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On the asymptotic partition of energy in the theory of swelling
porous elastic soils
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THE CESARO MEANS of various parts of the total energy are introduced in the context
of the linear theory of swelling porous elastic soils. Then, the relations describing the
asymptotic behavior of the Cesaro means are established.

1. Introduction

IT 1S ACCEPTED that the swelling of soils, drying of fibers, wood, plants, paper,
etc. are problems concerning the porous media theory. Several recent articles de-
scribe the work on the subject and introduce theories for fluids infiltrating elastic
media (see [1, 2] and references therein). Most research, in this area, is devoted
to some modification of the classical diffusion theory [3]: solids are considered
be not to deformable, fluids incompressible and inertial forces are negligible.
So, the main physics are diffusion and solid transport. On the other, hand the
classical mixture theory approach has been applied to derive a comprehensive
macroscopic constitutive theory for swelling porous media (see [4, 5, 6, 7]). A pre-
sentation of the continuum theory of mixtures can be found in review articles by
BOWEN |[8], ATKIN and CRAINE [9, 10] and BEDFORD and DRUMHELLER [11].
In these works, constitutive equations and equations of motion, for mixtures
consisting of arbitrary number of fluids and elastic solids, have been obtained.
In [4], ERINGEN has developed a continuum theory for a mixture consisting
of three components: an elastic solid, viscous fluid and gas. The intended ap-
plications of the theory are in the field of swelling, oil exploration, slurries and
consolidation problems. The theory is relevant to problems in the oil exploration
industry, since oil is viscous and is usually accompanied by gas in underground
rocks, porous solid in slurries and muddy river beds. Consolidation problems in
the building industry, earthquake problems, swelling of plants and living tissues
and a plethora of other problems fall into the domain of mixture theory con-
sidered in [4]. It is also shown that the diffusion-type theories are special cases
of the present theory. We note that the theory can be extended in order to in-
corporate other effects, disregarded here. In this sense, Eringen pointed out: “In
some cases, it may be necessary to consider additional properties of mixtures.
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For example, elastic solid and/or viscous fluid may require the consideration of
memory effects. This is the case for viscoelastic materials..., dislocation problems
require consideration of non-local effects. In these problems, stress at a point
depends on strains at all points in the body. Plastic deformations of soils and
mechanics of sands are problems that require consideration of permanent de-
formations. These are crucial to the building industry. This divergence is made
here to point out to the vast field of mixture theories that are waiting future
developments.”

In the present paper we continue the study of fundamental qualitative prop-
erties of Eringen’s mixture theory [4], that began with the papers [12, 13, 14, 15].
Such studies are important to assess whether a given theory is mathematically
acceptable for use in a given physical problem. The purpose of this work is to
investigate the asymptotic partition of total energy within the context of isother-
mal linear theory of swelling porous elastic soils.

The question of partition of energy in the asymptotic form was first stud-
ied by LAX and PHILLIPS [16] and BRODSKY [17]. Further, this problem has
been studied by GOLDSTEIN [18, 19], DUFFIN [20], LEVINE [21]. In his anal-
ysis of the abstract wave equation, Goldstein applied the semigroup theory in
order to obtain an equipartition theorem stating that the difference of the ki-
netic energy and the potential energy vanishes as the time approaches infinity.
LEVIN [21] treated an abstract version of Goldstein’s approach by use of the
Lagrange identity method. His result represents a simplified proof that asymp-
totic equipartition occurs between the Cesaro means of the kinetic and potential
energies, a fact first demonstrated by GOLDSTEIN [19].

The asymptotic equipartition between the mean kinetic and strain energies
within the context of linear elastodynamics was established by DAY [22]. In the
classical linear theory of thermoelasticity, Chiritd [23] proved that the mean ther-
mal energy tends to zero as time goes to infinity and the asymptotic equipartition
occurs between the Cesaro means of the kinetic and strain energies.

This article describes the temporal behavior of solutions to the initial bound-
ary value problems associated with the isothermal linear theory of swelling
porous elastic soils. Using the method developed by Chiritd [23], we introduce
the Cesaro means of the kinetic, internal and dissipation energies. Then, with
the aid of some auxiliary Lagrange-Brun identities derived in [14], we establish
the relations that describe the asymptotic behavior of mean energies. In fact,
we prove that asymptotic equipartition occurs between the Cesaro means of the
kinetic and internal energies. Therefore, the results established by Day [22] and
Chirita [23], for elasticity and thermoelasticity, concerning Cesaro means of the
energies continue to hold (with. corresponding modifications) in the framework
of dynamic linear theory of swelling porous elastic soils.
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The method developed in [23] has also been used in [24] to study the temporal
behavior of solutions in the linear thermoelasticity of materials with voids.

2. Basic equations

We refer the motion of a continuum to a fixed system of rectangular Carte-
sian axes Ozy (k = 1,2,3). We shall employ the usual summation and differentia-
tion conventions: Latin subscripts are understood to range over integers (1,2, 3),
summation over repeated subscripts is implied, subscripts preceded by a comma
denote partial differentiation with respect to the corresponding Cartesian coor-
dinate, and a superposed dot denotes time differentiation.

We consider a body that at time ¢ = 0 occupies the bounded regular region B
of Euclidean three-dimensional space whose boundary is the regular surface dB.

We assume that B is occupied by a mixture consisting of three components:
an elastic solid, a viscous fluid and a gas. We use superscripts s, f,g to denote
respectively, the elastic solid, the fluid and the gas. Let pj, pg and pg denote the
densities at time ¢ = 0 of the three constituents, respectively. We consider the
fundamental equations for mechanical behavior of the mixture in the framework
of the linearized theory (see [4]). The equations of motion in the absence of the
body forces are

t5.; + o] +p! = pjis,
(2.1) t;i,j —-pif = péﬁ{,

9 _,9_ g:9
i — Pi = Pl

f

where t5., ¢/, and tfj are the partial stress tensors, p; and p{ are the internal

137 Yij
body forces and uf,u{ and v} are the displacement vector fields.
The constitutive equations for a homogeneous and isotropic mixture are

th = (— Z ol + /\eﬁr) bij + 2uej;,
a=f,9
= (—Ufeﬁr - > ofeel + A,,é{,) 8ij + 2uvel,

(2.2) a=f,9

9 s a_a .
t; = (—age,.r - E o’ err)éij,

a=f,9

b .
p;ﬁl = Z gab(ui —uf)) a=fag7

b=f.9
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where 0% (a = f,9), \, 1, 0® (a,b = f,9), M, i, €% (a,b = £, g) are constitutive
constants; d;; is the Kronecker delta; and e el and e . are defined by

15> €ij
1 1

(2.3) ey = E(uf] + uj’i) , elfj = E(U{J + qu»,i) , efj = i(uf,j +u§’i).

The coefficients in relation (2.2) have the following symmetries:
(2.4) o = O_ba gab gba a,b= f,

To the system of field equations we adjoin boundary conditions and initial
conditions. Many different types of boundary conditions are suggested in applica-
tions [8]-[11], [25]. We consider the following homogeneous boundary conditions:

ui =0, uzf =0, uf =0 on S; x [0,00),
(2.5) f s .
(L5 + 15+ t?i)n]- =0, u] —uf =0, v/ —uf =0 on 53 x[0,00),
where S; (1 = 1,2) are subsets of 0B such that 0B = S1USy, S1NSy = 0.
Moreover, we adjoin the following initial conditions:

uf(x,0) = af(x) , uf(x,0)=al(x), u!(x,0)=al(x),

2.6
(2.6) ! (x,0) = bi(x) , uf(x,0)=b{(x), u!(x,0) = bJ(x), x€ B,

where af, a { , al, b, bf b} are prescribed fields. We denote by (P) the initial-
boundary value problem deﬁned by the basic equations (2.1), the constitutive
equations (2.2), the geometrical equations (2.3), the boundary conditions (2.5)
and the initial conditions (2.6).

As was shown by ERINGEN [4], the local form of the Clausius-Duhem in-

equality implies that

(2.7) 3\, +2u, >0, p, >0,
and the following symmetric matrix is positive semi—definite
_ eff ¢la
(2.8) A= ( g9f g99 |0
so that the dissipation energy density ® defined by
(2.9) ® = Nelel +ouelel + D etu —uf)(ud — i),
ayb:fsg

is non-negative.
The internal energy density £ is defined by

(2.10) &= )\ene“ + weijel Z otekel, Z o%el 3J
a=f.g ab fi9
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3. Hypotheses and some preliminary results

Throughout this paper we shall assume the following:

(i) the densities pf, pg and pg are strictly positive;
ii) the following symmetric matrix is positive definite:
g Sy P

A+20 A A 0 0 0 -of —0o9

A d+2n A 0 0 0 -of -—0o9

A A A2 0 0 0 —of —of
0 0 0 20 0 O 0 0

(3-1) 0= 0 0 0 0 2u O 0 0 y

0 0 0 0 0 2z O 0

—of —of —of 0 0 0 =—off —gfs

—g9 —o9 —o9 0 0 0 —gf9 —g99

so, the internal energy density £ defined by (2.10) is positive;
(iii) the symmetric matrix A is positive definite, that is we have

(3.2) Em Y (W8 —u)(0f —0f) < Y £%(ug —uf)(al —if) <

a:f,g a=f’g

<éu Y (af —af)(uf - i),
a=f.9
for any 4] — u, where &, > 0 and £)s > 0 are the minimum and the maximum
eigenvalues of £%°, respectively.
Let us introduce the following energies:
the kinetic energy

(33) k=3 [(( X siswis)aw,

B a:slfyg

the internal energy

(3.4) Ut) = | E(t)dv,
/

the dissipation energy

(3.5) D(t) =/t/ ®(7)dv dr,
0B
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the total energy

(3.6) E(t) = K(t) + U() + D),
and
1 1 t
1 10-; f( ;gp3u$<t)u$(t>)dv +1 0/ [ |pelinedsin
B o=sf B

F el nedn) + 3 € (utn) - uilr)) () - i) | war.

ab=f,9

Now, we recall some preliminary integral identities of Lagrange-Brun type [26],
established in [14], that are essential in studying the temporal behavior of the
solutions of the initial-boundary value problem (P). For the readability of the
paper we prefer to give here the proofs. Thus, in the present context, the lem-
mas 1,2 and 3 derived in [14] are:

LEMMA 1. (Conservation law of total energy). For every (u;, u{ ,ud) satisfying
the equations of motion (2.1), the constitutive equations (2.2) and the geometrical
equations (2.3), we have

t
(3.8) E(t) = E(0) + /P(T,T)dT , t € [0,00)

0
where
(3.9) P(t,7) = / ( 3 t;‘i(t)a;’(r)> g,

8B a=s,f.g
P r o o f. From the relations (2.2) and (2.10) it follows that
(3.10) Z i€ = = + )\,,e" i+ 2u,,ef S
a=s,f.g

On the other hand, in view of (2.1)-(2.3) we have

(311) ) tfed = 23t< > pgudi )

a=s,f,g a=s,f,g

— S g — i) ad — i) (Zt%a?)’j.

ab=f,g9 a=s,f,9
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Then from the relations (3.10) and (3.11) we get

t
(3.12) gt ( > plugud + € + /<I>( )d’r) = < ¥ t;?;.ug) |
a=s,f,9 0 a=s,f,9 »J
By an integration of the relation (3.12) over B x [0, t], and by using the divergence
theorem and the relations (3.3)—(3.6) and (3.9), we obtain the identity (3.8) and
the proof is complete.
LEMMA 2. If (uf,u; :“1) satisfies the relations (2.1), (2.2) and (2.3), then for
every t € [0, 00)

t
dI
(3.13) +/ 7) +2D(7)]dT
dt
0
t T t
—2E(0)t — 2/ P(r,r)drdr + /W(T,T)dT.
00 0
where
(3.14) W(t,7) = /( Z t;‘,(t)uf‘(r))n] da .
OB a=s,f,g
O
P roof It follows from (2.2) and (2.10) that
(3.15) Y teed =26+ \elel, + 2p,elel.
a=s,f,g
By taking into account the relations (2.1)-(2.3) we obtain
(3.16) > t2ed = ( 3 pgudu ) 3 e (ad — af)(ul - uf)
a=s,f,g a=s,f,g a,b=f,9
+ E o + ( Z tiiu) 5

a= s,f,g a= s)fvg
Then the relations (3.15) and (3.16) imply

0
(3.17) §< Z PO Us U >+)\,,e“ JJ+2,u,,e f

a=s,f,g

+ Y ot - ) (W —u) = Y pgugu;’-zu( > t;;.ug) ;
)j

a,b= f) a=s,f,9 C!=S,f,g
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If we integrate relation (3.17) over B X [0, ] and use the divergence theorem and
the relations (3.3), (3.4), (3.7) and (3.14), then we get

t t
%(t) E %(O) +2 / [K(r) — U(r))dr + / W(r, 7)dr.
0

0

(3.18)

A combination of the relations (3.8) and (3.18) gives the identity (3.13) and the
proof is complete.

LEMMA 3. For every (uf,u{,u?) satisfying (2.1) to (2.3), the following iden-
tity holds

t

(3.19) %(t) = L(t)+A(t) + % /[W(t —1,t+7)=W(Et+T1,t—7)dr, t>0
0

where

a=8)f’g a=s’f}g

320) L=y / [ >, A OEr )+ Yo pa*uz'(O)u?(zt)]dv,
B
and

(3.21) A(t) =

[,\,,e{i(O)le-j(%) + 2uel;(0)el; (2)

+ D €"”<u§-’(0)—u5(0)) (u?(zt)—u:(zt))]dv.

a,b=f,9
O
P roof. Let us introduce the notation
(3.22) R(t,r)= > t&(t)es(r).
a:s,f,g

Then, by (2.2) and (2.4), we obtain

(323) R(t—7t+7)— Rt +7,t—7)=Nel(t —n)el(t+7)
+2u,,éifj(t—7')e{j(t+7’)—)\,,éifi(t+7')e£j(t—7')—2pyé{j(t+’r)e{j(t—7)
3}

= (/\uelfi(t - 'r)e}(j(t +7)+ 2uue{j(t - ‘r)e{j(t + T)),
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On the other hand, by means of the relations (2.1)—(2.3), we get

(3.24) R(t—T7,t+7)—R(t+T7,t—7)

:aa—[ D (Pﬁu?(t—f)u?(t+f)+90a“ (8 = )i “*”)]

a=s,f.g

+—[Z§ﬂb( (t—r) uf(t—‘r))(uf(t+¢)—uf(t+'r))]

a,b=f.9
+ Lz‘:f’g (t;‘i(t — T)u(t+ ) — 5t + T)ud(t - ﬂ)]

Further, from (3.23), we get

(3.25) //[R(t —1,t+7)—R(t+7,t—7)]dvdr

’j

== / [/\ el (0)e!; (2t) +2uue{j(0)e{j(2t)]dv
+ (t) + 2ppef; (t)el (1) | dv.
e
From (3.14), (3.20) and (3.24) we deduce

t
(3.26) / [R(t—7,t+7)— R(t+7,t —7)|dvdr

= 2Z(Zpou z(1&)

a=s,f,g

g (u%(O) -0 (sten - uten )| v

- Z [bz e (w) - i) (10 - o) | v

+/[W(t-T,t+T)—W(t+T,t—T)]dT.

A combination of the relations (3.25) and (3.26) implies the desired result. O
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4. Cesaro means and the asymptotic partition

In this section we study the time asymptotic behavior of the solutions of the
problem (P) defined by the relations (2.1) to (2.6). To this end, we introduce the
Cesaro means of various parts of the total energy and then, using the identities
(3.8), (3.13) and (3.19), we establish the relations that describe the asymptotic
behavior of the mean energies.

If (uf, uif ,uf) is a solution for the problem (P), then we introduce the Cesaro
means

t
1
(4.1) Kelt) = z/K(T)dT ,
0
i ¢
(4. Uett) = 7 [utrir,
0
. t
(4.3) Do(t) = / D(r)dr
0
If meas S; = 0, where meas S represents the area / da of the surface S. Then
S
there exists a family of rigid motions (uf = u{ = uf = ¢ + €kTidE, ¢, d; —

constants, €;;x — alternating symbol) that satisfy equations of motion (2.1),
constitutive equations (2.2) and the boundary conditions (2.5). For this reason,
we decompose the initial data af and b] as

(4.4) o =a +U”, b =b"+V>,

where a7° and b}° are rigid displacements determined in such a way that

(4.5) /pSUiosdv =0, /pgsijkij,Sde =0,
B B
/pSViosd’v =0 y /pgeijkmijosdv =0.
B B

We consider the sets

A

C'(B) := {v = (v1,v2,v3),v: € C*(B) :v; =0o0n S; and if meas S; =0,

then /pgvidv =0, /pSEijk.’IIjvkd’U =0 }
B B
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W (B):=the completion of C!(B) by means of ]l-le(B) where C'!(B) represents
the set of scalar functions that are continuous and continuously differentiable
on B. Moreover W,,,(B) := [W;,(B)]?, where W,,,(B) is the familiar Sobolev
space (see [27]).

The hypothesis (ii) assures that the following inequality [28] holds:

2
B B

(4.6) [Avi v + —/f(vi i+ v;4)(vij +vj)]dv > my | vivdo
53 Jd T Y5 3 T U,

my = const > 0, VveW;(B).

If meas S; = 0, then we shall find it is a convenient practice to decompose

the solution (uf,u/,u?) in the form

(4.7 uf = af® + b + v}, u{ =a;® +tb° + vif, ul =af + b + vy,

(3
where (v®, v, v8) € W;(B) x W;(B) x W;(B) represents the solution of the
initial boundary value problem (P) in which the initial conditions are substituted
by
vi = U, ol =af —a¥, v =a! —a¥,
(4.8)
o=V ol =bl b, W=t —b" onB, t=0.
We are now ready to derive the asymptotic partition of the energies.
THEOREM 1. Let (uf,u/ u?) be a solution of the initial boundary value prob-

1) 1
lem (P). Then, for all choices of initial data a%, af, a8, bf € W;(B), bs,
b& € W (B), we have:

1)° if meas S; # 0, then

(4.9) tl_l)r(l)lo Ke(t) = tgrgouc(t),
(4.10) Jim Dol(t) = E(0) - 2 Jim Kc(t) = B(0) — 2 lim Uo ().
2)0 if meas S; =0, then
. . 1 apx
@1)  Jim Kolt) = imto(e) + [ (o0 + Y st
B a=59

. . 1
(412)  Jim Do(t) = B(O) -2 im Ko() + 5 [(ieres + Y peeoi)ae
B a=f)g

. 1 .
= B(0) ~2 lim Ue(®) - 5 [ (aipreves + Efj PRBE ) do.
B =759
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P r o o f. By taking into account the fact that (uf ul u!) is the solution of

PRI 1
the problem (P), from (3.8), we deduce
(4.13) K(t) + U(t) + D(t) = E(0), t<O0.

If we further use the relations (3.13) and (3.19), we get

t
(4.14) / ) + 2D(r)]dr =2E(0)t+A(t)+F(t)—%(0), £> 0.
0

A combination of the relations (4.13) and (4.14) leads to the identity

dl

1 [A(t) +T() - ZE(O)].

(4.15) Kolt) - Uc(t) = 5

By letting ¢ tend to infinity and making use of the relations (3.20) and (3.21),
we obtain

(416) Jim [Ko(t) - Uo(9)] = Jim = / {3 suigen
a=s,f,g
+ D pguf(0)u(2t) + Aveli(0)el(2t) + 2, el (0)el, (2t)
a=s,f,9
+ Y e (ut(0) - u(0) (uh(2t) — i (20)) pao.
a,b=f,9

On the basis of the hypotheses (i)-(iii), relations (2.7), (3.3)-(3.5), (4.13) and
Schwarz’s inequality, we deduce for the terms in the right-hand side of (4.16) the
following estimates:

(4.17) /Z peul(0)ad 2tdv<(/ > pgug( d)l/z

B a= S,f»g B a= S)fa

(/ > dgicaiseod)

a=s,f,g

VIO ([ 3 surons o)) "

B a:s,f,g

IN
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(4.18) / > pgud (0)ug(2t)dv = / { ug (2t)

B o=s.f.9 B o= 8fg

2t
+ [ 3 st it - nlr + Y agag0)lu0) —uf(O)]}dv

0 o=fy9 a=f.g
1/2
/ > phad(0)us 2t)dv—+—< 48 (0)dv dT)
a=s,f,g o B a=fyg £m
1/2
X ( Z €[l () — ug (1))@ () — uf(r)]dv d'r)
5
+ [ 3 a0 - ui@ldv < [ 3 pgis(0)ui(2t)dv
Zazf,g B/C' =s,f,9

+/2tEQ < / Z ”0) 42 (0)a O)dv>l/2

Bafy

+ / > A6 (0)[uf (0) — ui (0)]dv;

B O':.frg

2t

(4.19) / el (0)el,(20) + 2l )€l (20)dv = / / el (0)él, (7)

B 0B

+ el (0)é(r)]dv dr + / Dol ()¢, (0) + 2psef;(0)ef;(0))dv
B

1/2
2tE(0)( / el (0)el, (0) + 2uels( e{j(O)]dv)

/[)\,,e“ +2,u,,e (0)e f](O)]d'u;
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(4.20) / 3 ga”( — (0 )) (uf(zt)—uf(zt))dv

B ab=fg

2t
- / S et (u2(0) — uf(0) (ab(r) — i (r) ) dv dr

0B ab=fg
+/ Z gab (u?(o) — Uf(O)) (u:’(O) — Uf(O))d’u
B ab=fyg
2tE(0) ( / > et (ut0) - u(0)) (wb(0) —uf(O))dv)l/ ’
B ab=fg
+/ Z geb (u?(O) - uf(O)) (ui-’(O) - Uf(0)>dv.
B wb=fyg

Using the estimates (4.17)—(4.20) in (4.16) we obtain

(4.21) Jim [Ko(®) - Uolt)) = Jim & [ 3 pgis(O)us(zt)ao,

Let us first consider 1)°. Since meas S; # 0 and u® € Wy (B), from (2.10), (3.4),
(3.6), (4.6) and (4.13), we deduce

(4.22) / Py = / 26(r)dv < —-E(0)

my
B
so, by means of the Schwarz inequality, we get

(4.23) tl—lgloﬂ/ Z pous( (2t)dv = 0.
B o=s.f.9

Thus, the relations (4.21) and (4.23) give the relation (4.9). A combination of
the relations (4.9) and (4.13) give the relation (4.10).
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Let us consider 2)°. Using the decomposition (4.4) and (4.7), we have

(4.24) 21% / S gl (0)ul (2t)dv

B a:s,f,g

% 367+ V) + Y e [ar + 2t + vf(2t)]dv
a=f.g
= %/[pgb;sa{s—k Z pibial *S dv+—/ Z po b5 (2t)d
B a=f,g a=s,f,9
/[ b*sb*s_+_ Z P bab*s]
a=f.g
The Korn inequality (4.6) and the relations (2.10), (3.4) and (4.13) imply
1 2
! ) <— /2 <—F

(4.25) /L (7)vi(r)dv < ml/ E(r)dv < = 0),

B B

so, by means of the Schwarz inequality, we deduce

(426) Jim = / S sz = [ o+ 3 pgorr]ay

a=s,f,9 B a=f,g
Thus, using (4.26) from (4.21) we obtain (4.11). The relation (4.12) follows then
by coupling the relations (4.11) and (4.13). The proof is complete. O

REMARK 1. Relations (4.9) and (4.11) (restricted to the class of initial data,
for which b}* = 0) prove the asymptotic equipartition of the mean kinetic and
internal energies.

REMARK 2. Similarly to the previous papers concerning asymptotic partition
of energy, we supposed that body forces are absent (f} = fif = ff =0) and this
assumption is essential in our analysis. Generally, the asymptotic partition of
energy will be modified by the presence of body forces. For a solution (u, uf ,ud)
of the problem (P) the relation (4.13) becomes

t
(4.13)  K(t) +U(t) + D(t) = E(0) + / / S° g fe(r)ad (r)dvdr, £ <0
0B o=sfg

and it leads to estimate terms like that in the right-hand side of (4.16). Our anal-
ysis in the above can be applied under appropriate assumptions concerning the
behavior of the forces at infinity, but the calculation becomes more complicated.
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