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Derivation of the normality rule for time-dependent
deformation using the principle of maximal rate
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DERIVATION OF THE normality rule for time-dependent deformation by the principle
of the maximal rate of entropy production was carried out. The derivation was made
within the framework of thermomechanics with internal variables. Since Ziegler did
not cast his principle into an exact mathematical framework, it was done here. A con-
dition for the multiplier in the normality rule (c.f. plasticity multiplier) was derived.
If the condition gives a constant value for the multiplier, the specific (complementary)
dissipation function was shown to be a homogeneous function. In the case where the
value of the multiplier depends on the state variables, the dissipation potential is a
non-homogeneous function.
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Notations

q heat flux vector,

s specific entropy (entropy per unit mass),

$ specific entropy production rate,

Scon  Specific entropy production rate (thermal part),
Sloc  specific entropy production rate (mechanical part),
T absolute temperature,

/internal state variable (a second-order tensor),
internal force (a second-order tensor),

strain tensor,

inelastic strain tensor (irreversible strain tensor),
density of the material,

stress tensor,

specific dissipation function (potential),

specific dissipation function (mechanical part),
specific Helmholtz free energy,

material (time) derivative operator,

vector operator del,

material (time) derivative operator,

quantity ( ) is a vector,

second-order and fourth-order tensors are denoted, by bold letters.
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1. Introduction

THE PRESENT PAPER combines the theory of continuum mechanics and tlermo-
dynamics and refers to the combination as thermomechanics. There are sveral
dialects of thermodynamics. Here the theory of thermodynamics with irternal
variables is adopted since it provides an excellent framework within whch to
evaluate material models.

Basic courses in continuum mechanics already teach students learn that the
body has to satisfy the equilibrium equation. They well know that if the equilib-
rium is not satisfied, the solution is incorrect and therefore has to be disnissed.
This is because a solution that does not obey the equilibrium is in contracdction
to a basic law of nature. In this case the basic law is the law of balance of mo-
mentum. The law of balance of momentum places a restriction on the vaues of
forces and moments.

Corresponding restrictions also exist for a material model. They are tie ba-
sic laws of thermodynamics, such as first law and second law. The thernody-
namical restrictions for constitutive equations are dressed in the form » one
inequality called the Clausius-Duhem inequality. If the material model s:tisfies
the Clausius-Duhem inequality, it is not in contradiction to the basic Lhws of
thermomechanics and can therefore be applied. Thermomechanical evaluaion of
a constitutive cannot prove that the material model is correct. This workis for
micromechanical investigation of the material model and experimental werk.

In order to prepare a thermomechanical investigation of a material nodel,
the researcher has to write explicit forms for following two functions: the syecific
Helmholtz free energy v (or the specific complementary Helmholtz free mergy
¥°) and the specific dissipation function ¢ (or the specific complementary dissi-
pation function ¢ or the yield function F'). The material model is then obained
from these two functions using state equations and the normality rule. Tlis pa-
per studies the derivation of the normality for time-dependent deformatior. The
derivation is carried out using the principle of maximal rate of entropy poduc-
tion proposed by ZIEGLER [1, p. 134]. Since Ziegler did not cast his prnciple
into an exact mathematical framework, it is done here. In this paper tle nor-
mality rule is derived for time-dependent deformation. In the subsequentpaper
the standard approach of the principle of maximal rate of entropy producion is
extended for description of time-independent thermoplasticity.

Today when material models within the framework of thermomechancs are
studied the normality rule belongs to the standard toolbox. However, isually
the principle of maximal rate of entropy production is not used in the teriva-
tion of the normality rule. Instead of that the approach by the French school
of thermodynamics is adopted. The French school of thermodynamics asumes
that there exists a convex scalar-valued dissipation potential which is asumed
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to obey the normality rule {see e.g. [2, p. 74]}. Furthermore, some writers have
interpreted the work by Ziegler differently from what is done here. HOULSBY
and PUZRIN [4, Sec. 4.1], for example, refer to Ziegler’s orthogonality condition
and therefore their approach deviates from the present one, since the vital part
of their derivation is that the dissipation potential is a homogeneous function.
SHIZAWA and ZBIB [3, Sec. V.3.1.] refer to the principle of maximal entropy pro-
duction rate, but do not obtain any condition for the multiplier in the normality
rule (c.f. plasticity multiplier) which plays an important role as the present work
shows. On the other hand RAJAGOPAL and SRINIVASA [5] make an extensive
study on “maximum rate of dissipation criterion”, but they do not see the differ-
ence between the dissipation, where the terms have the form of force times flux,
and the dissipation function whose variables are fluxes only. Furthermore they
do not derive the normality rule, but just write it without obtaining a condition
for the multiplier in normality rule. There are also writers, see e.g. [6], who just
introduce the normality rule and refer to Ziegler.

2. Derivation of the Clausius—Duhem inequality

This section derives the Clausius-Duhem inequality which plays the central
role in the thermomechanical verification of the material models and in the
derivation of the normality rule.

Verification of a material model starts from the selection of the set of inde-
pendent variables which describe the process which has to be modelled. When
thermomechanics is used two kind of independent variables are present: control-
lable variables and internal variables. The independent variables present in the
basic laws and axioms of thermomechanics are called controllable variables. The
other independent variables are called internal variables.

The controllable independent variables for thermomechanical processes in
deformable solids are: The strain tensor € and the specific entropy s which is a
scalar-valued quantity. The strain tensor € is a second-order tensor describing
both mechanical and thermal deformation.

The internal variables and their form are determined by the material model
under consideration. Since the present paper studies time-dependent deformation
in general, the inelastic strain tensor &' is one of the internal variables. In order
to extend the scope of the this paper more internal variables are introduced.
The second-order tensorial quantity o« is introduced to represent any number of
internal variables, which can be scalars, vectors or tensors of any order. In the
theory of visco-plasticity, for example, the variables « are used for description
of hardening.
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The specific internal energy u is written as:
(2.1) u=u(g €, s h(Z)),

where the notation the notation h(Z) indicates that the system VP my be
thermodynamically inhomogeneous. This means that, e.g. the material progerties
for elastic deformation can vary from point to point.

For the sake of simplicity this paper studies material models which (also)
model elastic deformation. Thus, the present formulation is for cases whe'e the
response of the system consists of elastic and inelastic deformation or pure elas-
tic deformation. This means that the difference &€ — &' belongs to the descrption
of state. Also thermal expansion can be simulated. By neglecting thermodynam-
ically inhomogeneous systems the above assumption reduces Eq. (2.1) fo the
following form:

(2.2) u=mu(e—¢e,as).

Some writers {see e.g. MAUGIN (7, Sec. 2.3]} replace the difference &€ — €' ty the
elastic strain tensor €°. However, it is not acceptable. Variable € is a contrdlable
state variable whereas notation &' refers to an internal state variable. Thermo-
dynamics does not define a difference between a controllable state variabk and
an internal state variable.

Instead of the specific internal energy wu, the state of solids is usualy de-
scribed by the specific Helmholtz free energy 1 which is a Legendre jartial
transformation of the specific internal energy u. This is done because wriing a
material model using the specific internal energy u is very difficult, giver that
the specific entropy s is an argument of the specific internal energy u. It it very
difficult to construct a constitutive model as a function of the specific entripy s.
In the formulation of the specific Helmholtz free energy 1 the specific ertropy
s is replaced by the absolute temperature T'. Since the absolute temperatire T
is a well-known quantity for a human being, writing a material model usirg the
specific Helmholtz free energy 1 is much simpler than doing so with the syecific
internal energy u.

State functions are obtained as partial derivatives of the specific inernal
energy u with respect to the state variables. Due to the introduction  the
specific Helmholtz free energy 1 state equations take the forms

o o(...) Fe o oY(...)
(2.3) o = p—_a(e—si) and B:= —p S
and further
(2.4) s = —?—M, where Yp=9(e—¢,T).

oT
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In State Equations (2.2) and (2.3) the notation o stands for the stress tensor,
is an internal force and p is the density.

The principle of conservation of energy, also referred to as the first law of
thermodynamics, can be stated as follows: The time rate of change of the sum
total of the kinetic energy K and the internal energy U in the body is equal to
the sum of the rates of work done by the surface and body loads in producing
the deformation (or flow) together with heat energy that may leave or enter the
body at a certain rate. Thus the following is obtained:

(2.5) %(K+U):P‘”“+Q.

In Basic Law (2.5) P®*' is the power input of the external forces and Q is
the heat input rate. The local form for the first law of thermodynamics is called

the energy equation (in the non-polar case) or the equation of balance of energy.
It has the following form:

(2.6) pi=0:£+pr—V-q,
where r is the heat source per unit mass and where ¢ is the heat flux vector.
The second law of thermodynamics can be written in the form

) -G .
2.7 S > - ————dA+/)——dV
(2.7) > jl{ T pgdv,

v v

where S is the entropy rate and 7 is the outward unit vector for volume Vv,
the surface of which is denoted by 9V. The local form of the second law of
thermodynamics takes the form

. VT
(2.8) pTé+V-(j’—ZT—-(j'—pr > 0.
The internal energy U and the entropy S are defined by
(2.9) U := /pudV and S 2= /pst.
1% 1%

Combination of the local forms of the first and second law of thermodynamics,
i.e. Egs. (2.6) and (2.8), is called the Clausius-Duhem inequality. For the present
set of state variables [see Eq. (2.4)9] it takes the following form:

¥ . VT
Based on the Clausius-Duhem Inequality (2.10) the specific entropy produc-
tion rate §' is introduced. It is defined by

. i . VT
(2.11) pTs = 0':£'+B:0(—V?—-(T (> 0).
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3. Principle of maximal rate of entropy production
applied to time-dependent deformation

This section studies the principle of maximal rate of entropy production
and derives its consequence: the normality rule. Time-dependent deformation is
considered.

The principle of maximal rate of entropy production was first proposad by
ZIEGLER [1, p. 134). It should be pointed out that this principle as proposed
by ZIEGLER {see e.g. [8, pp. 271 and 272]} is not (yet?) a basic law of physics,
contrary to those discussed in the previous section. In Ziegler’s own words, the
principle of maximal rate of entropy production is quite general ZIEGLEE and
WEHRLI [9, p. 186]}.

According to ZIEGLER |8, p. 272] the physical foundation of this principle is as
follows: From the physical point of view this principle is particularly appealing,
since it may be considered as an extension of the second fundamental law. In fact,
if a closed system tends towards its state of maximal entropy, it seems reasonable
that the rate of entropy increase (the specific entropy production rate) under
prescribed forces would take a maximum value, i.e. the system should approach
its final state along the fastest (shortest) possible path.

3.1. Normality rule for time-dependent deformation when material model
¢ =¢(¢', «,...) is expressed by fluxes

Investigation of the expression for the specific entropy production rate ' in
Eq. (2.11) shows that §'is depcndent upon both forces and fluxes (plocebses)
For example, in the expression o : ¢ the term o represents the force and &'
describes the flux. Furthermore, ZIEGLER [1, p. 129] assumes the existence of
the specific dissipation function {see also ZIEGLER [8, p. 76|}

(3.1) o=op(E & qe—¢ aT).

The concept of the specific dissipation function ¢ is that in case of an actual
process (i.e. when the maximum is present) it contains the same information (ex-
cept for temperature T') about the state and the process as the specific entropy
production rate $', but the arguments of ¢ are only fluxes (&', &, ) [and state
(e — &/, o, T) ], whereas the expression for s contains also the conjugate vari-
ables [a, B, — (VT) / T]. This can be seen in Eqgs. (2.11) and (3.1). The specific
dissipation function ¢ is defined by {see ZIEGLER [1, Eq. (4.3)] and [6, Eq. (5.1)]}

: 1 ,
(3.2) For an actual process ¢ := T§' = P 5 =0.

Ziegler did not cast his above-presented concept into an exact mathematical
framework. The author therefore proposes the following formulation for the prin-
ciple of maximal rate of entropy production:
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The process is investigated at a certain state (¢ — &', &, T) and the values
for the fluxes (éi, &, ¢) have to be determined in order to maximise the specific
entropy production rate ' . The state gives the values for the state functions
[0, B, — (VT)/T) as follows: State Equations (2.13) give the values for the forces
o and B . Since the state (e — €', &, T') is known, the temperature T is known
and therefore the state function — (ﬁT) /T, is also known. Thus, the values for
the state functions [o, B, — (VT)/T] are known.

Based on the above discussion the problem can be expressed in the following
way: It is assumed that the state is known, i.e. the set (e — €}, &, T') is assumed to
be known. This implies that the values for the forces [o, B, — (6T)/T] are known.
The question is, what are the magnitudes of the fluxes (¢, &, §) which maximise
the specific entropy production rate §'? At the same time also Definition (3.2);
has to be satisfied.

To make the evaluation shorter General Problem (2.11) is not evaluated but
the concept by TRUESDELL and NoOLL [10, p. 295] is followed by assuming that
the specific entropy production rate ' is separable into mechanical and thermal
part as follows:

(3.3) § = ‘é{oc + 'éion .
Based on Expression (3.3) Eq. (2.11) yields

(3.4) pTél. = o:8 +B:& (> 0)
and

4 VT
(3'5) pTScon = —T’—"q (2 0)'

Quantity p TS’}OC is often called intrinsic dissipation, whereas Quantity pT' sl
is referred to as thermal dissipation.

Usually Mechanical Problem (3.4) and Thermal Problem (3.5) are studied
separately. Since the derivation of the normality rule for a thermal problem
follows the same steps that will be taken when the mechanical problem is studied,
the thermal problem is not studied here.

Based on the above the principle of maximal rate of entropy production is
written in the following mathematical form:

maximise with respect to the fluxes (¢!, &)

(3.6) s}oc(e',(x,o,ﬁ):p—T(U:s'+B:o¢)
subject to:
(37) Tloc = = (plo(‘,(sla‘x; £ — SJ,(X,T) r 'éio(‘.(el$a7 g, B) = Oa

T
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where 71, = 0 is a constraint and (). is the specific dissipation function for
mechanical behaviour. It is worth noting that the specific dissipation function
¢ is dependent on the fluxes present in the Clausius-Duhem inequality [see
Inequality (3.4)] and on the state variables [see Eq. (2.2)]. In this case this
means that the function @ is dependent on sets (¢!, &) and (& — €', &, T'). The
general maximisation problem (where the specific entropy production rate §' is
not separated) follows the above concept.

Both s'ioc and 7. are assumed to have at least continuous second partial
derivatives with respect to the arguments (¢', &). It should be pointed out that
also Inequality (3.4) must be satisfied. Applying LUENBERGER [11, p. 225|, the
first-order sufficient condition for the point (¢', &) to be a local maximum is

0 .

% (Sioc + )\Tloc) =0,
(3.8) Y
e (é{oc + /\Tloc) =0 and Tioc = 0,

where X is the Lagrange multiplier. As mentioned by ARFKEN [12, p. 946] the
method based on Lagrange multipliers will fail if in Expressions (3.8); and (3.8)2
the coefficients of A vanish at the extremum. Therefore, also special points where
OTloc

BT'@ =0 and — =0
o' ox

(3.9)

must be studied. The above-mentioned coefficients of A are

0 0
(310) % Tloc and 5“& Tloc -
The above indicates that there are two different cases for evaluation of the local
maximum; utilisation of Expressions (3.8) referred to as Case A, and the special

case described by Expression (3.9) referred to as Case B.

Starting with Case A:
Substitution of Egs. (3.5) and (3.6) into Egs. (3.8); gives

1 1 a(Ploc 1
11 — A= - g =
(3.11) pTcr+ (T 5ei pTO' 0,
which yields to following result:
A a‘Plo
12 = — — .
(3.12) s w1 e+
Similarly Eq. (3.8)2 gives
A a(Ploc

) B 1P o5
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By substituting the results in Eqs. (3.12) and (3.13) into Eq. (3.8)3 and re-
ordering the obtained equation, the following result is obtained:

(3.14) wloc(é',d;a—e‘,a,T):%(%:é‘-&%:d).

It is worth noting that the value of the Lagrange multiplier A is dependent on the
set (¢ — &', &, T). This is based on the definition of the maximisation problem,
which assumed that the value of the set (¢ — &', &, T) is known and that the
values for the corresponding fluxes (&', &) have to be determined. This implies
that for a certain set (¢ — &', &, T) a unique value for is obtained. Thus, the
following holds: A = A(e — &', &, T).

By extending the definition for homogeneous functions given by e.g. WiD-
DER [13, pp. 19 and 20| the following is achieved: A function ¢(z,y, z,u,v) is
homogeneous of degree w in variables z , y and z in a region R if, and only if,
for z, y and z in R and for every positive value of k the following holds:

(3.15) p(kz,ky kzuv) = k¢(z,y,2u,v).

Sometimes the definition is assumed to hold for every real k, and if the values
of k are restricted to being positive, the function ¢(z,y, z,u,v) is said to be a
positive homogeneous function.

Euler’s theorem on homogeneous functions {see original form in e.g. WIDDER
[13, p. 20]} for the above extended definition reads
(3.16) w¢(x,y,z,u,v)=—%x+%y+%z.

Oz Oy 0z

In the special case that the Lagrange multiplier A is a constant the extended
Euler’s theorem for homogeneous functions [Theorem (3.16)] and Result (3.14)
indicate that the specific dissipation function ¢ is a homogeneous function of
degree (A —1)/X in the variables (&', ¢).

The following notation is introduced:

A
(3.17) b=y which gives A= u—li—f
Equation (3.17); shows that the multiplier 4 = p(e — €}, &, T') can be any
real number excluding p = 1. This means that in Case A the dissipation function
©loc cannot be a homogeneous function of 1/p = 1.

Continuing with Case B:

The candidates for the extremum points defined by Eq.(3.9) are investigated
next. Substitution of Eq.(3.7) into Eq. (3.9); gives
_1_ a‘Ploc _ 1 a‘Ploc

—0=0, which gives og=p

3.18 .
R T o9¢' pT ¢!
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Correspondingly the following is obtained:

a<p loc
ox

Instead of Expression (3.14) Case B gives

(3.19) B=p

a‘P{oc 84 3<P1.oc &
el Jx
Comparison of Eqgs. (3.18)2, (3.19) and (3.20) with Eqgs. (3.12), (3.13) and

(3.14) shows that the special points defined by Case B give the same solution as
Case A except that o is a homogeneous function of degree 1(= 1/p).

(3.20) Ploc(&, 656 — €, o, T) =

Concluding from Cases A and B the following can be said:

At the start of this chapter the following problem was set: The state is known,
which means that the set (¢ — &', &, T) is known. Due to State Eqgs. (2.3); and
(2.3)2 this implies that the values for the forces (o, ) are known. The magni-
tudes of the fluxes (¢!, &) have to be determined in order for the specific entropy
production rate §' to be maximised. At the same time also Definition (3.2); has
to be satisfied. The result was as follows:

As a result the following normality rule was achieved:

Ipioc(t ;e — &l o, T)

3.21 ——
(3.21) 5
and

(3.22) B:W@wnoc(éi,d;e—e‘,a,’r)

Jda
The specific dissipation function ), has to obey the following condition:

. OPoc .; O .
(3.23) <p10c(£',cx;£—£’,cx,T)=,u( :g?cze‘+%:a>.

The first-order sufficient condition for the point (¢, &) to be a local maximum
is that Egs. (3.21), (3.22) and (3.23) hold. If ¢ is a homogeneous function,
according to Eq. (3.23) it is a homogeneous function of degree 1/u. If o is
not a homogeneous function, the value for u = u(e — €', &, T) is obtained from
Eq. (3.23).

Equations (3.2), (3.21) and (3.22) show that the specific dissipation function
@loc s a scalar potential, and it is therefore also called the specific dissipation
potential.

The second-order both necessary and sufficient conditions for a local max-
imum lead to matrices so extensive {see LUENBERGER [11, pp. 226 and 227|}
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that investigating them is very complicated and it hardly provides any practical
results.

However, in practice, when constitutive models are evaluated the explicit
form for the specific dissipation function ¢, is assumed and the forces (o, 8)
are determined by Normality Rule (3.21) and (3.22).

3.2. Normality rule for time-dependent deformation when material model
¢ = ¢°(a,B;...) is expressed by forces

This section gives the normality rule for time-dependent deformation when
the material model is expressed as a function of state functions, i.e. forces instead
of the rates of internal variables, i.e. fluxes.

Normality Rule (3.21) and (3.22) assumes that the material model is ex-
pressed by the fluxes (¢, &). If the conjugate forces (o, B) are desired as the
arguments of the material model, the specific complementary dissipation func-
tion ¢f . is introduced. It is a Legendre partial transformation of the specific
dissipation function ¢jo.. The transformation is defined by

(3.24) p i (o,Bie—€ oT) := o:¢'
+ B —pppoc(E,de—¢,aT),

where the superscript ¢ in notation ¢f . refers to the complementary function.
Based on Normality Rule (3.21) and (3.22) and Definition (3.24) the coef-

ficient in Expression (A.3) of Appendix A take the values a = pp and b = p.

Thus, Expression (A.6) of Appendix A gives the following normality rule:

0l (0, B3 e — e, T)

.25 i _
e ) : Jdo
and
90C v gl
(326) ('x:pdgoloc(o.’ﬁve £, KX, )

B

Substitution of Transformation (3.24) and Normality Rules (3.21), (3.22) and
(3.25), (3.26) into Expression (3.23) gives

. ot oy
c PSS | — _ loc . loc .
(3.27) Oioc(0,Bie—€,0,T) = (1 —p) ( pp 10+ 96 .B) :

The first-order sufficient condition for the point (o, 8) to be a local maximum
is that Egs. (3.25), (3.26) and (3.27) hold. If ¢f . is a homogeneous function,
according to Eq. (3.27) it is a homogeneous function of degree 1/(1 — p). If ¢,
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is not a homogeneous function, the value for u = p(e — €', &, T') is obtained from
Eq. (3.27).

It is worth noting that the specific complementary dissipation function ¢f
cannot be a homogeneous function of degree 1 in the variables (o, ), since ac-
cording to Expression (3.27) in such a case the quantity u would be zero and
Transformation (3.24) would vanish. This means that if the specific complemen-
tary dissipation function ¢f . is a homogeneous function of degree 1, Transfor-
mation (3.24) vanishes and it must be replaced by a different transformation.
This new transformation is used when time-independent processes are modelled.

Equation (B.17) of Appendix B shows that if the specific dissipation function
@loc 1s a homogeneous function of degree 1/u (# 1), the specific complementary
dissipation function ¢} . is a homogeneous function of degree 1/(1 — ).

4. Discussion and conclusions

The present paper refers to thermomechanics as a science which is a combina-
tion of thermodynamics and continuum mechanics. Since the field of the present
work is the evaluation of constitutive equations for solid materials, the applica-
tion of thermodynamics with internal variables was an obvious choice from the
many dialects of thermodynamics.

The topic of this paper is the derivation of the normality rule for time-
dependent deformation using the principle of maximal rate of entropy produc-
tion. This principle is due to ZIEGLER [1, p. 134]. Since Ziegler did not cast
his principle into an exact mathematical framework, it is done in this paper.
The standard formulation of the principle of maximal rate of entropy produc-
tion is shown to give a normality that is suitable for material models describing
time-dependent processes.

The principle of maximal rate of entropy production is not usually used to
obtain the normality rule but instead of that often the approach by the French
school of thermodynamics is followed. The French school of thermodynamics
assumes that the dissipation potential is a continuous and a convex scalar valued
function of the flux variables. It is also non-negative function with a zero value
at the origin of the space of the flux variables. According to the French school
of thermodynamics, if the dissipation potential satisfies the above-mentioned
properties, the normality rule is a sufficient condition for satisfaction of the
Clausius-Duhem inequality. The above description is based on LEMAITRE and
CHABOCHE (14, Sec. 2.4.3]. The principle of maximal rate of entropy production,
however, assumes that real processes follow a path which maximises the entropy
production. At the same time the Clausius-Duhem inequality is satisfied. The
approach by the French school of thermodynamics is mainly a mathematical
construction. Since thermomechanics describes natural events a more physical
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background is needed, the author proposes to use the principle of maximal rate
of entropy production.

If the state is expressed by the quantities (¢ — €', &, T) and the material
model is given by the specific dissipation function whose variables are the fluxes
(¢, &) and the state (e — €, &, T), the mechanical part of the normality rule was
shown to take the form

a(ploc(éi,('x;i.~—£i,a,T) _-r B:p‘pa‘ploc(éiv--‘)‘

4.1 o= S
4D e d&! &

It was also shown that the specific dissipation function ¢ has to obey the
following condition:

.1 D B L a ]
42 loc sl, a; £ — El’ (X’ T = 8(1010(“ . £1 o (p]OC ‘& )
14 7

oe' o«

According to Expression (4.2) if ¢} is a homogeneous function, it is a ho-
mogeneous function of degree 1/u. If ¢ is not a homogeneous function, the
value for p = p(e — €', o, T) is obtained from Equation (4.2).

In the case where the material model is given by the specific complemen-
tary dissipation function whose variables are the forces (o, ) and the state
(e — ¢, &, T), the specific complementary dissipation function ©),c 1s a Legendre
partial transformation of the specific dissipation function ¢joc. In this case the
mechanical part of the normality rule was shown to take the form

opj.(o,B;e — €', a,T)

i . 0y (0,...)
(4.3) e=p e and o= pa—B—.

As above a condition for the dissipation potential was obtained. It is

C C

(4.4) Voo, Bse—€,00T) = (1 — p) (agg’c 10+ ng’c :B) .
According to Expression (4.4) if ¢f . is a homogeneous function, it is a homoge-
neous function of degree 1/(1 — p). If ¢f _ is not a homogeneous function, the
value for p = p(e — €', &, T) is obtained from Equation (4.4).

This paper does not give any examples on the application of thermomechanics
for material model verification, but the reader is asked to study, for example,
the lecture notes by SANTAOJA [15].

Appendix A. Legendre transformation

The investigation is started with a given scalar-valued function F, which is
assumed to be a function of two independent sets of tensorial variables, which
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areu!,...,u™ and w!,...,w" ie.
(A1) F=F(@!,. . u"w,. .. w".
The new independent set of second-order tensorial variables y!,...,y™

assumed to be defined by

: OF(u',...,u™ w!,...,wh) .
(A.2) Y ‘= a Bu,i ' i=1,...,m,
where a is a coefficient independent of u*,w’ and ¥* (i = 1, ... , mand j = 1,

n). The variables u’ are called the active variables and the variables w/ are
called the passive variables of the transformation. A new function 2, called the
Lagende partial transformation, is introduced. It is defined by

(A.3) bW,y wl . wh)

1. ..1 1 m 1 n
E Y:u'—aF(u',...,u™,w,...,w").

i=1

The variables w? and y* are given arbitrary variations dw/ and 6y'. Thus,
Eq. (A.3) gives

=, .80 XY
1 m 1 n
(A4) b2y, ..., Y, w,...,W") = E bdyl 8% +E b—— swl

1=1
L o ™ 9F L OF _

_ 1.5 1 2oqyl) - Su® — _
—.E (Y*:6u® + dy*:u?) E aaui.du E aaw]..éw],

which yields

(A.5) ib‘m .5y +Z bﬁQ 6w/

i=1 j=1

—Z(

i=1

)6 +Zu6y Za%éw]

i=1
According to Eq. (A.2) the first term on the right-hand side of Eq. (A.5)

vanishes, giving the following equations:

o, ...,y wl, ..., wh)

(A.6) u'=b 7 '

1=1,...,m
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Appendix B. Legendre transformation of a homogeneous function

The Legendre transformation of a homogeneous function is investigated here.
It is shown that the Legendre transformation of a homogeneous function is a ho-
mogeneous function. This does not hold if the original function is a homogeneous
function of degree one.

A scalar-valued function F' of m different tensorial variables u',...,u™ is
studied. Function F' is expressed as follows:

(B.1) F=F(u',...,u™)

is assumed to be a homogeneous function of degree w and therefore it satisfies
the following definition and equation:

(B.2) F(kul,...,ku™) := k* F(u!,...,u™)
and
oF OF
1 il )
(B.3) wF(u,...,u’"):(gu—l.u +...+5u—7n-.um),
where £ is an arbitrary positive real number {see e.g. WIDDER [13, p. 19 and 20]}.
Next, m second-order tensors y¢,... ¥™ are introduced by defining
; F(ul,...,u™
(B.4) Y :=aa LY L ), i=1,...,m,
ou’
where a is an arbitrary coefficient independent of both u? and y* (i = 1,...,m).

The Legendre transformation 2 of the function F' is defined as in Appendix
Aie.

m

(B.5) bR>Y,...,¥y™) = Y yiu'—aF@',... um),

i=1

where the coefficient b does not depend on the tensorial variables u' and v*
(i=1,...,m).
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Substitution of Definition (B.4) into Expression (B.3) gives

1 g
; F(a',...,u™) = - Liu
(B.6) o) = 2 ) v
which yields
m . .
(B.7) Zy’:u’zawF(ul,...,um).
=1

Substituting Eq. (B.7) into Legendre Transformation (B.5) gives

(B.8) F(u',...,u™) =c2(y',...,¥Y™),
where the coefficient c¢ is
b
(B.9) £ = :
aw—a

Once again the definition of variables v is used. Thus, the variables y* in
Eq. (B.4) are substituted into the arguments of 2 on the right-hand side of
Eq. (B.8) and the following equation is obtained:

OF(ul,...,u™) 8F(u1,...,um)>
u™ '

1 my __
(B.10) F(u',...,u )—cQ(a 5ul yeres @ 3

If the variables in Eq. (B.10) were changed by replacing u® by k u’, Eq. (B.10)
would take the following form:
(B.11) F(ku!,... ku™)

e OF(ku',... ku™) aaF(kul,...,kum)
=cf|a 0k ul) gonhs D) .

The definition of a homogeneous function given by Definition (B.2) allows Eq. (B.11)
to be written in the form

(B.12) kY F(ul,...,u™)

_ k¥ F(ul,...,u™)] k¥ F(ul,...,u™)]
—cQ(a Btk ul) yeeey @ B0k u™) >

For the partial derivatives of the arguments of the Legendre transformation {2
on the right-hand side of Eq. (B.12), the following equations hold:

1 m w 1 1
-1 OF(u’,...,u ):a[k F(u',...,u )]’ £= Lyovny s

Gt ou’ a(k ut)
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Substitution of Definition (B.4) into the left-hand side of Eq. (B.13) yields

1 o1 OkYF(ul,...,u™)] ,
1 -kl y = L =1,...,m.
(B.14) - k Y Ak u) , 1=1,...,m

Substitution of Eq. (B.8) into the left-hand side of Eq. (B.12) and Eq. (B.14)
into the right-hand side of Eq. (B.12) gives the following equality:

(B.15) K2 QO y™) = QT Y ke ).

Changing the variables by replacing k“~! by t allows Eq. (B.15) to be written
in the form

(B.16) /@D Y™ = 20y Y™,

Equation (B.16) therefore shows the Legendre transformation £2(y!,...,y™)
to be a homogeneous function of degree w/(w — 1), where w is the degree of the
original function F. This does not hold for the case w = 1, as can be seen in
Egs. (B.9) and (B.16).

If the original function F were a homogeneous function of degree pu = 1/k,
the function {2 would be a homogeneous function of degree 1/(1 — u). As above,
this does not hold for the case yu = 1.
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