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In this paper we introduce two new cross-sectional measures for studying the spatial
behaviour of the solutions in elastostatics of the porous cylinders. This allows us to
extend the range of applicability of the estimates describing the Saint–Venant’s decay
behaviour of enlarged classes of porous materials.

1. Introduction

In deriving the decay estimates for solutions of the models described by
second-order elliptic equations defined in a finite or semi-infinite cylinder sub-
jected to homogeneous boundary conditions on the lateral surface, it is custom-
ary to use volume energy methods. A notable exception is the study by Flavin,

Knops and Payne [1] who use integrals taken over plane cross-sections of the
cylinder rather than averages over partial volumes, as in previous work. In this
way they are able to relax the positive definiteness of the elastic coefficients.
A further study in this connection is recently made by Chiriţă [2] for linear
elastodynamics. For references to recent work on Saint–Venant type decay esti-
mates the reader is referred to the survey articles of Horgan and Knowles [3]
and Horgan [4, 5].

Recently, there are prepared novel foam structures with negative Poisson’s ra-
tios and their mechanical behaviour and structure evaluated (see, e.g. Lakes [6]
and Caddock and Evans [7]). Such materials are called auxetic or anti-rubber
and they expand laterally when stretched, in contrast to ordinary materials.
Interest in such materials lies in the fact that a negative Poisson’s ratio may
significantly increase many of the effective mechanical properties of a mater-
ial, as for example flexural rigidity and plane-strain fracture toughness. Some
anisotropic polymer foams have been prepared which exhibit Poisson’s ratio ex-
ceeding 1 (see Lee and Lakes [8]). Materials of the above sorts are expected
to have interesting mechanical properties, such as high energy absorbtion and
fracture resistance, which may be useful in applications. Possible applications
of such materials in prevention of pressure sores or ulcers are analyzed in [9].
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Saint–Venant end effects for materials with negative Poisson’s ratio are analyzed
by Lakes [10].

In the present paper we consider the linear theory of linear elastic materials
with voids, developed by Cowin and Nunziato [11]. In such a theory the bulk
density is written as the product of two fields, the matrix material density field
and the volume fraction field. This representation introduces an additional degree
of kinematic freedom.

In this paper we present two cross-sectional measures which allow us to es-
tablish estimates describing the spatial behaviour of the solutions under weaker
assumptions than those used in the previous studies by Chiriţă [12] and Ieşan

and Quintanilla [13] on the subject. One of the two cross-sectional measures
is identical in form with the one used in the previous studies, but the results
concerning the spatial decay are established under mild assumptions upon the
elastic coefficients. It extends the class of elastic materials possessing the expo-
nential spatial decay property, while the other cross-sectional measure covers a
class of elastic materials distinct from that studied in the previous works.

2. Basic formulation

Throughout this paper we consider a prismatic cylinder of uniform cross-
section D whose boundary is sufficiently smooth to allow for the application
of the divergence theorem. A rectangular Cartesian coordinate system Oxk is
used. The origin of the reference system is located at an interior point of the
base cross-section with the x3-axis directed parallel to the generators of the
cylinder. We shall employ the usual summation and differentiation conventions:
Latin subscripts run over the integers (1, 2, 3), whereas Greek subscripts are
confined to the range (1, 2); summation is carried out over repeated indices and
subscripts preceded by a comma denote partial differentiation with respect to
the corresponding Cartesian coordinate.

We consider an elastic material with voids which possesses a reference con-
figuration in which the volume fraction is constant. We assume that the body
occupies the cylinder B = D × [0, L] with the lateral surface

∑

= ∂D × [0, L],
where L is the length of the cylinder. We denote by D(x3) the bounded cross-
section of the cylinder situated at the distance x3 from the x1Ox2 plane. The
boundary ∂D of the cross-section is assumed to be a piecewise smooth simple
closed curve.

Let us denote by ui the components of the displacement vector field. Then
the components of the infinitesimal strain field are given by

(2.1) eij =
1

2
(ui,j + uj,i).
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We denote by ϕ the change in volume fraction from the reference volume fraction
[11, 14] (see also [15]).

The constitutive equations for the linear theory of homogeneous and isotropic
materials with voids are [11]

tij = λerrδij + 2µeij + βϕδij ,(2.2)

hi = αϕ,i,(2.3)

g = −ξϕ− βerr,(2.4)

where tij are the components of the stress tensor, hi are the components of the
equilibrated stress vector, g is the intrinsic equilibrated body force, λ, µ, α, β
and ξ are constitutive constants and δij is the Kronecker delta. The internal
energy density e is defined by

(2.5) 2e = λerress + 2µeijeij + 2βerrϕ+ ξϕ2 + αϕ,iϕ,i.

The necessary and sufficient conditions for the internal energy density to be
positive definite are (cf. [11])

(2.6) µ > 0, α > 0, ξ > 0, 3λ+ 2µ > 0, (3λ+ 2µ)ξ > 3β2.

In this paper we will not impose all these inequalities. More precisely, the first
three inequalities will be assumed, while the last two will be replaced by other
ones.

In the absence of an external body force and an extrinsic equilibrated body
force, the field equations governing the equilibrium of a continuum with voids
are [11, 14, 15]

tji,j = 0,(2.7)

hi,i + g = 0.(2.8)

The surface traction and the equilibrated stress acting at a point x of the surface
∂B are given by

(2.9) ti = tjinj , h = hini,

where nj = cos(nx, xj) and nx is the unit vector of the outward normal to ∂B
at x.

From (2.1)–(2.4) and (2.7), (2.8), we obtain the field of equilibrium equations
in terms of the displacement and the volume fraction fields

µui,jj + (λ+ µ)uj,ji + βϕ,i = 0,(2.10)

αϕ,jj − ξϕ− βur,r = 0.(2.11)
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Throughout this paper we will consider the following boundary conditions
on the boundary of the cylinder:

ui = 0 on (∂D × [0, L]) ∪D(L),(2.12)

(2.13)
ϕ = 0 on Γ1 × [0, L], h = 0 on Γ2 × [0, L],

ϕ = 0 or h = 0 on D(L),

(2.14)
ui = ũi on D(0),

ϕ = ϕ̃ or h = h̃ on D(0),

where ũi, ϕ̃ and h̃ are prescribed functions and Γ1 and Γ2 are subcurves of ∂D so
that Γ 1∪Γ2 = ∂D and Γ1∩Γ2 = ∅. Other boundary conditions can be postulated
but essentially for our considerations we use the boundary condition (2.12).

3. First cross-sectional measure

Throughout this section we will assume that

(3.1) µ > 0, α > 0, ξ > 0, 3λ+ 4µ > 0, (3λ+ 4µ)ξ > 3β2.

In what follows we will extend some results obtained by Chiriţă [12] and Ieşan

and Quintanilla [13]. To this end we write the equilibrium equations (2.10)
and (2.11) in the following form

Tji,j = 0,(3.2)

hi,i + g = 0,(3.3)

where

(3.4) Tji = µui,j + (λ+ µ)ur,rδij + βϕδij ,

and introduce the following cross-sectional measure:

(3.5) M(x3) =

∫

D(x3)

(

T3iui + h3ϕ
)

da

=

∫

D(x3)

[

µuiui,3 + (λ+ µ)ur,ru3 + βϕu3 + αϕϕ,3

]

da, x3 ∈ [0, L].
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By a direct differentiation and by using the equilibrium equations in the form
(3.2) and (3.3), we get

(3.6) M ′(x3) =

∫

D(x3)

wda,

where

(3.7) w = w1 + w2 + w3,

and

(3.8) w1 = (λ+ 2µ)
(

u2
1,1 + u2

2,2 + u2
3,3

)

+ ξϕ2

+ 2(λ+ µ) (u1,1u2,2 + u2,2u3,3 + u3,3u1,1)

+ 2βϕ (u1,1 + u2,2 + u3,3) ,

w2 = µ
(

u2
1,2 + u2

2,1 + u2
2,3 + u2

3,2 + u2
3,1 + u2

1,3

)

,(3.9)

w3 = αϕ,iϕ,i.(3.10)

Under the assumptions described by the relation (3.1) it follows that w1

is a positive definite quadratic form. The eigenvalues of the associated linear
transform are

(3.11)

σ1 = µ > 0,

σ2,3 =
1

2

{

ξ + 3λ+ 4µ±
√

[ξ − (3λ+ 4µ)]2 + 12β2

}

> 0,

and therefore, we can write

(3.12) σm

(

u2
1,1 + u2

2,2 + u2
3,3 + ϕ2

)

≤ w1 ≤ σM

(

u2
1,1 + u2

2,2 + u2
3,3 + ϕ2

)

,

where

(3.13) σm = min {σ1, σ2, σ3} , σM = max {σ1, σ2, σ3} .

Let us consider the following bilinear form:

(3.14) F(ψ, χ) = (λ+ 2µ) (ψ1χ1 + ψ2χ2 + ψ3χ3) + ξψ4χ4

+ (λ+ µ) (ψ1χ2 + ψ2χ1 + ψ2χ3 + ψ3χ2 + ψ3χ1 + ψ1χ3)

+ β
[

χ4 (ψ1 + ψ2 + ψ3) + ψ4 (χ1 + χ2 + χ3)
]

,
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(3.14)
[cont.]

∀ψ = {ψ1, ψ2, ψ3, ψ4} , χ = {χ1, χ2, χ3, χ4} ,

so that we have

(3.15)
F(ψ, χ) = F(χ, ψ),

F(ψ̃, ψ̃) = w1 for ψ̃ = {u1,1, u2,2, u3,3, ϕ} .
Then, on the basis of the relation (3.4), we deduce that

(3.16) T 2
11 + T 2

22 + T 2
33 + g2= T11 [(λ+ 2µ)u1,1 + (λ+ µ) (u2,2 + u3,3) + βϕ]

+ T22 [(λ+ 2µ)u2,2 + (λ+ µ) (u3,3 + u1,1) + βϕ]

+ T33 [(λ+ 2µ)u3,3 + (λ+ µ) (u1,1 + u2,2) + βϕ]

− g (ξϕ+ βur,r) = F(T, ψ̃),

for T = {T11, T22, T33,−g} , ψ̃ = {u1,1, u2,2, u3,3, ϕ} .
By means of the Schwarz inequality and by using the relations (3.12) and (3.15),
we get

(3.17) T 2
11 + T 2

22 + T 2
33 + g2 ≤

[

F(ψ̃, ψ̃)
]1/2 [

F(T, T )
]1/2

≤
[

F(ψ̃, ψ̃)
]1/2

[

σM

(

T 2
11 + T 2

22 + T 2
33 + g2

)]1/2
,

so that we obtain

(3.18) T 2
11 + T 2

22 + T 2
33 + g2 ≤ σMw1.

Moreover, from the relations (2.3), (3.1) and (3.4) we deduce that

(3.19) T 2
31 = µ2u2

1,3, T 2
32 = µ2u2

2,3, h2
3 = α2ϕ2

,3.

On the basis of the relations (3.18) and (3.19) and the Cauchy–Schwarz and
the arithmetic-geometric mean inequalities, from the relation (3.5) we obtain

(3.20) |M(x3)| ≤
1

2

∫

D(x3)

[

ε1T3iT3i +
1

ε1
uiui + ε2h

2
3 +

1

ε2
ϕ2

]

da

≤ 1

2

∫

D(x3)

{

ε1

[

µ2(u2
1,3 + u2

2,3) + σMw1

]

+
1

ε1
uiui

+ ε2α
2ϕ2

,3 +
1

ε2
ϕ2

}

da,
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for all ε1, ε2 > 0. In view of the boundary condition (2.12), we have the following
inequality:

(3.21)
∫

D(x3)

ui,̺ui,̺da ≥ λ1

∫

D(x3)

uiuida,

where λ1 is the lowest eigenvalue of the corresponding membrane problem. Then,
by using the estimate (3.21) in relation (3.20), we find

(3.22) |M(x3)| ≤
1

2

∫

D(x3)

{

ε1µ
[

µ
(

u2
1,3 + u2

2,3

)]

+
1

λ1µε1

[

µ
(

u2
1,2 + u2

2,1 + u2
3,1 + u2

3,2

)]

+
1

λ1ε1

(

u2
1,1 + u2

2,2

)

+
1

ε2
ϕ2 + ε1σMw1 + ε2α

2ϕ2
,3

}

da.

Now we set

(3.23) ε1µ =
1

λ1µε1
, ε2 = λ1ε1,

and use the relations (3.9) and (3.12) in the relation (3.22) to obtain

(3.24) |M(x3)| ≤
1

2

∫

D(x3)

{

1√
λ1
w2 +

(

µ

σm

√
λ1

+
σM

µ
√
λ1

)

w1 +
α
√
λ1

µ
w3

}

da.

We further set

(3.25)
1

σ∗2
=

1

2
max

{

1√
λ1
,

(

µ

σm

√
λ1

+
σM

µ
√
λ1

)

,
α
√
λ1

µ

}

,

and note that the relations (3.6), (3.7) and (3.24) imply the following first-order
differential inequality

(3.26) σ∗2 |M(x3)| ≤M ′(x3) for x3 ∈ [0, L].

We now proceed to integrate the first-order differential inequality (3.26). To
this end we first suppose that M(0) > 0. Since M ′(x3) ≥ 0, it follows that
M(x3) > 0 for all x3 ≥ 0 so that we must have M(L) > 0. Then the differential
inequality (3.26) becomes

(3.27) M ′(x3) ≥ σ∗2M(x3),
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which, by integration, gives

(3.28) M(0)eσ
∗2x3 ≤M(x3) ≤M(L)e−σ∗2(L−x3), x3 ∈ [0, L].

Let us now suppose that M(0) = 0. Then either M(L) = 0 or M(L) > 0. In
the first case we deduce that M(x3) = M ′(x3) = 0 and therefore, the relations
(3.1) and (3.6)–(3.10) imply that ui = ϕ = 0 in B. In the second case it results
that there exists x̂3 = inf{x3 ∈ [0, L] with M(x3) > 0} > 0 and then the
differential inequality (3.27) gives

(3.29) M(x̂3)e
σ∗2(x3−x̂3) ≤M(x3) ≤M(L)e−σ∗2(L−x3), x3 ∈ [x̂3, L],

and

(3.30) M(x3) = M ′(x3) = 0, for x3 ∈ (0, x̂3).

Finally, we suppose that M(0) < 0 and then it follows that M(L) < 0 or
M(L) ≥ 0. In the first case it follows that M(x3) < 0 for all x3 ∈ [0, L] and
therefore the differential inequality (3.26) gives

(3.31) −M(L)eσ
∗2(L−x3) ≤ −M(x3) ≤ −M(0)e−σ∗2x3 , x3 ∈ [0, L].

In the second case we are lead to a combination of situations already discussed
in the above for establishing the behaviour described by the relations (3.29)
and (3.31).

We consider now the case of a cylinder of semi-infinite length. From the above
analysis it follows that the cross-sectional measure has the following property

(3.32) −M(x3) ≤ −M(0)e−σ∗2x3 , x3 ≥ 0,

provided M(0) < 0; when M(0) ≥ 0, we have

(3.33) M(x3) ≥M(0)eσ
∗2x3 , x3 ≥ 0,

or

(3.34) M(x3) ≥M(x̂3)e
σ∗2(x3−x̂3), x3 ≥ x̂3.

Finally, we have to note that in the case when the measure of Γ2 is so that

meas Γ2 = 0 then we can estimate the term
1

ε2
ϕ2 in terms of w3, by means of

the inequality

(3.35)
∫

D(x3)

ϕ,̺ϕ,̺da ≥ λ1

∫

D(x3)
ϕ2da.
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That means the constant σ∗ is now given by the relation

(3.36)
1

σ∗2
=

1

2
max

{

1√
λ1
,

µ

σm

√
λ1

+
σM

µ
√
λ1

}

.

It can be seen that the cross-sectional measure M(x3) has the same form as
that used by Chiriţă [12] and Ieşan and Quintanilla [13], but our hypothesis
(3.1) is weaker than that used in their papers.

4. Second cross-sectional measure

Throughout this paper we shall assume the following inequalities:

(4.1) µ > 0, α > 0, ξ > 0, λ+ 2µ > 0, λ < 0, (λ+ 2µ)ξ > 3β2.

In order to analyse the spatial behaviour under the above hypotheses upon
the characteristic constants of the material, we write the equilibrium equations
(2.10) and (2.11) in the following form

Sji,j = 0,(4.2)

hi,i + g = 0,(4.3)

where

(4.4) Sji = µui,j + (λ+ µ)uj,i + βϕδij .

Further, we define the following cross-section integral:

(4.5) N(x3) =

∫

D(x3)

[

S3iui + h3ϕ
]

da

=

∫

D(x3)

[

µuiui,3 + (λ+ µ)u3,iui + βϕu3 + αϕϕ,3

]

da.

By direct differentiation and by using the equilibrium equations (4.2) and
(4.3) and the boundary conditions (2.12), from the relation (4.5) we deduce that

(4.6) N ′(x3) =

∫

D(x3)

Wda,

where

(4.7) W = W1 +W2 +W3,
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and

W1 = (λ+ 2µ)
(

u2
1,1 + u2

2,2 + u2
3,3

)

+ 2βϕ (u1,1 + u2,2 + u3,3) + ξϕ2,(4.8)

W2 = µ
(

u2
1,2 + u2

2,1 + u2
2,3 + u2

3,2 + u2
3,1 + u2

1,3

)

(4.9)

+ 2(λ+ µ) (u1,2u2,1 + u2,3u3,2 + u3,1u1,3) ,

W3 = αϕ,iϕ,i.(4.10)

It follows then by the hypotheses described by the relation (4.1) that W1 is a pos-
itive definite quadratic form. The associated linear transform has the following
eigenvalues:

(4.11)

σ̌1 = λ+ 2µ > 0,

σ̌2,3 =
1

2

{

ξ + λ+ 2µ±
√

(ξ − λ− 2µ)2 + 12β2

}

> 0,

so that, if we set

(4.12) σ̌m = min {σ̌1, σ̌2, σ̌3} , σ̌M = max {σ̌1, σ̌2, σ̌3} ,

we have

(4.13) σ̌m

(

u2
1,1 + u2

2,2 + u2
3,3 + ϕ2

)

≤W1 ≤ σ̌M

(

u2
1,1 + u2

2,2 + u2
3,3 + ϕ2

)

.

In view of the relations (4.1), (4.4), (4.8) and (4.13), we deduce that

(4.14) S2
11 + S2

22 + S2
33 + g2 ≤ σ̌MW1.

On the other hand, the relation (4.1) shows that the quadratic form W2 is
positive definite. The eigenvalues of the associated linear transformation are

(4.15) σ̂1 = −λ > 0, σ̂2 = λ+ 2µ > 0,

and therefore, we have

(4.16) σ̂m

(

u2
1,2 + u2

2,1 + u2
2,3 + u2

3,2 + u2
3,1 + u2

1,3

)

≤W2

≤ σ̂M

(

u2
1,2 + u2

2,1 + u2
2,3 + u2

3,2 + u2
3,1 + u2

1,3

)

,

where

(4.17) σ̂m = min{−λ, λ+ 2µ} σ̂M = max{−λ, λ+ 2µ}.
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By means of a procedure similar to that used in the above section we deduce that

(4.18)
S2

12 + S2
21 ≤ σ̂2

M (u2
1,2 + u2

2,1), S2
23 + S2

32 ≤ σ̂2
M (u2

2,3 + u2
3,2),

S2
31 + S2

13 ≤ σ̂2
M (u2

3,1 + u2
1,3).

From the relation (2.3) it follows that

(4.19) h2
3 = α2ϕ2

,3.

On the basis of the estimates (3.21), (4.14), (4.18) and (4.19), from the rela-
tion (4.5) we deduce

(4.20) |N(x3)| ≤
1

2

∫

D(x3)

[

ε1S3iS3i +
1

ε1
uiui + ε2h

2
3 +

1

ε2
ϕ2

]

da

≤ 1

2

∫

D(x3)

{

ε1

[

σ̂2
M (u2

3,1 + u2
1,3 + u2

2,3 + u2
3,2) + σ̌MW1

]

+ ε2α
2ϕ2

,3 +
1

λ1ε1
ui,̺ui,̺ +

1

ε2
ϕ2

}

da,

for all ε1, ε2 > 0. Thus, we get

(4.21) |N(x3)| ≤
1

2

∫

D(x3)

{ (

ε1σ̂
2
M +

1

λ1ε1

)

(u2
1,2 + u2

2,1 + u2
2,3 + u2

3,2

+ u2
3,1 + u2

1,3) +

[

1

λ1ε1
(u2

1,1 + u2
2,2) +

1

ε2
ϕ2

]

+ ε1σ̌MW1 + ε2α
2ϕ2

,3

}

da,

for all ε1, ε2 > 0. Further, we set

(4.22) ε1 =
1

σ̂M

√
λ1
, ε2 = λ1ε1,

so that, by means of the relations (4.10), (4.13) and (4.16), we obtain

(4.23) |N(x3)| ≤
1

2

∫

D(x3)

{

2σ̂M

σ̂m

√
λ1
W2

+
1√
λ1

(

σ̌M

σ̂M
+
σ̂M

σ̌m

)

W1 +
α
√
λ1

σ̂M
W3

}

da.
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If we set

(4.24)
1

σ̃2
=

1

2
max

{

2σ̂M

σ̂m

√
λ1
,

1√
λ1

(

σ̌M

σ̂M
+
σ̂M

σ̌m

)

,
α
√
λ1

σ̂M

}

,

then the relations (4.23) and (4.6) yield the following first-order differential in-
equality:

(4.25) σ̃2 |N(x3)| ≤ N ′(x3), x3 ∈ [0, L].

Such differential inequality can be solved by the same analysis as that used
in the above section. Let us first discuss the case of a finite cylinder. Thus, if
N(0) > 0 then we have N(x3) > 0 for all x3 > 0 and

(4.26) N(0)eσ̃
2x3 ≤ N(x3) ≤ N(L)e−σ̃2(L−x3), x3 ∈ [0, L].

If N(0) = 0 then there exists x̃3 = inf{x3 ∈ [0, L] with N(x3) > 0} so that
we have

(4.27) N(x3) = N ′(x3) = 0 for x3 ∈ (0, x̃3),

and

(4.28) N(x̃3)e
σ̃2(x3−x̃3) ≤ N(x3) ≤ N(L)e−σ̃2(L−x3), x3 ∈ [x̃3, L].

In the case when N(x3) < 0 for all x3 ∈ [0, L], the differential inequality (4.25)
gives

(4.29) −N(L)eσ̃
2(L−x3) ≤ −N(x3) ≤ −N(0)e−σ̃2x3 , x3 ∈ [0, L].

For the case of an infinite cylinder, for N(0) < 0 we have

(4.30) −N(x3) ≤ −N(0)e−σ̃2x3 , x3 ≥ 0,

while for N(0) ≥ 0, we have

(4.31) N(x3) ≥ N(0)eσ̃
2x3 , x3 ≥ 0,

or

(4.32) N(x3) ≥ N(x̃3)e
σ̃2(x3−x̃3), x3 ≥ x̃3.
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5. Conclusion

The main purpose of this paper was to establish some exponential decay
estimates such as (3.32) and (4.30), with an estimated decay rate depending
on the class of porous elastic materials to be studied. On the other hand, the
foregoing analysis leading to the conclusion expressed by the relation (3.32) is
valid, however, for a broader class of materials considered in [12, 13], and so
(3.32) can also be regarded as an alternative result to the estimates obtained in
[12, 13].

The analysis proves that slow decay of the end effects with respect to the
distance can arise from the appropriate extreme eigenvalues of the porous elastic
material, as well as from the geometry of the cylinder.
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