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The aim of the present paper is to study an initial-boundary value problem for an
isotropic circular plate. General theory was developed by the authors in [12]. The
novelty consists in the study of influence of second-order terms (correctors), obtained
by variational-asymptotic analysis, on the dynamic solution of plates.

1. Introduction

Theory of plates has already a long history and is still an extensive field
of research, cf. [5, 6] and the references therein. Refined theory of plates can
be derived either with the use of asymptotic expansions [1, 2, 4, 9–12] or by
assuming suitable displacements and/or stress hypotheses [3, 5–8]. By using the
asymptotic method combined with variational approach, a new dynamic model
of elastic orthotropic plates, clamped at the whole boundary, was derived in [12].
This model accounts for rotational inertia and involves the second order terms
U(2) and σ

(2) of the asymptotic expansions of displacements and stresses. These
terms are called (first) correctors. They improve the 2-D classical solutions of
plate problems. The solution that takes into account asymptotic correctors is a
better approximation of a 3-D solution than the classical one [9, 12].

The main aim of the present contribution is to apply the general results
achieved in our paper [12] to a specific case of an initial-boundary value problem
for a circular isotropic plate. An influence of second-order terms on dynamic
response of such a plate is revealed.

To facilitate the reading of the paper, in Appendix are gathered the basic
results pertaining to the general isotropic case.

∗) The paper was presented at the 34th Solid Mechanics Conference, September 2–7, 2002,

Zakopane.
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2. Formulation of the problem

We shall analyse an initial-boundary value problem for an elastic clamped
circular plate in the case of isotropy and rotational symmetry. Let Ω ⊂ R2 be
the mid-plane of the plate with the boundary Γ . By 2h we denote the thickness
of the plate, R is its radius, ̺ is the density, E is the Young modulus and ν is the
Poisson ratio of the material of the plate. We shall carry out the analysis in the
polar coordinate system (r, θ), r ∈ (0, R), θ ∈ (0, 2π). Because of the rotational
symmetry of the considered dynamic problem, the displacements and stresses
will depend on r and time t ∈ (0, T ) only, where T is prescribed.

We assume that uniformly distributed loading of the plate, g+
3 = g3, is sud-

denly imposed on the upper face (see the Appendix). In this case of loading the
r.h.s. of Eq. (A.19) simplifies considerably. For the mid-plane deflection of the
real plate, u3(r, t), we have the following formula, accounting for an asymptotic
corrector [9, 12],

(2.1) u3(r, t) = u0
3(r, t) + h2u

(2)
3 (r, t).

By using the two general problems (P0) and (P2f), given in the Appendix,
we formulate (P h) that is the initial-boundary value problem accounting for
asymptotic correctors, for the midplane of the circular plate with radius R (and
thickness 2h):

(2.2) 2 ̺ hu ′′
3 +

2

3

E

1 − ν2
h3 △2 u3 = −2h g ̺ + g+

3 + ̺ h3 34 − 14ν

15(1 − ν)
△u0 ′′

3 ,

(2.3) u3 = −h2 ν

10 (1 − ν)
△u0

3 on Γ × (0, T ), (P h)

(2.4) ∂n u3 = −h2 8 + ν

10(1 − ν)
∂n △u0

3 on Γ × (0, T ),

(2.5) u3 (0, r) = Ũ0
3 (r) + h2ũ

(2)
3 (r), u3

′ (0, r) = 0.

Here u0
3 ∈ L∞(0, T ; H2

0 (Ω) is a solution to

(2.6) 2h ̺ u0 ′′
3 +

2

3

E

1 − ν2
h3 △2 u0

3 = −2h g ̺ + g+
3 in Ω × (0, T ),

(2.7) u0
3(0, r) = Ũ0

3 (r), u0 ′
3 (0, r) = 0 in Ω,
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(2.8) u0
3(R, t) = 0 for t ∈ (0, T ), ∂nu0

3(R, t) = 0 for t ∈ (0, T ),

where g is the acceleration of gravity, ( )′ =
∂( )

∂t
, t ∈ (0, T ); ∂n denotes the

normal derivative, whereas n is the external unit normal to Γ , and △ is the

Laplacian in the polar coordinates: △ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.

Remark 1. Equation (2.2) follows from (A.19) if u
(2)
3 denoted by Eq. (2.1)

is substituted to it. Similarly, in this way we get Eqs. (2.3)–(2.5) using
(A.20)–(A.21).

In this simple case of loading the in-plane components of the displacement in
the plate considered vanish. Referring to the Appendix, we see that in

such a case we have u0
α= 0, and since [K u(2), v] = 0, we conclude that u

(2)
α = 0,

α = 1, 2.

3. Problem (P 0)

According to the Appendix we solve problem (2.2)–(2.8) in two steps. First,
problem (P0) described by Eqs. (2.6)–(2.8) is solved. To find a solution to Eqs.
(2.6)–(2.8) we first consider the homogeneous differential equation [7, 8, 12]:

(3.1) D△2u0
3 + 2 ̺ hu0 ′′

3 = 0, D =
2

3

Eh3

(1 − ν2)
,

that describes free vibrations of the plate. For the harmonic motion we set:

(3.2) u0
3(r, t) = Z0

3 (r) sin(pt).

Equation (3.1) can be written as follows:

(3.3) (△ + β2)(△− β2)Z0
3 = 0,

where

(3.4) β2 = p

√
2̺h

D
.

The solution of Eq. (3.3) for the case of axisymmetric vibrations takes the form,
cf. [7, 8],

(3.5) Z0(r) = A0 J0(βr) + B0 I0(βr),

where J0, I0, are Bessel functions of zero-order and modified Bessel functions
of zero-order, respectively. Taking into account boundary conditions (2.8), one
obtains the frequency equation in the form:

(3.6) J0(βR) I1(βR) + I0(βR)J1(βR) = 0.
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The first three roots of this transcendental equation, i.e. the eigenvalues of the
considered problem, described by (3.1) and (2.7)–(2.8), are

(3.7) β0R = 3.196; β1R = 6.306; β2R = 9.439; · · ·.

For frequencies pi we have the formula, cf. Eq. (3.4),

(3.8) pi =
(βiR)2

R2

√
D

2̺h

and the corresponding eigenfunctions Zi(r). Performing the orthonormalization
with respect to a mass density distribution (what follows from the definition of
the kinetic energy of the deformable body)

(3.9)

∫∫

Ω

2 h ̺Zi(r)Zj(r) dΩ = δ i j ,

one gets the expression for the eigenfunctions in the form:

(3.10) Zi(r) =
1

R

√
1

4π̺h

[
J0(βir)

J0(βiR)
−

I0(βir)

I0(βiR)

]
.

Being the orthonormal system in the Hilbert space of square-integrable functions,
defined on the middle plane of the plate, functions Zi(r), i = 1, 2, · · ·, form
a complete system. Indeed, one can notice that the only function orthogonal to
every Zi(r) is the function assuming only zero value. So, coming back to the
problem of forced vibrations (2.6)–(2.8) we express its solution by means of the
modal series

(3.11) u0
3 =

∑

i

Zi(r) · ηi(t).

For the function ηi(t) (using the orthonormality condition) we have the equation

(3.12) η ′′
i (t) + p2

i ηi(t) = Fi(t),

where

(3.13) Fj(t) =

∫∫

Ω

g3(r, t)Zj(r) dΩ,

whereas dΩ = r dr dθ.
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For the conditions given by Eq. (2.7) in the case when u0
3(0, r)= 0 we get

(3.14) ηi(t) =
1

pi

t∫

0

Fi(τ) sin pi(t − τ)dτ.

For our subsequent analysis the dynamic loading is assumed:

(3.15) g3(r, t) = H(t) · g3(r); g3(r) = g3 = const,

where H(t) denotes the Heaviside function.
Then the generalized force Fj(t) is given by

(3.16) Fj(t) =
2πR H(t) g3

βj R

√
1

4π̺h

[
J1(βjR)

J0(βjR)
−

I1(βjR)

I0(βjR)

]
.

It is now possible to derive the expression for ηj(t). Finally, returning to
Eqs. (3.10), (3.11) and (3.14) we get the formula describing the dynamic de-
flection u0

3(r, t) of the plate:

(3.17) u0
3(r, t) =

g3 R4

D

∞∑

i=1

1

(βiR)5

[
J1(βiR)

J0(βiR)
−

I1(βiR)

I0(βiR)

]

·

[
J0(βir)

J0(βiR)
−

I0(βir)

I0(βiR)

]
(1 − cos(pit)).

Remark 2. Figure 1 shows very rapid convergence of the series in the r.h.s.
of Eq. (3.17). Consequently, in our subsequent analysis only the first term of
that series is taken into account.

Fig. 1. The deflection of the circular plate middle-point not accounting for the corrector.
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4. Problem (P h)

In our paper [12] we have formulated the dynamic problem for real plate with
the thickness 2h (after rescaling) accounting for the first asymptotic corrector.
In this paper it is given by Eqs. (2.2)–(2.8).

Having solved problem (P 0) we can proceed to the second step of our analy-
sis, i.e. to problem (2.2)–(2.5). Further we will neglect the weight of the plate.
We observe that this problem can be transformed to the problem with homoge-
neous boundary conditions. Indeed, setting

(4.1)

û3(r, t) = u3(r, t) − ws(r, t),

ws(r, t) = u3(R, t) −
1

2R
∂n u3(R, t) (R2 − r2),

problem (2.2)–(2.5) is transformed to the following initial-boundary value
problem:

(4.2) 2 ̺h û3
′′ + D△2û3 = g3 + ̺h3 c(ν)△u0 ′′

3 − 2 ̺hw ′′
s in Ω × (0, T ),

û3 = 0 for r = R, t ∈ (0, T ),(4.3)

∂n û3 = 0 for r = R, t ∈ (0, T ),(4.4)

û3(0) = 0 and û3
′(0) = 0 in Ω,(4.5)

where

(4.6) c (ν) =
34 − 14 ν

15(1 − ν)
.

Now we can solve problem (4.2)–(4.5) performing the analysis similar to the
one performed in Sec. 3. Note that in the r.h.s. of Eq. (4.2) we have a sum of
three terms. Consequently, our solution u3 will be the sum of solutions for these
three terms. Having solved problem (P 0) we derive the formula:

(4.7) △u0 ′′
3 (r, t) = −

g3R
2

D

p0
2

(β0 R)3

[
J1(β0 R)

J0(β0 R)
−

I1(β0 R)

I0(β0 R)

]

·

[
J0(β0 r)

J0(β0 R)
−

I0(β0 r)

I0(β0 R)

]
cos(p0 t).

Now we can find the quantities u3(R, t), ∂n u3(R, t) and ws(r, t). In order to
derive the formula for ηi (see (3.14)), for every term of the r.h.s. of Eq. (4.2), we
calculate

(4.8)
1

p0

t∫

0

cos(p0 τ) sin p0(t − τ) dτ =
1

2

t

p0
sin(p0 t).
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Remark 3. It is easy to notice here that the influence of asymptotic corrector
on the plate deflection will increase with the time of the dynamic process. We
can observe this fact in Figs. 2 and 3.

Fig. 2. The deflection of the circular plate accounting for the asymptotic corrector versus
the radius.

Some numerical results are presented in Figs. 1 and 3. The calculations were
performed for the following data: E = 2.1·105 MPa, ν = 0.3, ̺ = 7.8·103 kg/m3,
g3 = H(t) · 10 MPa or g3 = H(t) · 102 MPa, 2h = 0.02 m, R = 0.2 m or
R = 0.1 m. Figure 1 clearly shows a dominating role of the first term in series
(3.17) that represents u0

3, the solution of problem (P 0f). The convergence of this
series is very rapid.

The notations appearing in the figures should be interpreted as follows:

u3≡u3, u03 ≡ u0
3, u23 ≡ u

(2)
3 , u03 + h∧2 u23 ≡ u0

3 + h2 u
(2)
3 .

Figure 2 illustrates the influence of the corrector on the deflection u3 (of
the real plate with the thickness 2h) in the case of two different time instants;
the thin line refers to p0t1 = 1.57 whilst the thick line to p0t2 = 7.85. We
observe the (increasing in time) influence of the corrector. It is also seen that
the boundary conditions, calculated in problem (P h) with the use of the as-
sumptions of the X space, cf. (A.3), are represented by very small quantities:
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u3(R, t) = −0.2815·10−3 [cm]; ∂n u3(R, t) = −0.2053·10−2 [rad]. These numbers
concern the case where R = 0.1 m and g3 = H(t) · 102 MPa.

Fig. 3. The influence of the asymptotic corrector on the deflection of the plate middle point.

Figure 3 depicts the oscillating process of the deflection of the plate middle-
point versus time. We observe that the harmonic vibrations (dashed line) are
perturbed by the influence of the corrector (dotted line). The continuous line
represents u3, the solution of problem (P h), i.e. the sum of these two graphs. We
see that the influence of the corrector increases with time. Figure 3 shows the
dynamic behaviour of the plate for which 2h/R = 1/10; for this case p0 =
0.794 · 104 [rad/sec]. In Figs. 1 and 2 the ratio 2h/R = 1/5; then p0 = 3.176 · 104

[rad/sec]. Let us notice that these graphs represent the first terms of the suitable
series.

Let us notice that these graphs represent the first terms of the suitable series.

5. Concluding remarks

Plate theories are two-dimensional ones and present only an approximation to
exact three-dimensional solutions. In order to approximate the two-dimensional
solution, one can include higher-order terms (correctors) of displacements and
stresses. A general procedure for isotropic and orthotropic dynamic linear elastic
plates involving first-order correctors was developed in [9, 12]. In the present
paper we showed the influence of the displacement corrector on the dynamic
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response of a circular plate. The analysis performed does not reveal the effect
of the boundary layer. The last one was studied in [2] where the asymptotic
expansion of displacements included also specific odd terms, responsible for the
boundary layer phenomenon.

Appendix

To facilitate the reading of the paper, in the Appendix we gather basic results
pertaining to the dynamic asymptotic model of a thin linear elastic plate made
of an isotropic material. For details the reader is referred to [9, 12]. In our paper
[12] the following notations are used: Bε = Ω × [−ε, ε] is the region occupied by
the undeformed plate and 2ε is the plate thickness. The boundary of the plate
∂Bε = Γ ε

0 ∪ Γ ε
+ ∪ Γ ε

−, where Γ ε
0 = Γ × [−ε, ε], Γ ε

± = Ω × {±ε}, Γ = ∂Ω; Ω
denotes the midplane of the plate. E, ν are isotropic material constants. The
quantities σij , U and γij(U) denote the stress tensor, the displacement vector
and the linearized strain tensor, respectively. Obviously, these quantities depend
on the space coordinate x and time t. Here (·)′ = ∂(·)/∂ t, etc. The initial data
εŨ,ε Ṽ are prescribed. εf , εg are the body forces and the external surface forces.

Using the method of asymptotic expansion [1, 9, 11–12] it is convenient to
work with the fixed domain, say B = Ω × (−1, 1). To this end, for ε > 0 we
define the mapping, cf. [12],

(A.1) F ε : x = (x1, x2, x3) ∈ B −→ F ε(x) = (x1, x2, εx3) = xε∈Bε.

So, for the scaled displacement field Uε we have the relationship:

(A.2) Uε = (U ε
1 , U ε

2 , U ε
3 ) = (U1, U2, ε U3).

Obviously, also other fields, i.e. stresses and loadings are scaled, cf. [9, 11–12].
The scaled stresses, body forces and loadings are called σε, f ε and gε respec-
tively.

Passing to the variational formulation of the problem and the asymptotic
analysis, cf. [1, 9, 12], we introduce the spaces of stresses and displacements
Σ = L2(B, E

3
s), X = X12 × X3, where

(A.3)

X12 =

{
V ∈ H1(B)2 :

1∫

−1

Vα dx3 = 0,

1∫

−1

x3 Vα nα dx3 = 0 on Γ

}
,

X3 =

{
V3 ∈ H1(B) :

1∫

−1

(1 − x2
3)V3 dx3 = 0 on Γ

}
, α = 1, 2.



28 A. Sławianowska, J. J. Telega

The variational formulation of the isotropic plate dynamics (after scaling) has
the form:

Problem (Pε)

Find (σε,Uε) ∈ L∞(0, T ; Σ × X), such that Uε ′ ∈ L∞(0, T ; L2(B)3) and

(A.4) ∀ τ ∈ Σ, Aε(σε, τ ) + B(τ ,Uε) = 0,

(A.5) ∀V ∈ X, − ̺ (U ε ′′
3 , V3) − ̺ ε2 (U ε ′′

α , Vα) + B(σε,V) = F 0(V), (Pε)

(A.6) Uε(x, 0) = Ũε(x), Uε ′(x, 0) = Ṽε(x), x ∈ B.

Here (U ε ′′
α , Vα) =

∫

B

U ε ′′
α Vα dx. The forms Aε, B and F 0 are defined as follows:

(A.7)

∀{σ, τ} ∈ Σ × Σ,

Aε(σ, τ ) = A0(σ, τ ) + ε2 A(2)(σ, τ ) + ε4 A(4)(σ, τ ),

A0(σ, τ ) =
1 + ν

E

(
σαβ , ταβ

)
−

ν

E

(
σµµ, τρρ

)
,

A(2)(σ, τ ) = 2
1 + ν

E

(
σα3, τα3

)
−

ν

E

((
σ33, τρρ

)
+

(
σµµ, τ33

))
,

where (·, ·) denotes the scalar product in L2(B);

(A.8) B(σ,V) = −

∫

B

γij(V)σij dx , F 0(V) = −

∫

B

f0
i V i dx−

∫

Γ±

g0
i V i dΓ,

∀σ ∈ Σ, ∀V ∈ H1(B)3.

We assume the asymptotic expansions of {σε, Uε} as follows:

(A.9)
σε = σ0 + ε2 σ(2) + · · · ,

Uε = U0 + ε2 U(2) + · · · .

Performing now the asymptotic analysis, i.e. substituting (A.9) into (A.4) and
(A.5), we arrive at problem (P0) linked with {σ0,U0} and problem (P2), linked
with {σ(2),U(2)}, cf. [9, 12].

The solution {σ(2),U(2)} of problem (P2) yields the first corrector to {σ0,U0}.
We limit ourselves to these two asymptotic problems. It is well-known that
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U(2) does not satisfy, in general, the homogeneous boundary condition on Γ 1
0 ,

[9, 11–12]. We observe that the boundary conditions involved in the X space
(A.3) are satisfied only in an averaged sense. To proceed further we introduce
two spaces

(A.10)
XKL = {U | γα3(U) = 0, γ33(U) = 0 },

S = {σ ∈ Σ | τα3 = 0, τ33 = 0 }.

Problem (P0f)

(I) For U0
3 ∈ L∞(0, T ; H2

0 (Ω)), U0 ′
3 ∈ L∞(0, T ; L2(Ω)) we get

(A.11) 2̺U0′′
3 +

2

3

E

1 − ν2
△2U0

3 =

1∫

−1

f0
3 dx3 + g0+

3 + g0−
3 + ∂α(g0+

α − g0−
α );

U0
α = u0

α − x3 ∂αU0
3 ,(A.12)

U0
3 (0) = Ũ0

3 , U0 ′
3 (0) = Ṽ 0

3 .(A.13)

(II) For u0 ∈ L∞(0, T ; H1
0 (Ω)2), we have

(A.14) [ K u0, v] = F 0(−v, 0), ∀v ∈ L∞(0, T ; H1
0 (Ω)2),

(A.15)
[
Ku,v

]
:=

2E

1 − ν2

[
(1 − ν)γαβ(u) + ν γµµ(u)δαβ , γαβ(v)

]
,

α, β, λ = 1, 2,

where [·, ·] denotes the scalar product in L2(Ω).

Problem (P2f)

From the general formulation of (P 2f), cf. [12], one can derive expressions
for the displacement vector U(2)) ∈ L∞(0, T ; X):

(A.16) U (2)
α = u(2)

α − x3 ∂αu
(2)
3 +

1

2

ν

1 − ν
x2

3 ∂αγµµ(uo)

−
1

1 − ν
∂α△uo

3

[
x3 +

1

3
x3

3

(ν

2
− 1

)]
, u0

3 ≡ U0
3 ,

(A.17) U
(2)
3 = u

(2)
3 −

ν

1 − ν
x3 γµµ(uo) +

1

2

ν

1 − ν
x2

3 △u0
3.
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(III) For u(2) ∈ L∞(0, t;H1(Ω)) we obtain the in-plane equation (in Ω×(0, T ))
with boundary condition

(A.18) Ku(2) = − 2̺u0 ′′ +
1

3

Eν

(1 − ν2)(1 − ν)
grad△γµµ(u0)

+
ν

1 − ν
grad

1∫

−1

σ0
33 dζ,

u(2)
α = −

ν

6(1 − ν)
∂αγµµ(u0) on Γ × (0, T ).

(IV) For u
(2)
3 ∈ L∞(0, T ; H2(Ω)) we derive the plate bending equation (in

Ω × (0, T )) with boundary and initial conditions:

(A.19) 2 ̺u
(2) ′′
3 +

2

3

E

1 − ν2
△2 u

(2)
3

=
34 − 14ν

15(1 − ν)
̺△u0 ′′

3 −
ν

1 − ν
△

1∫

−1

(x3

x3∫

−1

f3 dx3)

+
3ν − 8

10(1 − ν)
△




1∫

−1

fo
3 dx3 + go+

3 + go−
3 + ∂α(go+

α − go−
α )


 ,

u
(2)
3 = −

ν

10 (1 − ν)
△u0

3 on Γ × (0, T ),(A.20)

∂nu
(2)
3 = −

8 + ν

10 (1 − ν)
∂n △u0

3 on Γ × (0, T ),(A.21)

u
(2)
3 (0) = ũ

(2)
3 , u

(2) ′
3 (0) = ṽ

(2)
3 , x ∈ Ω.(A.22)
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