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THE FOLLOWING FEATURES of the symmetric Lamb modes in an elastic waveguide
are well known:

1. There exists no mocie with phase speed less than CR.
2. There is only one mocie whose speed asymptotically approaches CR.
3. A horizontal line above c = CT (including the line c = CL) cannot be an

asymptote to any of the modes.
4. Phase speed of all modes, except the lowest mocie, approaches CT as the fre-

quency becomes very large.
The above features characterize the spectrum which is obtained numerically or exper-
imenta"y but are not Ju"y understood ana'ytica"y. We analyze the Rayleigh-Lamb
equation and provide analytical explanation for the above features.

1. Introduction

CONSIDER AN INFINITE isotropic plate of thickness 2h characterized by the
phase speeds CT and CL, respectively, of the transverse and longitudinal bulk
waves. Let (AJ and k denote the frequency and the wave number of a wave which
propagates in a direction parallel to the plate surfaces which are assumed to be
free of traction. The dispersion relation for the symmetric mo des is given by [1]

(1.1) ~~ = _-=:!J!.~,
tan(ph) (q2 - k2)2

where ~2
(1.2) p = 2 - k2,

CL

/w2-~(1.3) q = V 4 - k2.



158 F. AHMAD

The corresponding dispersion relation for the antisymmetric mo des is ob-
tained from Eq. (1.1) by interchanging p and q on the left-hand sicie of the
equation.

Equation (1.1) is known as the Rayleigh-Lamb equation [2, 3]. Dispersion
curves, expressing the circular frequency w or the phase speed c in terms of the
wave number k, are obtained numerically. Sketching of these curves is facilitated,.
to a great extent, by Mindlin's method of bounds [4].

In 1973, UBERALL, while discussing the spectrum for a free aluminum plate,
marle the following observation [5]: "As kw tends to infinity (which includes the
case of the elastic half-space bounded by vacuum), the lowest modes So and ao
are seen to converge, and to coincide with the Rayleigh velocity CR on the free
elastic surface, while all the higher modes (both Si and ai) seem to approach
the transverse hulk speed CT. If CT is actually the limit of all these dispersion
curves, then the longitudinal hulk speed CL does not seem to be similarly rep-
resented as a limit ing value of any Lamb wave speeds. This point remains to
be investigated". Although a discussion of the Lamb spectrum can be found in
practically every graduate text-book on elastic waves (see, for example, [1,6, 7])
and hundreds of other places in the literature, it appears that main features
of the spectrum, alluded to by Uberall nearly three decades ago, still await an
analytical explanation.

In this paper we shall analyze Eq. (1.1) for the symmetric modes. Analysis
of the equation dealing with the antisymmetric mo des runs along similar lines.
We shall attempt to find analytical answers to the following questions:

1. Why there is no mocie with velocity smaller than CR?
2. Why does the velocity of the lowest mocie, and only that of the lowest

mocie, asymptotically approach CR?
3. Why no mocie has cL as the limiting speed?
4. Why do the dispersion curves for all modes, except the lowest one, approach

the line c = CT as the frequency becomes very large?

2. Dispersion curves

Defining
w(2.1) c = k' u = kk,

we rewrite Eq. (1.1) in the form[~2 ] ~2 ~2 tan u 2 - 1 -4 ~ - 1 - - 1

(2.2) q, = L ~ .

tan[u~] (~-2)
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In order to find the dispersion curves, it is usual to fix the frequency (AJ in
Eq. (1.1) and scan the equation for the values of kwhich satisfy the equation.
We shall adopt an alternative approach in which we fix a value of the phase
velocity, c, in Eq. (2.2) and look for the values of u. The task is facilitated by
the fact that the right-hand side of Eq. (2.2) is a function of c only.

When O < c < CT, both functions under the square root sign are negative.
Defining

(-~ [-~ 4a(c) (j(c)(2.3) a(c) = V 1-~, (j(c) = V 1- q' 'Y(c) = (1 + a2 (c))2'

we can write Eq. (2.2) in the form

(2.4) tanh(ua) =
tanh(u{j) 'Y,

the dependence of a, (j and 'Y on c being suppressed for simplicity.
The function tanh x is an increasing function of its argument. Since

(2.5) (j(c) > a(c), O < c < CT,

and u > O, we conclude that

(2.6) the left-hand side oj Eq. (2.4) is less than unity.

On the other hand, it is well known that the Rayleigh equation

(2.7) 4a(c){j(c) - (1 + (a(c))2)2 = O,

has a unique solution in (O, CT). Denote the left-hand side of (2.7) by J(c). A
unique solution ofthe above equation implies that J(c) changes signonly ance in
the interval (O, CT), at the point c = CR. It is easy to verify that for O < c < CR,
J(c) has the positive sign while for CR < c < cr, the function is negative. Thus

'Y(c) > 1, O < c < CR,

(2.8) 'Y(c) = 1, c = CR,

'Y(c) < 1, CR < c < cr.

It is clear from statements (2.6) and (2.8)1 that Eq. (2.4) cannot be satisfied
if O < c < CR. Thus no mode exists whose phase speed is less than CR. This
answers the first question raised in the introduction.
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If U « 1, we can use the approximation tanu ~ u, to obtain from Eq. (2.2)

(2.9) (2-~)2=4(1-~).

The above equation has the solution

(2.10) c = 2CTR,

where I';, = CL/CT. Equation (2.10) gives the velocity, near the cut-off point, of
the only mo de which exists for wavelengths large compared with the depth, 2h,
of the plate. This is the velocity given by the element ary theory for extensional
motions of the plate.

When c = CL, Eq. (2.2) is satisfied by

n7f

(2.11) u = I_? l' n = 1,2,3 V 1';,2 - 1

This means that there are infinitely many dispersion curves, which intersect
the line c = CL. For CT < c < CL, one of the radicals in Eq. (2.2) is real, while

the other is imaginary. For large u,

tanh [..nJ ~ 1,

and Eq. (2.2) becomes

~ 2 R 2

42-11--
[ 1~2-: ] Ci' ci

(2.12) tan uy ~ - 1 = -l~-=r.
The above equation has infinitely many solutions for every c, cr < c < CL.

There are infinitely many mo des in this domain. From this observation it follows
that the lin e c = CL, or for that matter, any line c = CI, with cI > CT, cannot be

an asymptote to any of the modes because, if the n-th marle did have CI as the
limiting speed, any horizontal line between CT and CI would intersect at most
(n - 1) modes (the dispersion curves cannot intersect), but this contradicts the

fact that there are infinitely many modes in this domain. This answers the third
question.
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Now write Eqo(2.2) in the form

tan(u~) -4~ ~(2013) ~ = 2 tan (U 2 - 1) .
c2 (C2 ) cL --1 2-2

4 Cr

When c -³ Cr, the above equation reduces to

(2.14) u = 4 R tanh ( tiR) o

Equation (2.14) has the unique positive root Uo at the point where the lowest
mode crosses the lilie c = CT. Let capproach Cr from above in Buch a manner
that

(2015) ~ = c « lo

If addltionally u is large, an assumption justified a posteriori by Eqo (2.19),
Eqo (202) becomes, to the first order in c,

(2.16) tan(cu) = 4c R.

Hence

(2.17) cu=tan-l (4eR) +n7r, n=O,1,2,.00

or

(2.18) cu~4cR+n7r, n=O,1,2,...

or

o o 7r o 27r(2.19) u = u , u + -, u + -, ...
c c

where

uo=4R.
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Equation (2.17) was obtained under the assumption u » 1 but this will not
hold when u = uD. Hence the first term of the sequence on the right-side of (2.19)
must be dropped. Prom Eq. (2.19) it is clear that all mo des with the exception
of the lowest one approach the line c = CI' asymptotically. This happens because
we can take c: arbitrarily smalI. This answers the fourth question.

When CR < c < CT, both radicals in Eq. (2.2) are imaginary and we write
the equation in the form

(2.20) tanh(au) - = O
tanh({3u) 'Y ,

where, a, (3 and 'Y have been defined above. Denóte the left-hand side of (2.20)
by g(u). Prom (2.8)3 'Y < 1 for the range of c under consideration, alBo

a(2.21) g(O+) = fi - 'Y,

and in the limit u -+ 00

(2.22) lim g(u) = 1 - 'Y> O.
u-+oo

It is easily checked that g(O+) appearing in Eq. (2.21) will be negative as
long as

c < 2CTR,

which is true in the present case. Since the function g(u) is continuous on [O, 00)
and it changes sign ance in the interval, we conclude that for every c between
CI' and CH, there is a unique solution of Eq. (2.20). When c -+ CR from above
'Y(c) -+ 1-, but from (2.20) it is clear that this caD happen only if both au
and (3u approach infinity. Hence when c is close to CH, both exp(--au) as well as
exp(-{3u) will be smalI. In this approximation

1 - e-2au
(2.23) tanh(au) = 1 2 ~ 1 - 2e-2au,

+ e- au

similarly

(2.24) tanh({3u) ~ 1 - 2e-2{Ju,

and

tanh(au) ~ 1 - 2 -2au 2 -2{Jutanh({3u) - e + e ,

(2.25) ~ 1 - 2e-2au (1 - e-2({J-a)u) ,

~ 1 - 2e-2au,
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since {3 > a and u is assumed to be large. From Eqs. (2.20) and (2.25) we get

1 (1 - ' )(2.26) u=-~ln ~ .

Equation (2.26) gives an analytical expression for u in terms of c when c is close
to CR. In this approximation 1 - , will be a smalI positive number and u will be

very large. In the limit c -t CR, we have u -t 00. This is the well-known result

that the limit ing velocity of the lowest mocie is the speed, CR, of the Rayleigh

wave on the surface of a half-space. This answers the last remaining question i. e.

the second question raised in the introduction.
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FIG. 1. Calculated dispersion curves for the first five syulmetric modes of an aluminum
plate, as functions of the normalized frequency. .

In Fig. 1, we have plotted the dispersion curves for aluminum giving the
phase velocity as a function of the normalized frequency hw and in Fig. 2, we
have plotted the same curves as functions of the dimensionless wave number
kk. However, Fig. 2 has an advantage in that, in the middl.e part of the spec-
trum, say between CT and 1.9cT, any horizontalline intersects the modes, except
the lowest one, at equidistant points. This point has been discussed in same
detail in [8].



164 F. ARMAD

2.

f-
U

U

>-
~

g 1.5

~
'O
Gl
N

~

~
O 0.5
Z

2 4 6 8 10 12 14 16
Dlnes;~ess ~ II.IIte.- hk

FIG. 2. Calculated dispersion curves for the first five symmetric modes of an aluminum
plate, as functions of the dimensionless wave number.

3. Conclusions

We have discussed salient features of the dispersion curves of the Rayleigh-
Lamb spectrum for an isotropic plate. We have found answers to som e of the
pertinent questions raised by UBERALL three decades ago [5].

The spectrum of a circular cylinder has many features common with the
spectrum for a plate. A brief analysis of this problem has been presented else-
where [9].
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