈ t is the constant field equal to
−→
ab then

ξb − (1 + adUab).ξa = mNb(Uab),(7.10)

Pb − Pa = m
−→
ab.(7.11)

Whenever m 6= 0 there exists a unique point c such that Pc = 0 (and ∆c = 0)
and then Pa = m−→ca. Whenever m = 0 then Pa = P is a vector independent of a.

In other words, if za is identified with E, when m 6= 0 the derivation ∆a

is nothing else but ω 7→ −m−→ac × ω and when m = 0 it is ω 7→ P × ω with
a constant P ∈ E. Expressed with the ξa rather than Pa the results or the
demonstrations should be more complicated because the ξa are not in the same
space. For instance, whenever m = 0 for all a and b we only find ξb = (1 +
adUab).ξa.

2 The existence of ξa results from the fact that the Lie algebra za is isomor-
phic with (E,×) and all the derivations of za are inner derivations. With lemma 6
we also have

ad ξb − (1 + adUab) ◦ ad ξa ◦ (1 − adUab) = m adNb(Uab)

and, transforming the left-hand side into ad
(

ξb−(1+adUab).ξa

)

=ad
(

mNb(Uab)
)

,
equality (7.10) follows since the center of za ≃ (E,×) is reduced to 0. Translated
into E, relation (7.10) leads to equality (7.11). Now, it is evident that when
m 6= 0, the point c exists and Pa = m−→ca.

Lemma 7 relies on a profound property: D/T is a semi-simple group, in fact
a simple group here. The Lie algebra d/t is semi-simple and so for the Lie alge-
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bras za. Therefore all the derivations in za are inner derivations, the center of za

is reduced to 0 and ad ξ = 0 ⇔ ξ = 0 for ξ ∈ za.
The results we have obtained may be summarized by the following formulas,

where a is a fixed point and we refer to the direct sum d = za ⊕ t: if Z ∈ z and
U ∈ t then

πaH(Z) = [ξa, Z] (⇔ ωH(Z) = Pa × ωZ),

H(U) = mNa(U) + qU − ǫ[ξa, U ]

(⇔ ωH(U) = mU(a), H(U)(a) = qU(a) − Pa × U(a)),

(having in mind that to give the projections of X on za and t is equivalent to
give ωX and X(a)). The formula for H(U) is a consequence of (a) applied to
Na(U) ∈ z. In order to complete the determination of H we must know the
projection of H(Z) on t or, what is equivalent, the relation between H(Z) and
ωZ and we put:

H(Z)(a) = Ia(ωZ) for Z ∈ za where Ia ∈ L(E).

Now Theorem 7, in particular formula (7.3), is proved except the relation
between Ia and Ib.

2 Consider x ∈ E and Za and Zb such that ωZa
= ωZb

= x so that Zb−Za ∈ t.

Ib(x) − Ia(x) = H(Zb)(b) − H(Za)(a) = H(Zb − Za)(b) + H(Za)(b) − H(Za)(a)

With the already proved results

Ib(x) − Ia(x) = −qx ×
−→
ab + Pb × (x ×

−→
ab) + ωH(Za) ×

−→
ab

= q
−→
ab × x +m

−→
ab × (x ×

−→
ab) + Pa × (x ×

−→
ab) + (Pa × x) ×

−→
ab.

Taking a = c and b = a we obtain Ia(x) = Ic(x)− (m
∼
a

2
+q

∼
a)(x) and (7.5). To

prove (7.8) consider H = Hs and H′ = HD.s = AdD◦H◦AdD−1. The associated
derivations of Lemma 6 verify ∆′

a = AdD◦∆D−1(a)◦AdD−1 (on za) and a = cD.s

means that ∆′
a vanishes, what is equivalent to D−1(a) = cs. Now the relation

for Is is derived from ID.s(ωZ) = H′(Z)(D(cs)) = D
(

Is(D
−1(ωZ))

)

.

7.5. Relation with the standard form of dynamic equations

In this section we point out the links between the framework of Secs. 2 to
6 and the usual form of kinematics and dynamics, however we will not give de-
tailed calculations. Some relations were outlined in Sec. 7.1, in particular the ele-
ments of d correspond to fundamental vector fields on E that are the classical
moment fields.
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First of all we have to calculate the vector fields V and W ∈ d corresponding
to ϑr(v) and ϑℓ(v) with v = ṡ for a motion defined by s(t) = D.so where D ∈ D

depends on t. We may express D as the composition of a rotation Q ∈ Rc about c
and a translation r ∈ E, then D(p) = Q(p) + r for p ∈ E ,

d

dt
D(p) = ṙ + ω × Q(−→cp) =

{

V (D(p))

D(W (p))

(D = Q ∈ SO(E) is the linear part of D and Q and ω is defined by
d

dt
Q(x) =

ω×Q(x), a well-known property of the derivative of a time-dependent orthogonal
operator). The Plücker vectors of V and W are:

{

ωV = ω, V (D(c)) = ṙ,

ωW = Q−1(ω) = Ω, W (c) = Q−1(ṙ) = u.

ω and ṙ are the angular velocity of the body and the velocity of the particle
that is at c in the configuration so with respect to an inertial frame (“space fixed
frame”), Ω and u are the same quantities observed in a body fixed frame. Note
that

du

dt
+ Ω × u = Q−1(r̈).

For developing the dynamic equations we consider the case of symmetric
inertia operators and take the Plüker vectors at the point c defined in Sec. 7.3
(so that D(c) = cs).

H(V̇ ) ≡

[

0 m1

Is 0

]

×

[

ω̇V

V̇ (cs)

]

=

[

mV̇ (cs)

Is(ω̇V )

]

,

[V,H(V )] ≡

[

ωV × ωL

ωV × L(c) − ωL × V (c)

]

=

[

mωV × V (c)

ωV × Is(ωV )

]

.

Note that V̇ is the derivative
dV

dt
in d and V̇ (cs) is not the derivative of V (cs).

In fact
d

dt

(

V (cs)
)

= V̇ (cs) + ωV × V̇ (cs) = r̈,

so that the dynamic equations with respect to a space-fixed frame are

(7.12) mr̈ = Φ, Is

(

dω

dt

)

+ ω × Is(ω) = M,
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where Φ and M are the Plüker vectors at cs of the “force” F interpreted as the
ordinary force and torque applied to the body. With respect to a body-fixed
frame, the previous equations read

(7.13) m

(

du

dt
+ Ω × u

)

= ϕ, I

(

dΩ

dt

)

+ Ω × I(Ω) = µ,

where I = Iso
, ϕ = Q−1(Φ) and µ = Q−1(M) are the same quantities observed

in a body-fixed frame. Finally we recognize in (7.12) and (7.13) the classical
dynamic equations for the linear and angular momentum about the center of
inertia, so that we can conclude that dynamics of the ordinary rigid body may
be derived from:

1. A very general a priori assumption on the mathematical form of the rela-
tion velocity-momentum;

2. Condition for the objectivity of the inertial forces;
3. Algebraic properties of the Lie algebra d of the Euclidean group permit-

ting to determine precisely the mathematical form of the inertia operators
verifying the previous condition;

4. The criteria of symmetry and positivity of the inertia operator.
Of course, at the present stage, it would be natural, and perhaps quite interesting,
to drop the last assumption and to study also “strange” rigid bodies with q 6= 0
or with a singular inertia operator.
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