
Arch. Mech., 56, 3, pp. 191–204, Warszawa 2004

Viscoelastic boundary layer MHD flow through a porous

medium over a porous quadratic stretching sheet
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Boundary layer MHD flow of a viscoelastic fluid in a porous medium over a porous
stretching sheet has been presented in this article. A typical choice of quadratic
stretching of the boundary, having a quadratic part in velocity parallel to the bound-
ary sheet and a linear mass flux in the velocity normal to the stretching sheet, consti-
tutes the boundary conditions of the problem. The effect of various values of nondi-
mensional physical parameters on streamline patterns and skin friction coefficient are
discussed. Some of the important findings of the article are: (a) the flow is enhanced
by the positive values of linear mass flux parameter and suppressed by the nega-
tive values of linear mass flux parameter; (b) the effect of permeability parameter
is not significant when linear mass flux parameter takes zero or negative values; (c)
the combined effect of reduction of the values of permeability parameter, Hartmann
number and linear mass flux parameter is expected to reduce largely the values of
skin friction coefficient.
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Notations

k0 − dimensional viscoelastic parameter,
k′, k2 − dimensional and dimensionless permeability parameters,
B0 − magnetic strength parameter,
γ − kinemetic coefficient of viscosity,

u, v − axial and transverse velocities,
σ − electrical conductivity,
ρ − density of the viscoelastic fluid,

x, y − axial and transverse coordinates,
b − linear stretching rate,
α − quadratic stretching cofficient,
vw − dimensional constant mass flux,
δ − dimensional linear mass flux coefficient,
ψ − stream function,

η − dimensionless transverse coordinate, y

r
b

γ
,

k∗1 − dimensionless viscoelastic parameter,
k0 b

γ
,

Mn − Hartmann number,

r
σ

ρ b
B0,
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v∗w − dimensionless constant mass flux,
vw
√

bγ
,

s − real positive root of Eq. (3.14),
Cf − dimensionless skin friction coefficient,
b0 − modified linear mass flux parameter,

Rex − local Reynolds number,

√

bγ

γ
x,

ψ∗
− dimensionless stream function,

ξ − dimensionless axial coordinate.

1. Introduction

Sakiadis [1] was the first to initiate pioneering work on the boundary layer
flow of incompressible fluid over continuous solid surface, which finds its appli-
cation in the problem of polymer sheet extruded from a dye. In the recent years,
ever increasing application of viscoelastic fluids (e.g. dilute polymer solution
of 0.83% ammonium alginate in water and 5.4% polyisobutylene in cetane at
30◦C, Markovitz and Coleman [2]) in polymer processing industries has led
to a renewed interest among researchers to investigate the viscoelastic boundary
layer flow over a stretching plastic sheet (Rajagopal et al. [3, 4], Dandapat

and Gupta [5], Rollins and Vajravelu [6], Andersson [7], Lawerence

and Rao [8], Char [9] and Rao [10]). A significant effort has been directed to
study the boundary layer viscous fluid flow over a porous stretching sheet where
the flow is influenced by suction/blowing of liquid through the porous sheet
(Vajravelu and Nayfeh [11], Vajravelu [12], Ahmad and Mubeen [13],
Chiam [14], Yih [15], Acharya et al. [16]). A new dimension has been added in
this study by investigating such situation for viscoelastic fluid flow in our recent
works (Prasad et al. [17] and Sonth et al. [18]). Stability analysis of viscoelas-
tic fluid flow over a stretching sheet with and without magnetic field has been
carried out by Dandapat et al. [19, 20].

Exhaustive literature is available including the papers cited above on two-
dimensional viscoelastic boundary layer flow over a stretching surface, where the
velocity of the stretched surface is assumed to be linearly proportional to the
distance from a fixed origin. However, Gupta and Gupta [21] have pointed out
that in reality, stretching of the sheet might not necessarily be linear. Also, there
might be a situation of flow of linear mass flux addition or annihilation in addition
to constant mass flux through the pores of the boundary sheet. This situation
was dealt with by Kumaran and Ramanaiah [22] in their work on boundary
layer flow over a quadratic stretching sheet. However, their work is confined to
the viscous fluid flow over a stretching sheet in absence of a magnetic field . Es-
timation of skin friction which is very important from the industrial application
point of view is also not presented in their analysis. Skin friction and streamline
pattern might vary to a certain extent if the fluid flows through porous media.



Viscoelastic boundary layer MHD flow ... 193

In view of this, a study was carried out by Gupta and Sridhar [23] on a vis-
coelastic fluid flow through a tube having periodically varying diameter which
is often used to represent a porous medium. The applied magnetic field, which
also might play a decisive role in skin friction, is excluded from this analysis.

Therefore, in the present article the authors make an attempt to investigate
the viscoelastic boundary layer fluid flow through porous media over a quadratic
stretching of a sheet. We know that magnetic field stabilizes such a flow, a fact
pointed out by Dandapat et al. [20]. Hence, we consider an electrically conduct-
ing fluid region which is exposed to a uniform transverse magnetic field. In this
work we aim at investigating the effect of permeability of the porous medium, vis-
coelastic parameter, Hartmann number, and mass flux parameters which appear
in linear and quadratic stretching part, on the stream function characteristics
and the skin friction coefficient. Results of Andersson [7] concerning the linear
stretching problem may be deduced from this study as a limiting case when there
would be no linear mass flux, no quadratic stretching and no porous medium.

2. Mathematical formulation

Two-dimensional viscoelastic boundary layer flow through a porous medium
over a porous stretching sheet in a semi-infinite region y > 0 is considered
for investigation (Fig. 1). The flow is assumed to be generated solely due to
stretching of the adjacent flat boundary sheet so that no free stream velocity
exists within the boundary layer. The sheet extends along the xz-plane and is
stretched along the x-axis. The stretching is being done by applying two equal
and opposite forces whilst keeping the origin fixed. The sheet is stretched in such
a way that the velocity of the sheet is a quadratic polynomial of the distance

Fig. 1. Boundary layer over a porous stretching surface.
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from the origin and there is a linear mass flux in addition to constant mass flux
to the boundary layer region through the porous boundary sheet. The electrically
conducting boundary layer fluid flow is assumed to be exposed to the influence
of a transverse uniform magnetic field of strength B0. The transverse magnetic
field acts parallel to the y-axis. The magnetic Reynolds number is considered
to be small so that the induced magnetic field is negligible. Also, we assume
that the external electric field is zero and that the electric field as a result of
polarization of charges is negligible.

The basic governing equations in the present flow situation are the modified
version of the boundary layer equations of Beard and Walters [24] and of
Andersson [7], and they are as follows.

(2.1)
∂u

∂x
+
∂v

∂y
= 0,

(2.2) u
∂u

∂x
+ v

∂u

∂ y
= γ

∂2 u

∂ y2

− k0

{

u
∂3 u

∂ x∂y2
+ v

∂3 u

∂ y3
− ∂ u

∂ y

∂2 u

∂x∂ y
+
∂ u

∂ x

∂2 u

∂ y2

}

− σ B2

0

ρ
u− γ

k′
u.

Here k0 is the elastic parameter, γ is the kinematic viscosity of the fluid, k′

is the permeability parameter of porous medium, B0 is the magnetic strength
parameter and σ is the electrical conductivity of viscoelastic fluid. The other
quantities have their usual meanings. The above Eq. (2.2) has been derived under
the assumption that the normal stress is of the same order of magnitude as that
of the shear stress, in addition to the usual boundary layer approximations. The
model equation (2.2) is valid for small values of elastic parameter k0 since it has
been derived to the first order in elasticity representing the short memory fluid
with smaller relaxation time.

2.1. Boundary conditions

The porous boundary sheet is assumed to be stretched quadraticaly along the
x-direction in such a way that constant and linear mass fluxes through the pores
of the boundary influence the boundary layer flow. The appropriate boundary
conditions on velocity are:

(2.3)
u = b x+ αx2 v = vw + δx at y = 0

u = 0 uy = 0 as y → ∞.

The subscript y represents differentiation with respect to y; b, α, vw and δ are
constants, where b is known as linear stretching rate, α is the quadratic stretching
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rate, vw represents constant mass flux and δ x represents linear mass flux to
the boundary layer region through the porous boundary sheet. The boundary
conditions as y → ∞ in Eq. (2.3) are due to the stress-free conditions at the
outer boundary and free stream velocity being taken zero there. It is of interest
to note that the quadratic stretching part αx2 in the x-directional velocity must
be accompanied by the linear mass flux δ x in y-directional velocity in order to
satisfy the equation of continuity.

3. Mathematical analysis

We seek a self-similar solution of Eq. (2.2) by defining the stream function as

(3.1) ψ =
√

bγ x f(η) − δ

2
x2 fη(η), η = y

√

b

γ
.

This yields

u = ψy = b x fη(η) −
δ

2

√

b

γ
x2fηη(η),(3.2)

v = −ψx = −
√

bγf (η) + δx fη (η) .(3.3)

Substituting the Eqs. (3.1)–(3.3) in the Eq. (2.2) and then equating the coeffi-
cients of x, x2, x3 of the resultant equations to zero, we obtain the following
nonlinear differential equations:

f2

η − ffηη = fηηη − k∗1
{

2fηfηηη − ffηηηη − f2

ηη

}

− Mn
2fη − k2fη,(3.4)

fηfηη − ffηηη = fηηηη − k∗1 {fηfηηηη − f fηηηηη} − Mn
2fηη − k2fηη,(3.5)

f2

ηη − fηfηηη = k∗1
{

fηfηηηηη − 2fηηfηηηη + f2

ηηη

}

.(3.6)

Here Mn =

√

σ

ρ b
B0 is the Hartmann number, k∗

1
=

k0 b

γ
is the viscoelastic

parameter and k2 =
γ

k′b
is the permeability parameter of the medium. In non-

dimensional form the corresponding boundary conditions are derived as

(3.7)
f = −v∗w, fη = 1 fηη = −2α

δ

√

γ

b
at η = 0

fη = 0, fηη = 0, as η → ∞ .

Here, v∗w =
vw√
bγ

. From the mathematical point of view, the Eq. (3.5) doesn’t

have any special significance since it may be obtained from the Eq. (3.4) by simple
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differentiation. Using the first two boundary conditions with v∗w = 0 at η = 0
and the first boundary condition at η → ∞, Rajagopal et al. [3] obtained the
corresponding solution of the Eq. (3.4). Subsequently Troy et al. [25] obtained
a unique solution of the Eq. (3.4), for 0 < k∗

1
< 1, in the form

(3.8) f(η) =
√

1 − k∗
1

(

1 − e−η/
√

1−k∗

1

)

.

Later on Chang [26] showed that the solution of the Eq. (3.4) with those
boundary conditions was not unique. Taking k∗

1
= 1/2, Chang [26] derived other

solution of the form

(3.9) f(η) =
√

2
(

1 − e−η/
√

2 cos(
√

3/2 η)
)

Recently Rao [10] derived another closed-form solution

(3.10)

f(η) = A

[

1 − e−Aη/2 cos(
√

3 Aη) +
1 + 2k∗

1√
3

sin(
√

3Aη/2)

]

,

A =
1

√

−k∗
1

.

This form of solution exists only when k∗
1
∈ (−1, 0).

Among all the above solutions, the solution (3.8) is realistic as we can re-
cover the Navier–Stokes’ solution only in its limiting case k∗

1
→ 0. Also, for a

viscoelastic fluid of the Walters type liquid B where k∗
1

should be small real
positive (Dandapat and Gupta [5]), the solution of the form (3.8) is the only
solution of the problem with those three boundary conditions. Therefore, in
view the nature of the boundary conditions and the results known from the
literature, we seek the solution of the Eq. (3.4) with the prescribed boundary
conditions (3.7) in the form

(3.11) f(η) = A1 +B1e
−sη.

The assumption of solution of the Eq. (3.4) in the above form is most appro-
priate as it also satisfies the Eq. (3.6). Now, we proceed further to determine the
constants A1, B1 and s. Substituting the Eq. (3.11) in the Eq. (3.4) and making
use of all the boundary conditions of Eq. (3.7), we obtain

(3.12) A1 =
1

s
− v∗w, B1 = −1

s
.

Hence we obtain

(3.13) f(η) =
1 − e− sη

s
− v∗w .
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Here, s is the real positive root of the following cubic algebraic equation

(3.14) s3 +
1 − k∗

1

v∗wk
∗
1

s2 +
1

k∗
1

s− 1 + M2
n + k2

v∗wk
∗
1

= 0.

We must note that in the range 0 ≤ k∗
1
< 1 for which the model Eq. (2.2) is

valid and for all real values of v∗w, there exists always a real positive root of the
Eq. (2.2). It is of some interest to note that the quadratic stretching parameter
α and the linear mass flux parameter δ must be related by the equation

(3.15) s =
2α

δ

√

γ

b
.

Therefore, when α and δ are simultaneously absent, k2 = 0 and v∗w = 0, we
would obtain the solution of Andersson [7] as the limiting case of our result.
The quadratic equation for s, in such a case, may be deduced from the Eq. (3.14)
in the limit v∗w → 0 and k2 = 0. The solution represented by Eqs. (3.13)–(3.15)
is the only realistic solution satisfying all the boundary conditions of Eq. (3.7).

The dimensionless skin friction coefficient Cf is expressed as

(3.16) Cf = −

[

γ

(

∂ u

∂ y

)

− k0

{

u
∂2u

∂x∂y
+ v

∂2u

∂y2
− 2

∂u

∂y

∂v

∂y

}]

y=0

(b x)2

=
s√
Rex

(

1 − 3k∗
)

+ b0s
3

(

1 − 7k∗1

)

+ b0s
3k∗1

(

v∗w − 4Rexb0

)

+
v∗ws

2k∗
1√

Rex
.

Here, Rex =

√
b γ x

γ
is the local Reynolds number, which depends on the rate of

linear stretching b . The effect of mass flux parameters v∗w and δ is demonstrated
by the relations (3.14)–(3.15).

It will be more convenient to analyse the flow characteristics if we further
introduce the dimensionless quantities in the following way

(3.17) ψ∗ =
ψ

γ
, ξ = x

√

b

γ
and b0 =

δ

2 b
.

Hence the Eq. (3.1) takes the form

(3.18) ψ∗ = ξf (η) − b0ξ
2fη(η).

The streamline equation is derived as

(3.19) η =
1

s

{

log

(

b0 ξ
2 +

ξ

s

)

− log

[

s2 − Mn
2 − k2

s ( 1 + k∗
1
s2)

ξ − C

] }

.
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Here, ψ∗ = C, a constant along a particular streamline. The Eq. (3.19) yields the
expression of Kumaran and Ramanaiah [22] as a limiting case when k∗

1
= 0,

Mn = 0 and k2 = 0.

4. Results and discussion

We have considered the viscoelastic boundary layer flow in a porous medium
over a porous stretching sheet. In contrast to the linear stretching of the bound-
ary sheet, the flow is considered to be generated solely by general quadratic
stretching of the boundary and influenced by a uniform transverse magnetic field.
We assume that horizontal stretching velocity consists of two parts, namely (i)
a linear part which is linear in x and (ii) a quadratic part which is quadratic
in x. The cross directional velocity, which is normal to the stretching boundary,
has also two parts, namely (i) a constant mass flux due to suction/blowing and
(ii) a linear mass flux. Analytical expressions for dimensionless stream function
and dimensionless skin friction coefficient Cf have been derived. To acquire the
knowledge on the effect of viscoelastic parameter k∗

1
, the permeability parameter

k2, linear mass flux parameter b0, the constant mass flux parameter v∗w and the
Hartmann number Mn on the streamline pattern, several graphs are plotted in
the Figs. 2–6. The numerical values of the skin friction coefficient Cf for various
flow-controlling physical parameters are recorded in a Table.

Table 1. Values of skin friction parameter Cf for various values

of the physical parameters.

k1* vw* b0 Rex Mn Cf (k2 = 0.0) Cf (k2 = 0.5)

10−10
−0.07 −0.01 0.5 0.0 1.454 1.766

0.2 0.643 0.778

10−10 0.5 1.767 2.029
0.2 0.778 0.890

10−10 0.0 0.0 1.465 1.782
0.2 0.637 0.769

10−10 0.5 1.782 2.050
0.2 0.769 0.879

10−10 0.07 −0.01 0.0 1.356 1.668
0.2 0.629 0.782

10−10 0.5 1.668 1.931
0.2 0.782 0.913

10−10 0.0 0.0 1.365 1.682
0.2 0.625 0.776

10−10
−0.01 2.5 0.601 0.738

0.2 0.283 0.353
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Fig. 2. Streamline patterns for different values of k∗1 and Mn when v∗w = 0.07, b0 = 0.2

and k2 = 0.1.

Fig. 3. Streamline patterns for different values of k∗1 and k2 when v∗w = 0.07, b0 = 0.2

and Mn = 0.5.

Figure 2 demonstrates the streamline patterns for different values of vis-
coelastic parameter k∗

1
and Hartmann number Mn. Analysis of the graph reveals

that the effect of increasing values of viscoelastic parameter k∗
1

is shifting of the
location of streamline towards the stretching surface.

The effect of increasing values of the Hartmann number Mn is also to shift
the location of the streamline towards the stretching boundary. The combined
effect of viscoelastic parameter k∗

1
and magnetic parameter Mn is suppression of

the flow in the boundary layer region which clearly manifests the thinning of the
boundary layer.
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The streamline patterns for different values of viscoelastic parameter k∗
1

and
permeability parameter k2 are shown in the Fig. 3. Analysis of the figure shows
that the effect of permeability parameter k2 is to shift the streamline towards
the stretching sheet. This means that the boundary layer flow is suppressed and
hence the boundary layer thickness decreases. The combined effect of viscoelastic
parameter k∗

1
and permeability parameter k2 is seen to suppress the flow largely.

Streamline patterns are depicted in the Fig. 4 for different values of vis-
coelastic parameter k∗

1
and linear mass flux parameter b0 (that is also the effect

of quadratic velocity parameter α). The figure reveals the effect of linear mass
flux parameter b0 in addition to a similar effect of viscoelastic parameter k∗

1
on

the streamline pattern. The effect of increasing values of the linear mass flux pa-
rameter b0 is shifting of the location of the streamline away from the stretching
sheet. This means that the boundary layer flow is enhanced and the boundary
layer thickness increases. This result is quite consistent as there is an addition of
mass flux through the porous stretching boundary. This change of flow pattern
may also be attributed to the quadratic part of the stretching velocity, α, as
δ (i.e, b0) and α appear simultaneously. When the linear mass flux parameter b0
takes the zero value then slope of the streamline is also zero, which means that
the boundary layer flow is completely undisturbed. When the linear mass flux
parameter b0 is negative, the slope of the streamline is also negative which means
that the boundary layer flow is suppressed by annihilation of the fluid through
the porous boundary.

Fig. 4. Streamline patterns for different values k1 = 0.1 and b0 when v∗w = 0.14, k2 = 0.9

and Mn = 1.0.

The combined effect of permeability parameter k2and linear mass flux para-
meter b0 can be seen from the Fig. 5. From this figure it follows that increasing
positive values of linear mass flux parameter b0 is to enhance the flow and shift
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the streamline away from the boundary significantly having a positive slope.
Whereas, the negative value of the linear mass flux parameter suppresses the
flow and hence, the streamlineses takes negative slope. The effect of permeabil-
ity parameter k2 on the streamline patterns is not significant when linear mass
flux parameter b0 takes negative values. The effect of constant mass flux para-
meter v∗w and linear mass flux parameter b0 on the streamline patterns may be
obtained by the analysis of the Fig. 6. Here we observe that the effect of the pa-
rameter b0, i.e. also of the parameter α, is the same as that seen in the Figs. 4–5.

Fig. 5. Streamline patterns for different values k2 and b0 when k∗1 = 0.2, vw = 0.14

and Mn = 1.0.

Fig. 6. Streamline patterns for different values of v∗w and b0 when k∗1 = 0.2, k2 = 0.5

and Mn = 1.0.
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The effect of constant mass flux parameter v∗w is to dislocate the streamlines by
shifting them away from the stretching sheet. The combined effect of constant
mass flux parameter v∗w and linear mass flux parameter b0 is to enhance the
shifting of position of the streamlines from the stretching sheet. This behaviour
occurs due to blowing of the boundary layer flow by addition of the mass flux
through the porous stretching sheet.

The values of skin friction parameter Cf for the values of physical parameters
k∗

1
, k2, v

∗
w, b0, Rex and Mn are recorded in the Table 1. A careful analysis of the

table reveals that the effect of increasing values of permeability parameter k2 and
Hartmann number Mn is to increase the skin friction parameter Cf . The effect of
linear mass flux parameter b0, i.e. also of α, is also the increase of the skin friction
parameter in the case of a viscous fluid flow. The effect of constant flux parameter
v∗w and local Reynolds number Rex is to reduce the skin friction parameter Cf .
These are essentially due to the increase of the boundary layer thickness as a
result of addition of external mass the flux through the porous boundary and
increased rate of linear stretching resulting in an increase of velocity, respectively.

Hence, in order to minimize the skin friction parameter which we usually
look for in an industrial application, one needs to decrease the values of the
permeability parameter k2, magnetic parameter i.e. the Hartmann number Mn,
linear mass flux parameter b0and to increase the viscoelastic parameter k∗

1
, the

constant mass flux parameter v∗w and the local Reynolds number Rex.

5. Conclusions

Some of the important findings of the mathematical and diagrammatic analy-
sis of the present problem may be listed as follows.

1. The combined effect of viscoelastic parameter k∗
1

and magnetic parameter
Mn and permeability parameter k2 is to shift the location of the streamline
towards the stretching sheet.

2. Streamline attains positive, negative and zero slope depending upon the
value of the linear mass flux parameter b0, positive, negative and zero,
respectively.

3. The effect of permeability parameter k2 is not significant when the linear
mass flux parameter b0 takes zero or negative values.

4. The flow is enhanced significantly by the positive values of linear mass flux
parameter b0 appearing due to quadratic stretching of the boundary. The
flow is suppressed significantly by negative values of the linear mass flux
parameter.

5. Reduction of the values of the permeability parameter, the Hartmann num-
ber and the linear mass flux parameter can be used as means to minimize
the skin friction in industrial applications.



Viscoelastic boundary layer MHD flow ... 203

Acknowledgment

This work is supported by the University Grants Commission, New Delhi,
under the Special Assistance Programme DRS.

References

1. B.C. Sakidis, Boundary layer behavior on continuous solid surfaces, Am. Inst. Chem.
Eng. J., 7, 26–28, 1961.

2. H. Markovitz and B.D. Coleman, Advances in Applied Mechanics, 8, Academic Press,
1964.

3. K.R. Rajagopal, T.Y. Na and A.S. Gupta, Flow of a viscoelastic fluid over a stretch-
ing sheet, Rheol. Acta., 23, 213–215, 1984.

4. K.R. Rajagopal, T.Y. Na and A.S. Gupta, A non-similar boundary layer on a stretch-
ing sheet in a non-Newtonian fluid with uniform free stream, J. Math. Phys., Sc., 21, 2,
189–200, 1987.

5. B.S. Dandapat and A.S. Gupta, Flow and heat transfer in a viscoelastic fluid over a
stretching sheet, Int. J. Nonlinear Mech., 24, 3, 215–219, 1989.

6. D. Rollins and K. Vajravelu, Heat transfer in a second order fluid over a continuous
stretching surface, Acta Mech., 89, 167–178, 1991.

7. H.I. Andersson, MHD flow of a viscoelastic fluid past a stretching surface, Acta Mech.,
95, 227–230, 1992.

8. P.S. Lawrence and B.N. Rao, Heat transfer in the flow of a viscoelastic fluid over a
stretching sheet, Acta Mech., 93, 53–61, 1992.

9. M.I. Char, Heat and mass transfer in a hydromagnetic flow of viscoelastic fluid over a
stretching sheet, J. of Math. Anal. Appl., 186, 674–689, 1994.

10. B.N. Rao, Technical note, Flow of a fluid of second grade over a stretching sheet, Int. J.
Nonlinear Mech., 31, 4, 547–550, 1996.

11. K. Vajravyelu and J. Nayfeh, Convective heat transfer at a stretching sheet, Acta
Mech., 96, 47–54, 1993.

12. K. VAJRAVYELU, Convection heat transfer at a stretching sheet with suction or blow-
ing, J. of Math. Anal. Appl., 188, 1002–1011, 1994.

13. N. Ahmad and A. Mubeen, Boundary layer flow and heat transfer for the stretching
plate with suction, Int. Comm. Heat Mass Transfer., 22, 6, 895–906, 1995.

14. T.C. CHIAM, Magnetohydrodynamic heat transfer over a non-isothermal stretching
sheet, Acta Mechanica, 122, 169–179, 1997.

15. K.A. Yih, Note: Blowing suction/effect on non-Darcy forced convection flow about a flat
plate with variable wall temperature in porous media, Acta Mechanica, 131, 255–265, 1998.

16. M. Acharya, L.P. Sing and G.C. Dash, Heat and mass transfer over an accelerating
surface with heat source in presence of suction and blowing, Int. J. Eng. Sc., 37, 189–211,
1999.



204 S. Kumar Khan, E. Sanjayanand

17. K. V. Prasad, M.S. Abel and S.K. Khan, Momentum and heat transfer in viscoelastic
fluid flow in a porous medium over a non-isothermal streching sheet., Int. J. of Num.
Method for Heat and Fluid Flow, 10, 8, 786–801, 2000.

18. R.M. Sonth S.K. Khan M.S. Abel and K.V. Prasad, Heat and mass transfer in
a viscoelastic fluid flow over an accelerating surface with heat source/sink and viscous
dissipation, Heat and Mass Transfer., 38, 213–220, 2002.

19. B.S. Dandapat, L.E. Holmedal and H.I. Andersson, Stability of flow of a viscoelastic
fluid over a stretching sheet, Arch. Mech., 46, 6, 829–838, 1994.

20. B.S. Dandapat, L.E. Holmedal and H.I. Andersson, On the stability of MHD flow
of a viscoelastic fluid past a stretching sheet, Acta Mechanica, 130, 143–146, 1998.

21. P.S. Gupta and A.S Gupta, Heat and mass transfer on a stretching sheet with suction
or blowing, Canad. J. of Chem. Engg., 55, 744–746, 1977.

22. V. Kumaran and G. Ramanaiah, A note on the flow over a stretching sheet, Acta
Mech., 116, 229–233, 1996.

23. Gupta and T. Sridhar, Viscoelastic effect in non-Newtonian flows through porous media,
Rheol Acta., 24, 148–151, 1985.

24. D. W. Beard, K. Walters, Elastico – viscous boundary layer flows. 1. Two dimensional
flow near a stagnation point, Proc. Comb. Phil. Soc., 60, 667–674, 1964.

25. W.C Troy, E.A Overman., H.G.B. Ermentrout and J.P. Keener, Uniqueness of
flow of a second order fluid past a stretching sheet, Quart. Appl. Math., 44, 753–755, 1987.

26. Wen-Dong Chang, The non-uniqueness of the flow of a viscoelastic fluid over a stretch-
ing sheet, Quart. Appl. Math., 47, 2, 365–366, 1989.

Received June 6, 2003; revised version January 20, 2004.


