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NOVEL HIGH-ACCURACY computational techniques for solid mechanics problems are
presented. They include fourth-order and arbitrary-order finite difference methods
based on Pade-type differencing formulas and a meshless method which uses radial
basis functions in a “finite difference” mode. Some results illustrating high perfor-
mance of the suggested numerical methods are displayed.

1. Introduction

AT PRESENT, though the finite element method (FEM) is a universally accepted
numerical tool in computational solid mechanics, the trend has been observed
toward developing alternative techniques in the context of problem-oriented
methodologies (for example, for solving problems with large deformations and
moving discontinuities). Besides, one can see considerable interest in increasing
the accuracy of numerical methods in a broad sense. The merits of high-accuracy
methods can be manifested at least in two ways.
First, they may serve as high-resolution tools capable of describing properly
fine details of solutions (for example, stress concentrations in small regions).
Second, they can provide engineering accuracy with relatively small numbers
of degrees of freedom. As a result, operation counts and hence computational
costs dramatically go down (mainly due to reducing by orders of magnitude the
operation counts for both direct and iterative solvers of algebraic systems).
In the present paper, novel ideas are presented concerning applications of
high-accuracy techniques to solid mechanics. They include:
(i) a finite difference method based on fourth-order compact differencing (CD)
operators;
(ii) an arbitrary-order schemes for parallel calculations based on linear combi-
nations of second-order CD operators (multioperators);
(iii) a meshless method which uses radial basis functions in a finite-difference
mode.
The above methodologies are aimed at different areas of applications. While
(i), (ii) show their peak performance in the case of relatively simple geometries
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(for example, in the case of simply shaped plates and shells), using (iii) makes
sense if the problem formulations include complicated forms of boundaries or/and
an expected solution is that for which meshless methods are preferable.

Though (iii) differs in a significant way from (i) and (ii), both types of tech-
niques, in contrast to the majority of the existing methods for solid mechanics,
have in common the strategy of a direct discretization of governing equations
rather than following their weak formulations. It makes them compatible when
using them in the framework of the domain decomposition approach.

Below, the outlines of the methods followed by estimates of their performance
in the case of testing solid mechanics problems are presented.

2. High accuracy schemes based on compact differencing
2.1. Fourth-order method

The well documented second-order difference schemes seem to be not popular
in solid mechanics applications since they are approximately as accurate as the
simplest FEM methods but they are considerably less flexible. However, recent
advances in computational fluid dynamics have shown that high-order schemes
can be highly competitive. Among such methods there are the so-called compact
schemes which exploit Pade-type differencing formulas which can be viewed as
rational functions of difference operators defined at compact stencils.

The simplest compact differencing formulas for the first and second deriva-
tives are due to Collatz and Numerov. Supposing a uniform mesh with the mesh
size h, the approximations to the derivatives at each grid point x; =jh look as

DM = (I + Ay/6)7" Ag/(2h) = 8/dx — (h*/180) 0° /92 + O(K®),
(21) D@ = (I+ Ay/12)7" Ay/h? = 8%/9z% — (h'/240) 0°/82° + O(h®),
Aofj = fir1— fi—=1,  Dafj = fiv1 —2f; + fi-1,

where I is the unity operator. The above formulas are not only fourth-order
approximations, but they also have very small numerical coefficients in their
truncation errors thus providing a very high accuracy.

Using Egs. (2.1) for spatial z, y, z coordinates, one can easily discretize any
form of solid mechanics equations. For example, for the biharmonic equation in
the Cartesian coordinates describing the Kirchhoff plate, one has

Byw = DPDPw + DI DPw + 2D DPw = q,
where q is a loading function. To calculate Bpw where w is a known grid function,
one needs only to perform several tridiagonal Gauss eliminations. The solutions
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of the above equation can be obtained by using the standard iteration procedures.
Since By, is a self-adjoint positive operator in an appropriate Hilbert space, the
convergence estimates for preconditioned iterations can be quite favorable. In
the case of simply supported plates, it is advantageous to solve the biharmonic
equation by sequentially solving two Poisson equations.

As an example of applications, consider a Kirchhoff plate occupying in the
(z,y) plane the domain £2: —I <z <[, 0 <y < m. The flexural rigidity of the
plate D(z,y) is supposed to be a sufficiently smooth function of its arguments,
the only exception being its possible discontinuity at z = 0. It is supposed also
that the plate may be strenghthened by a stiffener with the bending and torsional
rigidities B and C respectively. Then the z-displacement w of the plate satisfies
the biharmonic equation in both subdomains — < z < 0, 0 < y < m and
0 <z <I,0<y < m with proper boundary conditions at 9f2. At z=0, the
variational principle |1] gives the following “jump” conditions:

(2.2) [w} =, [w1-| =0, {D('w,zx + Vw'yy)‘l = —(Cway) g

[{D(w,zx +vwyy)}e +2{D(1 - V)'w,ry}vyl = —(Bwyy) yy

where v is the Poisson coefficient and for a function f(z,y), | f| means f(40,y)—
f(=0,y). In the particular case B=C=0, [D]=0, one has the interface condi-
tions for the domain decomposition approach applied to plates with smoothly
varying thickness.

Considering as an example the simply supported plate, we discretize the bi-
harmonic equation using the above fourth-order compact differencing operators.
To satisfy (2.2), a fifth-order formulas which relate w z(—0, y) and w ;(+0, y) to
w and w g, at the “left” and “right” nodes respectively were constructed. Using
them, a complete set of algebraic equations can be derived. In general, they can
be solved by either direct or iterative solvers. The results presented below are
obtained by alternately solving the “left” and “right” biharmonic equations.

The results of calculations with the standard-second order and the present
fourth-order schemes for the square simply supported plates with a stiffener
shown in Fig. 1 are presented in Table 1 for a sinusoidal load.

The bending and torsional rigidity of the stiffener were chosen as B=2 and
C= 2 respectively. The rigidity of the first plate D=1, (Fig. 1a) was assumed for
both sides of the plate while the rigidity of the second plate was set to different
values for each side of the plate (D=1, =<0, D=2, z >0, Fig. 1b).

In the Table 1, the Ly norms of the solution errors é and the corresponding
mesh convergence order k are displayed for several N x N meshes, the reference
“exact” solution being obtained using a very fine mesh.
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FiG. 1. Plates with stiffeners.

Table 1.
Plate D=1 D=1,z2<0;, D=2,z>0
Scheme Second order Fourth order Second order Fourth order
N x N 4 k 4 k ) k 4 k
8 x 8 6.574e—-3 3.532e-5 5.883e—3 4.941e-5

16 x 16 | 1.582e-3 | 2.06 | 4.715e—-6 | 2.91 | 1.395e-3 | 2.08 | 5.045e—-6 | 3.29
32x32 | 3.870e-4 | 2.03 | 3.100e-7 [3.93| 3.386e-4 |2.04| 3.212e-7 | 3.97
64 x 64 | 9.566e-5 2.02 | 1.818e-8 | 4.09| 8.339e-5 |2.02| 1.874e-8 | 4.10

As it may be seen from the Table 1, the present approach gives the solutions
which are by several orders of magnitude more accurate than those obtained by
the standard FD method (the latter is approximately as accurate as the FEM
with linear elements). From the practical viewpoint, it means dramatic reduction
of computational costs. For example, the fourth-order result for the 8 x 8 mesh
is more accurate than the second-order one for 64 x 64 mesh. Note that the best
algebraic solvers for two-dimensional cases give O(N?logN) operation counts.

2.2. Arbitrary-order discretizations

The standard FEM and FD methods (as well as the above described ap-
proach) are not able to enjoy in full measure the smoothness (or local smooth-
ness) of exact solutions of many elasticity problems. Generally, they provide
mesh-convergence orders which do not exceed the discretizations orders (the so-
called “saturation” property). In contrast, accuracies of “saturation-free” meth-
ods depend on the numbers of existing exact solution derivatives (an interpo-
lation with nodes chosen as zeroes of Chebyshev polynomials may serve as an
example). On some occasions, the convergence can be exponential.

To increase the approximation the orders admitted by exact solutions smooth-
ness, one usually tries to increase the values of some parameters defining the dis-
cretizations (for example, polynomial orders of local interpolants). In many cases,



HIGH-ACCURACY DISCRETIZATION. . . 535

it may complicate the resulting formulas and create some problems when imple-
menting the constructed algorithms. An alternative way was suggested in [2] in
the context of the parallel computational fluid dynamics. Its essence is using
linear combinations (“multioperators”) of special types of basis operators hav-
ing relatively simple structures to provide theoretically arbitrary-order schemes.
Recently [3], the idea was extended to the case of centered discretizations ap-
propriate for solid mechanics equations.

To describe the extension, we return to operators (2. 1) and consider without
any loss of generality the z-derivatives only. Changing the coefficients 1/6 and
1/12 by a parameter ¢, we obtain one-parametric families D;l)(c) and D;z)(c)
approximating the first and second derivatives with the second (rather than the
fourth) order. Fixing now M distinct values of ¢, (¢ = ¢1,c¢a,...car), one can
define multioperators for the z-derivatives |3]

M M
1 2 _
DE\[) = Z’YzD,(El)(Cz)v Dl(\]) = Z’W;D;([Q)(Ci)’
=1 i=1

where ~y; and #; satisfy the following linear systems:

M M
(2.3) Y wel Kyj=rp, k=1,2,...M -1,
1

j=

NE:

7=l
M

(2.4) > =1, Kty =7 k=1,2,...M-1,
j=1

j=1

where 7y and 7 are known constants obtainable from the Taylor expansion
series for the actions of Dg(gl)(ci) and Df)(ci) on sufficiently smooth functions
projected into the space of grid functions. For example, in the case of M= 3, one
has (r1,72) = (1/24,3/640) and (71, 72) = (1/6,1/30).

The above systems with the Vandermonde matrices are known to be always
uniquely solvable. Moreover, their solutions can be easily obtained in analytical
forms.

One can prove the following

THEOREM 1. Let u € C*™ and ~v1,72,...,Y0, 71,72,--.,7m denote the
solutions of (2.3), (2.4) forci #cj, i # 34,4, =1,2,...,M. Then

D\y = 8/0z +0m*M), DY) =0%/92® + O(h*M).

To relax the ill-conditioning property of systems with the Vandermonde ma-
trix when M — oo, we suppose that ¢; are zeroes of the Chebyshev polynomials
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for an interval [cmin, Cmax]. Further limitations on the choice of ¢; in the case of
second derivatives follow from the requirement that multioperators must be neg-
ative definite, thus providing good convergence properties of relevant iterative
procedures. For M= 3, the sufficient conditions can be obtained in an analytical
form [3].

Using multioperators for each coordinate, one can discretize any solid me-
chanics equation. The resulting schemes are especially advantageous when using
parallel machines (at least, M processors are needed). In that case, the 2M-th
order admitted by the degree of solutions smoothness is realized by simultaneous
and synchronous calculations of actions of basis operators. So the computational
costs, when calculating actions of multioperators on a known grid function, turn
out to be the same as those in the case of a single basis operator with a simple
architecture.

To illustrate possible peak performance of the multioperators method, we
consider the following BVP for the Poisson equation

Au = —27? sin Tz sin 7y,
z,y € 2=1[0,1] x [0,1], u|pn =0.

Its exact solution is sinwz siny. The same exact solution can be obtained for
the biharmonic equation describing bending of a square plate

(2.5) AAu = 41t sinmrsinmy, z,y € N2

with boundary conditions u|gp=0; 8%u/0z?=0 for z=0,1; 0?u/dy*=0 for
y=0, 1.

Sixth-order operators Dﬁ) corresponding to the z and y coordinates (M =3)
with proper restrictions imposed on cj,c2,c3 were used to approximate the
Laplace operator. In the case of problem (2.5), the biharmonic operator was
considered as the square of the Laplace one.

The results for both problems for several meshes are shown in Table 2 (N x N
stands for the number of grid points while % is the estimated mesh-convergence
order).

As it may be seen from Table 2, the numerical solution accuracy is very high
even if only 4 grid points are placed in each spatial directions. Again, the most
important output of using the methodology is the possibility of obtaining an
engineering accuracy with a very small number of degrees of freedom since it
means computational costs savings up to many orders of magnitude. However,
it should be emphasized that the technique exploits the solution smoothness.
So its efficiency depends on the quality of meshes in the case of complicated
geometries. In that case, one may suggest to use it in the framework of a domain
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decomposition by constructing subdomains with “good” and “bad” boundaries.
The latter category can be treated by using other methods. In particular, the
multioperators method can be combined with the meshless radial basis function
technique described in the next section.

Table 2.
Problem Poisson eq. Biharmonic eq.
N x N é k 4 k
4x4 2.31e-6 4.62e—-6

6 x6 3.28e-7 4.81 6.57e-7 | 4.81
12 x 12 6.23e-9 5.72 1.24e-8 5.73
24 x 24 1.01e-10 5.95 | 2.0le-10 | 5.95

3. Using meshless interpolants in a finite differencing mode

Recently, considerable attention has been paid in computational solid me-
chanics to the so-called meshless methods allowing to discretize PDEs using
scattered nodes. They have some attractive features. In particular, they do not
require structured or unstructured grids thus automatically obviating the diffi-
culties of constructing high quality meshes needed, for example, in the case of the
above described technique. Meshless methods are known to greatly simplify the
solution procedures in the cases of large deformations, changing geometries etc.
Among the first meshless methods, there are generalized finite difference [4] and
smooth particle hydrodynamics [5] methods. The majority of existing meshless
methods exploit the least squares principle to construct meshless approximations.
In these approaches, the approximated functions and their approximations, in
general, do not coincide at the nodes. They are used mainly in the framework of
the Galerkin method (their extensive review can be found for example in [6]).

Another approach is using radial basis functions (RBF), that is the functions
of arguments which are distances between current point and nodes. In contrast
to the least squares approximations, RBF interpolants satisfy the interpolation
conditions stating that they are equal to the interpolated functions at nodes. It
was found that the RBF interpolation procedure has the potential for being very
accurate providing in some instances exponential convergence. The overview and
the relevant references concerning RBF can be found, for example, in [7].

Unlike the least-squares types methods, RBF applications to PDE s are based
mainly on the collocation and boundary elements strategies [8-10]. The merits
of the collocation RBF techniques are simplicity of boundary conditions for-
mulations and absence of numerical integration procedures typical for some
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meshless Galerkin-type methods. However, serious problems may arise due to
the ill-conditioning property of the resulting linear systems. To circumvent the
difficulty, some remedies were proposed. They concern locally supported RBF
[11-13]; preconditioning [14] and domain decomposition [15].

We consider here another way of using the RBF suggested in [16]. The idea is
to define for each node a local set of neighbour nodes (“stencils”, following finite
differencing terminology), to construct for the set an RBF interpolant and the
resulting approximations to derivatives at the node. The approximation formulas
can be then used when discretizing the PDE of interest.

The procedure is completely analogous to the finite difference one. It differs
from the latter in

(1) using arbitrary spaced nodes instead of grid points,
(2) using RBF instead of polynomials when constructing numerical differentia-
tion formulas.

Comparing with the collocation approach, the governing equations are ap-
proximated at each node rather than satisfied at the node. Using local RBF
supports greatly relaxes the ill-conditioning limitation. Assuming on good RBF
approximation properties, one may expect reasonable high accuracy.

In what follows, the technique is presented in more details.

3.1. RBF approximations to derivatives and RBF schemes

Suppose one has a set X = {x1,X2,...,xap} C §2of nodes in a computational
domain 2. Let X; = (xgj),xgj),...,xgj), X; € X,x; € X; be a “cloud” of
nodes surrounding each node x;. The node will be referred to as a center of
the cloud. Following the finite difference terminology, we shall however use the
notion “stencil” instead of cloud.

Suppose further that u(x), x € {2 is a sufficiently smooth function. Denoting
u(x;) = u;, let us introduce “internal” numbering for a subset Xj: if x; = xgcj )
then u; = ugcj) where k is some number from (1,2,..., N;).

We construct for each X; an interpolant

NJ- ) '
s9V(x) =Y e o(llx — x|,

k=1

where || - || is the Euclidean norm, bg) are the entries of the matrix which is
inverse of the coefficients matrix AY) = {a{k} = {¢(]|x:i — x}cj )|]} arising from
the interpolation conditions s(j)(xfcj)) = ugcj), k=1,2;...,Nj.

For any linear differential operator D one can construct then the approximate
formula [Du]; ~ cg)[D¢(||x - xgcj)H)]j where the notation [Df]; = Df|x=x;



HIGH-ACCURACY DISCRETIZATION. . . 539

(9)

is used. Substituting the expression for ¢;’’, one may write finally

N

[Du]j ~ Z CD)(]) (])

i=1

N;

(3.1) (o) =S b2 De(lx - xP 1), G=1.2....M.
k=1

The coefficients (cD)E] ) depend only on D and the coordinates of the nodes
belonging to the j-th stencil. They do not vary during the solution processes (if
nodes are not moving) and can be calculated during preprocessing.

In the following, we shall suppose that D is an operator of derivatives with
respect to Cartesian coordinates. Then (3.1) may be viewed as usual numeri-
cal differentiation formulas written for stencils X;. Such formulas are used for
discretizations of PDEs when each internal node considered as a center leads
to algebraic systems with sparse matrices typical for a conventional finite differ-
ence method. It is worth noting that it is possible to use “oriented” stencils for
skew-symmetric operators, thus introducing an upwinding used in fluid dynamics
applications.

Differencing formulas (3.1) can be readily extended to the case when deriva-
tives are specified at data points (for example, near the boundaries where the

Neumann boundary conditions are used). In that case we suppose that values

k= fx (J)) are specified at some nodes of the j-th stencil x(]) éj), s x§,j)

(J) —(J) (J)
2 g ey q

while functionals D f | ) are given at X; where D is a linear

operator. It is assumed that xg 7 and X G) possibly coincide for certain ¢ and k.

The corresponding RBF interpolant has the form

s9(x) = Zamnx—xk ) +Zbk0<f)¢<ux x|,

k=1

P, g< N]a
where (z) indicates the action of D on ¢ as a function of x. Requiring that
D) = FxD),

Ds(j)|x=5(§cj) = Dfl, x>
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one obtains the following linear system:

¢11---@1p Do11...Déyy ay h
(32) ¢p1---¢pp D¢p1...D¢pq ap _ fp
D¢r1...Dg1p D2¢1...D%¢q by Dfi |’
Dg¢g1...Ddgpy D?¢g1...D%*¢gq) \bq Df,

¢ij = ¢(|lxi = x;l1), Doij = D(|1x — %) lx=x,, D*¢i; = D*¢(I1x = X[ lxe=x -

Assuming that matrix (3.2) does not degenerate (this is the case for certain
types of ¢), one can solve the system for coefficients ay, br. Applying operator
D to s(x) at a node x;, one obtains the following generalization of (3.1):

p q

Dom Y O\ fi+ > B Dy,

k=1 k=1

where the coeflicients C,(ca) and B,(ca) depend on the coordinates of the nodes
forming the j-th stencil while D, is supposed to be the operator of the ath-
order derivative in one direction or another.

It is of interest to estimate the actual accuracy of (3.1) in the cases when D
is the operator of the first or second partial derivatives and N; are reasonably
small numbers. Unfortunately, in contrast to the usual FD formulas, the Taylor
expansion series are not very efficient here. It is due to degeneration of the
coefficient matrix in the limit of vanishing distances between neighbour points.

There are some estimates of the h-convergence in the case of cardinal inter-
polation [25], when nodes z; are generated by the Cartesian grid with N; = oo.

A natural but not a general way to estimate the approximation errors for
relatively small N; is their direct calculation for certain classes of functions. Of
course, it gives only some impression concerning the RBF performance in a finite
difference mode. The results of the calculations for Hardy multiquadrics (MQ)

(3.3) o(r) =2+ O)2,  rP=a? 4y

with C' = 1 are presented in [16]. Figure 2 shows Ly - norms of errors in the
case of the first and second derivatives of f(z) = exp(2(z + y)) when using the
stencils indicated herein.

It can be seen from Fig. 2 that the norms can be well presented by the power
laws hP where h is the distance between nodes while p =2, 4, 6 for stencils 1, 2, 3.
For a fixed h = h., enlarging the stencils increases the accuracy of the derivatives
discretization. However, one should not expect that this will continue when the
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number of nodes N; = K in the stencils increases without bound. When K — oo,
the accuracy of the interpolation which provides differencing formulas is expected
to tend to that of the cardinal interpolation [26], for h = h,.
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F1G. 2. Mean-root-square errors vs. mesh size and the corresponding RBF stencils. Solid
and dashed lines correspond to first and second derivatives respectively.

In the figure, the result obtained with the second-order-accurate centered
finite difference formula for the first derivative are also shown (marked by aster-
isks). They are close to those for the stencil 1.

Discretization at each node of a given PDE can be proceeded in a stan-
dard finite difference manner by changing derivatives with their approximations.
Assembling then the resulting algebraic equations and using the boundary con-
ditions (which, if needed, can be discretized as well), one obtains a global system
for unknown nodal variables.

In the linear case, its matrix is a sparse one and the system can be solved
using direct or iterative methods. In the numerical experiments described below
the direct nested dissection method [27] was used. It should be noted that con-
dition numbers for “global” systems were found to be quite acceptable. However,
though the present technique suggests N; < N, ill-conditioning of a system like
(3.2) can not be ruled out if N; is too large or distances between the nodes are
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too small. In the calculations, the situation has been encountered only in the
h-convergence studies when very small values of h, the characteristic distances
between nodes, were used. In those cases, quadro precision arithmetic was ex-
ploited. The preconditioning ideas of [14| seems to be quite attractive to deal
with such cases.

Summing up, to solve a PDE using the present RBF approach, one should:

(i) Specify the nodes distribution in the considered computational doman;

(ii) For each node z; considered as a center, specify a stencil with IN; nodes
surrounding z;;

(iii) For each stencil, obtain the “differencing” coefficients (for example (c 3)2] )
n (3.1)) by solving linear systems;

(iv) Substitute the approximations to derivatives at each node in the PDE
and form the resulting “global” system by assembling together the nodal
approximations;

(v) Solve the global system.

It should be noted that steps (i)-(iii) can be viewed as a preprocessing pro-
cedure once the nodes distributions and stencils are not supposed to be changed
during calculations. In nonlinear cases, only steps (iv) and (v) have to be included
in iterations.

Since the RBF approach is based on the finite difference principle, the theo-
rem stating that O(h*) convergence follows from

(i) O(h¥) approximation to governing equations,

(ii) stability of a schemes in the present case.

Unfortunately, it is difficult to prove both properties in a general case of
arbitrarily spaced nodes and arbitrary stencils. However, the potential for sat-
isfying (i) and (ii) was discussed in [16] where it was shown that the RBF ap-
proximation to the Laplace operator using stencil 1 from Fig. 2 is a negative
definite one (the Hilbert space of double-periodic nodal functions with the in-
ner product (u,v) = h? Zi,j u;jvi; where u;; and v;; are defined at grid points
z; = ih,y; = jh of the Cartesian grid was assumed). As a result, in that case
(as well as in the cases of other stencils shown in Fig. 2), very fast convergence
was observed when using the simplest iterative procedure for inverting the cor-
responding L; operators.

In the calculations described below, h-convergence was always seen at least
for the considered ranges of h and all the considered stencils.

Though general RBF methodology is really a meshless one and a random
nodes distribution can be used, the most accurate numerical solutions can be
expected only if a “proper” distribution is specified depending on the problem to
be solved. Moreover, the strategy of choosing stencils in the present approach,
as in the finite difference methods, plays an important role.
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Since the calculations presented below are aimed mainly at comparisons with
other methods, either triangulated or Cartesian meshes were used as nodes dis-
tributions. As to step (ii), different strategies were used when specifying stencils.

In the following, the MQ radial basis functions will be considered only. We
set C'= 1 in (3.3) when carrying out the majority of the calculations described
below since we are not aware of the existence of a theory giving an optimal
choice of C'. Of course, judging from the results presented in [17, 18], the solution
accuracy is expected to be lower than that for a more successful choice of C.

3.2. Numerical examples

EXAMPLE 1. KIRCHHOFF PLATES

We consider below two cases of the Kirchhoff plates for which exact solutions
are available. Their bending is described by the biharmonic equation. In the
particular case of simply supported edges, a solution procedure can be reduced
to successive solutions of two Poisson equations.

The first case is a square plate problem described by (2.5). The calculations
were carried out using seven-points “simple” (or RBF-1) and nineteen-points (or
RBF-2) “enlarged” stencils (Fig. 3), the fourth-order technique from Sec. 2 and
the FEM method with linear elements. The Ly norms of errors are displayed
in Fig. 4. As it is seen, the “simple” stencils and FEM show second-order mesh
convergence while the RBF with “enlarged” stencil and CD method are fourth-
order accurate. At the same time, the RBF solutions are more accurate than
their counterparts of the same order.
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F1G. 3. A triangulated mesh in a square domain. The “simple” stencil for the node A and the
“enlarged” stencil for the node B are shown by white and black markers respectively.
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Fig. 4. Mean-root-square errors vs. mesh size for the biharmonic equation in a square domain.

Dashed lines without markers and with markers correspond to the RBF “simple” and “enlarged”

stencils respectively. Solid lines without markers and with markers correspond to FEM
and compact scheme of fourth-order respectively.
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Fi1G. 5. Relative center displacement error for rhombic plate vs. number of nodes
(on percentage basis).
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As the next testing example, we consider bending of a simply supported
rhombic plate subjected to a uniform load. In that case, there is a singularity
of the exact solution which has an adverse effect on the accuracy of numerical
methods. The problem is investigated in [20] in the context of performance of
several finite element methods. Then the most accurate solutions obtained with
21 degrees of freedom elements using both uniform and non-uniform meshes are
compared with the present RBF and CD results.

Figure 5 displays the relative center displacement errors (on a percentage
basis) vs. the number of nodes in the computational domain for two values of
the rhomb angle. The exact solution considered as a reference one was obtained
using the technique described in [21], while the most accurate are the solutions
obtained with the fourth-order CD and sixth-order CD-based multioperators
schemes. However, the mesh-convergence orders in all cases are not so high as in
the previous example. Moreover, the performance of the fourth and sixth-order
methods is approximately identical though the latter is slightly more accurate.

EXAMPLE 2. TORSION OF PRISMATIC BARS
According to the elasticity theory, solutions of the bar torsion problems can
be obtained by solving the Dirichlet problem for the Poisson equation

A‘b = ‘27 X € Qa ¢|()Q - 07

where (2 is a bar cross-section domain. The corresponding stress components
can then be expressed in terms of z- and y-derivatives of ¢. In the case of
cross-sections with boundaries which contain “incoming” angles which rounded
vertices, it is of interest to predict accurately the stress concentrations near the
rounded corners where high gradients are possible (it is known that stresses
become singular when the corresponding curvature radii tend to zero).

We consider the geometry of a bar cross-section shown in Fig. 6 which was
investigated in [22] using very accurate semi-analytic method. The cross-section
is characterized by the radius r of the rounded corner and the “shelf” length A,
the “shelf” thickness being assumed to be unity. The asymptotics in the case
r — 0 was investigated in [19, 22]. To describe properly the stresses near point
C for small r, high-accuracy methods are needed.

The RBF calculations were carried out using triangulated meshes (one of
them is shown in Fig. 6). The meshes are defined by numbers M and N of nodes
uniformly distributed along the boundary PQ and the boundary RS, respectively.
Thus the condensation of nodes near C can be achieved by increasing M.

To compare the solution K= grad ¢ in C with the results of [22], the ¢ deriva-
tives were approximated using the third-order four-points formula. The calcu-
lations were carried out for three meshes M =11, N=20; M=21, N=40 and
M=41, N=80 showed that the difference between the results corresponding to
the second and the third meshes could be estimated as 0.2%.
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FiG. 6. L-shaped domain with rounded incoming corner.
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FiG. 7. The stress concentration parameter K vs. radius of the rounding.

Figure 7 displays the K values obtained for A=3 and r=0.5,0.3,0.1,0.05
using the “simple” stencil defined on the coarsest mesh (markers as squares) and
finest mesh (markers as stars), the difference between the values being about
1.2% (an exception is the case r = 0.05). The curve depicted in Fig. 7 corresponds
to the “almost exact” solution for A = oo. Since the influence of A is quite
insignificant in the domain A > 3 (the results for A=3 and A=4 differs by
0.2%), the agreement is rather good.
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Another comparison with the solution from [22] is shown in Fig. 8. In the
figure, the ratio K/A for the fixed value r/A = 0.1 is presented as a function
of 1/A. Again one may see that the present results (markers) agree closely with
those from [22] (solid line).
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FiG. 8. The parameter K/A vs. 1/A. The solid line and markers correspond to results from
[22] and the present results respectively.

EXAMPLE 3. CANTILEVER BEAM

Consider now the application of the described approach to one of the 2D
elasto-statics problems, namely to the cantilever beam problem which is popu-
lar when verifying meshless methods (see for example [6], [23]). The governing
equations this time are

Ozz,e + Ozy,y =0, Ozye + Oyyy =0,

where, assuming the plane-stress case, 04z = (uz + vvy)E/(1 — ), Ozy =
(uy+vg)E/(2(1—1?)), 0yy = (vy+vuy)E/(1—v?) and u, v are displacements
in the z- and y-directions and E is the elasticity modulus. We set E = 1000,
v = 0.3 as in [23]. As boundary conditions, the displacements defined by the
exact solutions were used. The exact solutions for the cantilever beam problem
can be found in [24].

The equations were approximated at nodal points which were distributed in
the same manner as those in the above cited publications.

Though an optimal choice of stencils is beyond the scope of the present paper,
different strategies of their forming were tried. One of them was as follows. For
each center x;, the stencil was defined as a set of nodes which fall on a domain



548 A.1. ToLSTYKH, M. V. Lipavskil, D. A. SHIROBOKOV

S; : x; € S; with a prescribed shape of its boundary and a prescribed char-
acteristic length R ( the latter was, for example, a circle radius, the edge of a
rectangle etc.) or a characteristic area.

In the present case, grid points of regular M x N meshes were used as nodes.
The beam length and width are L=12 and D=2 respectively.

Figure 9 presents Ly, solution errors as functions of the mesh size h; in the
z-direction for several stencils with nodes falling on circles, squares, ellipses with
the axis length ratio 2 : 1 and rectangles with the aspect ratio 2 : 1, the area of
the supports being 20h2 and 50h2. The Ly, errors are defined as

1/2
Lyw = (Z(ui — i) + (vi — vei)?/ Z uli + Ugi) ,
i

i
where ue; and ve; are the exact values at a i-th node and the summation is
carried out over the nodes of the computational domain.
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Fi1G. 9. The cantilever beam problem: relative errors of displacements vs. mesh size h.
for several stencils and areas of supports.

As seen in Fig. 9, the influence of the supports type is not very significant in
the present case, the best choice being ellipses. As may be expected, enlarging
stencils improves the accuracy and the convergence rate. However, it does not
necessary mean that the improvement will continue by including more and more
nodes in stencils.

Once the numerical solutions for displacements are obtained, the correspond-
ing stress calculations may be viewed as a postprocessing procedure. A rich vari-
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ety of RBF approximations to derivatives using different stencils can be used. In
the present particular case, finite difference formulas were found to be effective.

Figure 10 presents the relative errors in the stresses 0, and o,y as defined
in (23] for the calculations with the elliptical supports.
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FiG. 10. The cantilever beam problem: relative errors of stresses vs. mesh size h, for two
areas of ellipsis.

EXAMPLE 4. NONLINEAR SHELL DEFORMATIONS

As another example of the present RBF technique application, we consider
a nonlinear shell problem described by the Karmén—Foppl equations [28].

Based on the Kirchhoff assumptions, the equations for a plate having thick-
ness h=const read

Ulzz + WaWar +0.5(1 + v)(ugzy + WyW zy) + 0.5(1 — v)(u1,yy + WeW,yy) =0,

Uy + Wyw gy + 0.5(1 + v)(u1,0y + W W gy) + 0.5(1 — V) (U200 + Wyw ze) =0,

DAAw = q+ (Eh/(1 — v*)){[ur,z + vuzy + 0.5w% + 0.51/w3/]w,m
+ [ugy + vuy g + 0.5w?y + 0.51/w,2m]w,yy + (1 = v)[ury + vz + wowylwzy}.

In the above equations, u;, ug, w are the displacements of a plate middle surface
corresponding to the Cartesian coordinates z, y, z respectively. It is supposed
that the coordinates origin is at the surface, the axis z being normal to it.
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In the following, simply supported edges or clamped edges will be assumed. In
both cases, the boundary conditions for the first two equations and the condition
for the third equation are

ui|r = u2|lr = w|r = 0.

The second condition for the third equation in the clamped edges case has the
form Ow/On=0 where 0/0n is the operator of the derivative in the direction
normal to the boundary. In the case of simply supported edges, it reads

Aw + (1 — v)kOw/On = 0,

where k is the curvature of the boundary. By using the condition, one can avoid,
as indicated in [29], a manifestation of the Babuska-Saponjan paradox which is
an essential difference between the solutions corresponding to round plates and
plates with polygonal boundaries with the number of vertices tending to infinity.

In the calculations, grid points of an unstructured triangulated grid were
assumed as RBF nodes with the above described RBF-1 and RBF-2 stencils.
To discretize the fourth derivatives, the RBF formulas for second derivatives
were sequentially applied, special types of RBF operators being used near the
boundaries.

As a test problem, consider bending of a round plate with simply supported
or clamped edges under uniform loading. Due to the central symmetry, the highly
accurate solution can be obtained by solving ordinary differential equations. The
solution is used as a reference one. For the triangulated mesh, the number of
nodes N along the radial directions were chosen to be N=6,11,21.

Table 3. Simply supported edges.

“simple” stencils “enlarged” stencils
Q| N=6 | N=11 [N=21| N=6 [ N=11 | N=21
L | 0.63957 | 0.67898 | 0.69090 | 0.70145 | 0.69596 | 0.69532

0.5 0.28053 | 0.29235 | 0.29592 | 0.29971 | 0.29761 | 0.29728
1 | 0.46222 | 0.47478 | 0.47869 | 0.48400 | 0.48091 | 0.48030
2 | 0.68697 | 0.69773 | 0.70141 | 0.70817 | 0.70407 | 0.70311
4 1 0.95080 | 0.95867 | 0.96192 | 0.97005 | 0.96499 | 0.96368
6 | 1.12568 | 1.13163 | 1.13459 | 1.14343 | 1.13788 | 1.13638

In Tables 3 and 4, the center displacements of the plate W = weenter/h are
presented for various values of the dimensionless load @ = q(R/h)*/E and the
above mentioned values of N, h and R being the plate thickness and the plate
radius, respectively. The Poisson coefficient is assumed to be 0.3. For comparison,



HIGH-ACCURACY DISCRETIZATION. . . 551

the reference solution ( column “ref’) and the results for the linear case with
Q = 1 (string “L” in Tables 3) are also included in the tables. It should be noted
that the exact solution for the latter case is W = .695625.

Table 4. Clamped edges.

“simple” stencils “enlarged” stencils
N=6 N=11| N=21 N=6 N =11 N =21 ref
0.15725 | 0.16459 | 0.16704 | 0.16536 0.16744 0.16789 0.16785
0.30479 | 0.31693 | 0.32094 | 0.31906 0.32173 0.32234 0.32250

0.55499 | 0.56900 | 0.57538 | 0.57537 0.57501 0.57524 0.57625
0.75126 | 0.76252 | 0.76619 | 0.77366 0.76824 0.76773 0.76956

UJ.D-M»—“O

As it can be seen, the difference between the RBF and reference solution
does not exceed 0.5% for N = 21 in the case of the RBF-1 stencil and 0.2% for
N =11 in the case of the RBF-2 stencil.

As an example of a more complicated geometry, Fig. 11 presents the depen-
dence “W vs. Q7 where W and Q are the above defined variables. The plate
boundary is given by r = R(1 + cos(6¢)/5) in the polar coordinates (7, @), the
nodes distribution being shown in the figure. One can see considerable difference
of the results obtained in the frameworks of linear and nonlinear theory.
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FiGc. 11. A mesh for a plate with complicated geometry. @ vs W. Solid and dashed lines
correspond to simply supported and clamped edge respectively.
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