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Imperfect transmission conditions are evaluated in the case of weakly compress-
ible elastic interphase between different bonded elastic materials. It is shown that
the corresponding conditions can be different in comparison with those for the elastic
compressible interface.

1. Introduction

Composite materials are usually considered as piecewise homogeneous solids
with perfect bonding between different phases of the composites (e.g. [2, 3]). On
the other hand, such structures contain, in fact, thin intermediate layers match-
ing together the materials of the phases. Depending on the intermediate zone
features (for example, soft or stiff interfaces), the respective transmission con-
ditions evaluated by asymptotical methods may take essentially different forms
[1, 4, 5, 8]. These transmission conditions have been evaluated, in fact, under
the assumption that elastic constants of the intermediate layer are comparable
in values: µ ∼ λ. However, if the interphase material is weakly compressible then
µ/λ << 1 and the earlier asymptotic analysis can fail. In [6], it has been shown
by FEM-analysis that the known imperfect transmission conditions for the com-
pressible interface cannot be always applied for the weakly compressible one.
The aim of this paper is to evaluate the respective transmission conditions for
the weakly compressible inhomogeneous elastic interphase. We restrict ourselves
to the 2D plane problems. It is important to note that for the so-called Mode III
problem, the corresponding transmission conditions have the same forms [1, 5]
in the cases of the compressible and weakly compressible interfaces, because this
problem does not depend on the value of Poisson’s coefficient ν of the interphase.
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2. Asymptotic evaluation of the transmission conditions

Let us consider a model plane problem for bimaterial elastic solid with an
intermediate layer of constant thickness Ωh = Ω+ ∪ Ω− ∪ Ω, where Ω± =
{(x, y),±y ≥ h}, Ω = {(x, y), |y| ≤ h} (see Fig. 1). We assume throughout the
paper that layer Ω is inhomogeneous and isotropic, while the bonded materials
are isotropic and homogeneous.

Fig. 1. Bimaterial solid with a thin intermediate zone.

Let u±(x, y) and u(x, y) be the vectors of displacements: u± = [u±
x , u±

y ]⊤,

u = [ux, uy]
⊤. They satisfy the Lamé equations in the corresponding domains :

(2.1) L±u± = 0, (x, y) ∈ Ω±, Lu = 0, (x, y) ∈ Ω,

where differential operators L± and L are defined in the following manner:

(2.2) L± =

(

λ± + 2µ±)D2
x + µ±D2

y (λ± + µ±)DxDy

(λ± + µ±)DxDy (λ± + 2µ±)D2
y + µ±D2

x,

)

,

(2.3) L =

(

Dx(λ + 2µ)Dx + DyµDy DxλDy + DyµDx

Dyλ + Dx + DxµDy (λ + 2µ)Dy + DxµDx

)

;

here by Dx, Dy are denoted the respective partial derivatives.
On the exterior boundary ∂Ωh some boundary conditions are assumed to be

satisfied:

(2.4) B±u± = 0, (x, y) ∈ ∂Ωh ∩ ∂Ω±, Bu = 0, (x, y) ∈ ∂Ωh ∩ ∂Ω.
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We do not state precisely here the forms of boundary operators B± and B, be-
cause they will not play any role in the formal asymptotic procedure. However,
such information is absolutely necessary to prove the final estimate for the as-
ymptotic solution obtained.

Along the interior boundaries y = ±h the perfect transmission conditions
should be satisfied:

(2.5) u±(x,±h) = u(x,±h), σ
(y)
± (x,±h) = σ

(y)(x,±h),

where

(2.6) σ
(y)
± (x, y) = M±u±(x, y), σ

(y)(x, y) = Mu(x, y),

(2.7) M± =

(

µ±Dy µ±Dx

λ±Dx (λ± + 2µ±)Dy,

)

M± =

(

µDy µDx

λDx (λ + 2µ)Dy,

)

.

We assume that the intermediate layer is essentially thinner in comparison with
the characteristic size of the body: h ≪ L. This allows us to introduce into the
problem a small dimensionless parameter ǫ ≪ 1 rescaling the variable y within
the interphase (x, y) ∈ Ω:

(2.8) y = ǫξ, ξ ∈ [−h0, h0], h0 ∼ L.

In this paper we consider a practically incompressible layer that can be de-
fined in terms of the Poison coefficient in the following manner:

(2.9) ν(x, y) = 0.5 − ǫν0(x, y), ν0 > 0.

Then in terms of the Lamé coefficients of the interphase one can conclude that:

(2.10) λ(x, y) ∼ ǫ−1µ(x, y).

2.1. Soft weakly compressible interface

When the anisotropic homogeneous interphase layer is essentially softer than
the matched materials and µ ∼ λ, the corresponding transmission conditions
have been evaluated in [1]. Here we analyze the soft inhomogeneous weakly
compressible isotropic interphase:

(2.11) µ(x, ǫξ) = ǫµ0(x, ξ), µ0 ∼ µ±.

Because the interphase under consideration is weakly compressible (2.9), one can
easily conclude from (2.10) and (2.11) that:

(2.12) λ(x, ǫξ) = λ0(x, ξ) ∼ µ0(x, ξ).
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Let us denote by w(x, ξ) = u(x, ǫξ) a solution within the rescaling layer
Ω0 = {(x, ξ), |ξ| ≤ h0}. In these new notations all operators can be rewritten as
follows:

(2.13) L = ǫ−2L0 + ǫ−1L1 + L2 + ǫL3, M = ǫ−1M0 + M1 + ǫM2,

where L0 = DξA0λ0Dξ, L3 = DxA3µ0Dx, M0 = A0λ0Dξ, M2 = A2µ0Dx,
and

(2.14)

A0 =

(

0 0

0 1

)

, L1 =

(

Dξµ0Dξ Dxλ0Dξ

Dξλ0Dx 2Dξµ0Dξ

)

,

M1 =

(

µ0Dξ 0

λ0Dx 2µ0Dξ,

)

,

(2.15) L2 =

(

Dxλ0Dx Dξµ0Dx

Dxµ0Dξ 0

)

, A2 =

(

0 1

0 0

)

, A3 = I + A0.

To evaluate the appropriate transmission conditions it is necessary to solve
within the intermediate domain Ω0 the following equation:

(2.16)
(

L0 + ǫL1 + ǫ2L2 + ǫ3L3

)

w = 0, (x, ξ) ∈ Ω0,

with the boundary conditions:

(2.17) u±(x,±ǫh0) = w(x,±h0),

(2.18) σ
(y)
± (x,±ǫh0) =

(

ǫ−1M0 + M1 + ǫM2

)

w|ξ=±h0
.

According to the standard procedure [8], solution within the corresponding
domains will be sought in the form of asymptotic series:

(2.19) w(x, ξ) =

∞
∑

j=0

ǫjwj(x, ξ), u±(x, y) =

∞
∑

j=0

ǫju±

j (x, y).

As a result, a sequence of the BVPs determining the respective terms in
asymptotic expansions (2.19) will be found. Thus for the first term w0 one can
obtain:

(2.20) DξA0λ0Dξw0 = 0, (x, ξ) ∈ Ω0,
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(2.21) u±

0 (x,±0) = w0(x,±h0),

(2.22) 0 = A0λ0Dξw0|ξ=±h0
.

From (2.20) and (2.22) it immediately follows that the only second component
of the vector w0 can be calculated at this step:

(2.23) w02(x, ξ) = a0(x), a0(x) = A0u
±

0 (x,±0),

where additionally the following necessary condition has to be satisfied

(2.24) A0

(

u+
0 (x,+0) − u−

0 (x,−0)
)

= 0,

which substitutes a part of the transmission conditions for the soft, weakly com-
pressible interface. The first component w01(x, ξ) will be found in the next step
only. Then the still unused part of the boundary condition (2.20) has to be taken
into account:

(2.25) A1

(

u±

0 (x,±0) − w0(x,±h0)
)

= 0,

where A1 = I − A0.
To obtain the next term of the asymptotic expansion (2.19) we need to solve

the following BVP:

(2.26) DξA0λ0Dξw1 + L1w0 = 0, (x, ξ) ∈ Ω0,

(2.27) u±

1 (x,±0) ± h0Dyu
±

0 (x,±0) = w1(x,±h0),

(2.28) σ
(y)±
0 (x,±0) = M0w1|ξ=±h0

+ M1w0|ξ=±h0
,

together with condition (2.25). In turn, Eq. (2.26) can be rewritten in the form:

(2.29) DξL4

(

w01

w12

)

≡ Dξ

(

µ0Dξ 0

λ0Dx λ0Dξ

)(

w01

w12

)

= 0.

As a result, one can find the first component of the vector w0 and the second
component of the term w1:

(2.30) w01(x, ξ) = a1(x) + b1(x)

ξ
∫

0

µ−1
0 (x, t)dt,
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(2.31) w12(x, ξ) = c1(x) + d1(x)

ξ
∫

0

dt

λ0(x, t)

− ξDxa1(x) − Dx



b1(x)

ξ
∫

0

(ξ − t)dt

µ0(x, t)



 .

Substituting (2.30) and (2.31) into (2.25) and (2.27), one respectively obtains:

(2.32) u±

01(x,±0) = a1(x) + b1(x)

±h0
∫

0

dt

µ0(x, t)
,

(2.33) σ
(y)±
0 (x,±0) = L4[w01, w12]

⊤|ξ=±h0
= [b1(x), d1(x)]⊤.

Conditions (2.25), (2.33) and the condition for the second component in
(2.27) allow us to calculate the unknown functions a1(s)−d1(s) in (2.30), (2.31).
However, it is possible only under additional conditions with respect to the first
term of the external solution:

(2.34) σ
(y)
0+(x,+0) = σ

(y)
0−(x,−0),

(2.35) u+
0 (x,+0) − u−

0 (x,−0) = τ1(x)A1σ
(y)
0 (x, 0),

where, in order to evaluate the last conditions, we have taken into account
Eq. (2.24) and

(2.36) τ1(x) =

h0
∫

−h0

dt

µ0(x, t)
=

h
∫

−h

dy

µ(x, y)
.

The iterative process can be continued to construct the solution with an
arbitrary degree of accuracy.

On the other hand, if we restricts ourselves to the first term of the asymptotic
expansion (2.19), Eqs. (2.34), (2.35) will substitute the sought for transmission
conditions for the weakly compressible interface.

2.2. Weakly compressible interface

Let us assume now that the shear modulus of the interface is comparable in
value with those of the bonded materials:

(2.37) µ(x, ǫξ) = µ0(x, ξ) ∼ µ±.
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In the case when additionally λ ∼ µ, the corresponding transmission conditions
[8] coincide with the classical ones (perfect or ideal interface). Here we extend
the results to the weakly compressible interface. Then from (2.10) and (2.37) it
follows that:

(2.38) λ(x, ǫξ) = ǫ−1λ0(x, ξ), λ0 ∼ µ0.

Taking these new estimates into account instead of (2.11) and (2.12), Eq. (2.16)
will be still valid as well as condition (2.17), while condition (2.18) will take
other form:

(2.39) σ
(y)
± (x,±ǫh0) =

(

ǫ−2M0 + ǫ−1M1 + M2

)

w|ξ=±h0
.

Solution to the problem will be still sought for in form of the asymptotic
expansion (2.19). For the first term, the problem (2.20)–(2.22) is still actual
and the corresponding solution and part of the transmission conditions have
been found in (2.23) and (2.24), respectively. For the second term, the problem
(2.26), (2.27) and

(2.40) 0 = M0w1|ξ=±h0
+ M1w0|ξ=±h0

= L4[w01, w12]
⊤|ξ=±h0

,

instead of (2.28) holds true. Corresponding solutions (the first component of the
vector w0 and the second component of the term w1) are easily obtainable from
(2.30)–(2.35):

(2.41) w01(x, ξ) = a1(x), w12(x, ξ) = c1(x) − ξDxa1(x).

Unknown functions a1(x), c1(x) (b1(x) = d1(x) = 0) should be found from condi-
tions (2.27), (2.32) and (2.33). Then additionally, one more necessary condition
has to be satisfied among others:

(2.42) A1

(

u+
0 (x,+0) − u−

0 (x,−0)
)

= 0,

which together with (2.24) gives the transmission condition:

(2.43) u+
0 (x,+0) − u−

0 (x,−0) = 0.

For the third term, the following BVP has to be solved:

(2.44) DξA0λ0Dξw2 + L1w1 + L2w0 = 0, (x, ξ) ∈ Ω0,

(2.45) u±

2 (x,±0) ± h0Dyu
±

1 (x,±0) +
h2

0

2
D2

yu
±

0 (x,±0) = w2(x,±h0),
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(2.46) σ
(y)±
0 (x,±0) = M0w2|ξ=±h0

+ M1w1|ξ=±h0
+ M2w0|ξ=±h0

.

Equation (2.44) can be rewritten in the form

(2.47) DξL4[w11, w22]
⊤ = −Dξµ0[Dxw02, 2Dξw12]

⊤.

Corresponding solution is then of the form:

(2.48) w11(x, ξ) = a2(x) + b2(x)

ξ
∫

0

µ−1
0 (x, t)dt − ξDxw02(x),

(2.49) w22(x, ξ) = c2(x) + d2(x)

ξ
∫

0

dt

λ0(x, t)
− ξDxa2(x)

− Dx



b2(x)

ξ
∫

0

(ξ − t)dt

µ0(x, t)



+
ξ2

2
D2

xw02(x) + 2Dxa1(x) ·
ξ
∫

0

µ0(x, t)dt

λ0(x, t)
.

Substituting this solution in (2.46) one can obtain:

(2.50) σ
(y)±
0 (x,±0) = [b2(x), d2(x)],

or, that it follows immediately:

(2.51) σ
(y)+
0 (x,+0) = σ

(y)−
0 (x,−0).

Unknown functions a2(x) – d2(x) should be found from the equations for the first
and the second components of (2.27) and (2.45), respectively and from (2.50).

Condition (2.51) together with (2.43) substitute the classical transmission
conditions that completely coincide with those for compressible interphase in
the case when the Lamé moduli of all materials are comparable in values [8].

2.3. Stiff weakly compressible interface

The last case may happen if the shear modulus of the intermediate thin layer
µ is essentially greater than µ±:

(2.52) µ(x, ǫξ) = ǫ−1µ0(x, ξ), µ0 ∼ µ±.

Then from (2.10) one can conclude that:

(2.53) λ(x, ǫξ) = ǫ−2λ0(x, ξ), λ0 ∼ µ0.
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As a result, the BVP (2.16), (2.17) and

(2.54) σ
(y)
± (x,±ǫh0) =

(

ǫ−3M0 + ǫ−2M1 + ǫ−1M2

)

w|ξ=±h0
,

must be considered. For the first two terms, absolutely the same line of reasoning
should be repeated as in the previous subsection. Thus, solutions (2.23), (2.41)
are still valid and the transmission conditions (2.43) are satisfied. For the third
term, the problem (2.47) with boundary conditions:

(2.55) 0 = M0w2|ξ=±h0
+ M1w1|ξ=±h0

+ M2w0|ξ=±h0
,

instead of (2.46) should be solved. Then, corresponding solution can be easily
obtained from (2.48), (2.49) where b2(x) = d2(x) = 0, as it follows from (2.46),
(2.50) and (2.55).

The fourth term has to be found from the following problem:

(2.56) DξA0λ0Dξw3 + L1w2 + L2w1 + L3w0 = 0, (x, ξ) ∈ Ω0,

(2.57) u±

3 (x,±0) ± h0Dyu
±

2 (x,±0)

+
h2

0

2
D2

yu
±

1 (x,±0) ± h3
0

6
D3

yu
±

0 (x,±0) = w3(x,±h0),

(2.58) σ
(y)
0±(x,±0) = M0w3|ξ=±h0

+ M1w2|ξ=±h0
+ M2w1|ξ=±h0

.

Equation (2.56) can be eventually rewritten in the following manner:

(2.59) Dξ

{

L4

(

w21

w32

)

+ µ0

(

Dxw12

2Dξw22

)}

= −4Dxµ0Dx

(

w01

0

)

,

while boundary condition (2.58) takes the form:

(2.60) σ
(y)
0±(x,±0) =

{

L4

(

w21

w32

)

+ µ0

(

Dxw12

2Dξw22

)}

∣

∣

ξ=±h0

.
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Equation (2.59) is integrated to give:

(2.61)

w21(x, ξ) = a3(x) +

ξ
∫

0

b3(x)

µ0(x, t)
dt

−
ξ
∫

0

Dxw12(x, t)dt −
ξ
∫

0

4dt

µ0(x, t)

t
∫

0

Dxµ0(x, s)Dxw01(x, s)ds,

w32(x, ξ) = c3(x) +

ξ
∫

0

d3(x)

µ0(x, t)
dt

−
ξ
∫

0

Dxw21(x, t)dt − 2

ξ
∫

0

µ0(x, t)

λ0(x, t)
Dtw22(x, t)dt,

where functions a3(x) − d3(x) should be calculated from Eqs. (2.45) and (2.57)
for the first and second components, respectively and from equation (2.58). Ad-
ditional solvability condition is then of the form:

(2.62) σ
(y)
0+(x,+0) − σ

(y)
0−(x,−0) = −Dxη(x)DxA1u0(x, 0),

where conditions (2.20) and (2.43) have been taken into account and

(2.63) η(x) = 4

h0
∫

−h0

µ0(x, t)dt = 4

h
∫

−h

µ(x, y)dy.

3. Discussions and conclusions

Let us summarize all the results obtained in this paper and compare them
with those known for the compressible interface.

Soft interface

In this case the transmission conditions for the weakly compressible interface
take the form:

(3.1) [σ(y)] = 0, [u] = τ1A1σ
(y), A1 =

(

1 0
0 0

)

,

while those for the compressible interface can be evaluated (see [1, 6]) to give:

(3.2) [σ(y)] = 0, [u] =

(

τ1 0
0 τ2

)

σ
(y),
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where

(3.3) τ1(x) =

h
∫

−h

dy

µ(x, y)
, τ2(x) =

h
∫

−h

(1 − 2ν(x, y))dy

2(1 − ν(x, y))µ(x, y)
.

Interface of comparable properties

The corresponding transmission conditions are the same for both weakly
compressible and compressible interphases:

(3.4) [u] = 0, [σ(y)] = 0.

Stiff interface

In the case of weakly compressible interface, the corresponding transmission
conditions are of the form:

(3.5) [u] = 0, [σ(y)] = −Dx (η1(x)DxA1u) .

However, as it is shown in [6], the transmission conditions for the compressible
interface take a slightly different form:

(3.6) [u] = 0, [σ(y)] = −Dx (η̄(x)DxA1u) ,

where

(3.7) η(x) = 4

h
∫

−h

µ(x, y)dy, η̄(x) =

h
∫

−h

2µ(x, y)dy

1 − ν(x, y)
.

It is easy to observe that the transmission conditions (3.2) and (3.6), for-
mally speaking, transform to (3.1) and (3.5), respectively, when ν → 0.5. In
fact, τ2 = O(ǫ), η̄ = η + O(ǫ), when ν − 0.5 = O(ǫ). One can think, hence, that
the conditions (3.2) and (3.6) for the compressible interfaces can be simply used
in the case of weakly compressible interfaces. Although this is the case for the
comparable and the stiff interfaces, for the soft interface this may lead to an
essential error. This fact has been shown in [6] by the accurate FEM-analysis.
Moreover, application of the transmission conditions (3.2) in the case of weakly
compressible interface lead to a drastic consequence when the interface crack
problem with imperfect interface is under consideration. Namely, in this case
asymptotic behaviour exhibits different features with each of the transmission
conditions (3.2) and (3.1). For example, if the thickness of the interphase does
not decrease to zero at the crack tip then the only logarithmic stress singularity
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exists under assumption of the transmission conditions (3.2), while using the
conditions (3.1), the main stress component exhibits the square root stress sin-
gularity for the shear stress along the interface. Moreover, in any other direction
just all stress components manifest the square root singularity and the only next
asymptotic terms behave as a logarithm. For the general shape and/or mechan-
ical properties of the interphase near the crack tip, the structure of the solution
may have even more complex character. For details of this important feature,
the reader is referred to the paper [4]. As a mathematical explanation of this
phenomenon one can note that structures of the transmission conditions (3.2)
and (3.1) are different, so the formal convergence from (3.2) to (3.1) leads to the
singular perturbation of the interface crack problem.

Finally let us note that the transmission conditions obtained in the paper
as well as all others mentioned here are valid, as it follows from the asymptotic
procedure, only at a certain distance from the external boundary ∂Ω along the
imperfect interface. To take into account the local edge effects, it is necessary
to construct additionally the boundary layers modelling local behaviour of the
accurate solution for the dissimilar body with a thin interface near the body
boundary. In other words, exact forms of the boundary operators B± and B
in (2.4) have to be implemented in the analysis. The boundary layer solutions
decrease exponentially, so the domains, where they influence essentially the entire
solution, are very small. Decision whether such a correction is important or not
in the problem under consideration should be made depending on the aim of the
investigation. Some examples and advices concerning numerical estimates of the
boundary layer size have been presented in [7].
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