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THE MESOSCOPIC CONCEPT is a way to deal with complex materials with an inter-
nal structure within continuum mechanics. It consists of extending the domain of
the balance equations by mesoscopic variables and of introducing a local distribu-
tion function of these variables as a statistical element. In our case microcracks are
modelled as penny-shaped and are completely characterized by their diameter and
the unit normal to the crack surface. Two examples of crack dynamics are given as
well as a possible definition of a damage parameter. Orientational order parameters
(fabric-alignment tensors) are defined and balance-like dynamic equations for them
are derived.

1. A model of microcracks

MACROSCOPIC FAILURE OF BRITTLE materials is initiated by the propagation of

microcracks. In a simple model the microcrack is described as a flat, rotationally
symmetric surface, a so-called penny-shaped crack. In addition we make here the
following simplifying assumptions:

1. The diameter of the cracks is much smaller than the linear dimensions of
the continuum element. Under this assumption the cracks can be treated
as an internal structure of the continuum element. The cracks are assumed
to be small enough so that there is a whole distribution of crack sizes and
orientations in the volume element.

2. The cracks are fixed to the material. Therefore their motion is coupled to
the motion of representative volume elements.
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3. The cracks cannot rotate independently of the material, i.e. if they have
a nonzero rotation velocity at all, this rotation velocity is determined by
the antisymmetric part of the time derivative of the deformaticn gradient
of the surrounding material and it does not depend on crack length and
orientation. All cracks within a volume element move and rotate with the
same velocity.
4. The number of cracks is fixed, there is no production of cracks, but very
short cracks are preexisting in the virgin material.
5. The cracks cannot decrease their area, but can only enlarge, meaning that
cracks cannot heal.
To summarize our model, the microcrack is characterized by a unit vector
n representing the orientation of the surface normal and by the radius { of the
circular crack surface. These parameters will be taken as the additional variables
in the mesoscopic theory.

2. Different approaches to damage mechanics
and the mesoscopic concept

There are two principally different possibilities to deal with complex mate-
rials within continuum mechanics: the first way is to introduce additional fields
depending on position and time. These fields can be any kind of internal vari-
ables [1, 2], or damage parameters [3, 4], and damage tensors (fabric tensors)
[5, 6]. In damage mechanics such additional macroscopic variables have been in-
troduced in many different cases of materials with internal structure like liquid
crystals [7, 8], polymer solutions [9, 10] and others. The other way is a so-called
mesoscopic theory. The idea is to enlarge the domain of the field quantities by an
additional variable, characterizing the internal degree of freedom connected with
the internal structure of the material. Field quantities are introduced, which are
defined on an enlarged space R3 x R; x M. The manifold M is given by the
set of values the internal degrees of freedom can take. In our case the internal
degrees of freedom are the different sizes [ and orientations n of microcracks. We
call this way of dealing with the internal structure of complex materials a meso-
scopic theory, because it includes more information than a macroscopic theory
on R3 x Ry, but less than a microscopic one on the molecular level. The domain
of the mesoscopic field quantities RS x R, x M is called the mesoscopic space.

Macroscopic quantities are calculated from mesoscopic ones as averages over
crack sizes and crack orientations. The spatial distribution of cracks is not rele-
vant in the sense that the resulting macroscopic quantities are still field quantities
depending on position and time. For a treatment of the spatial distribution of
cracks and a possible coarsening process see [11].
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In contrast to spatial averaging introduced in [12], a nonlocal generalization
of the classical Weibull theory, the averages in mesoscopic theory are local in
space. They are averages over different microcrack sizes and orientations in a
volume element.

Scaling properties [13] are completely out of scope of the whole mesoscopic
theory. They result from microscopic statistical considerations. Statistical the-
ories of fracture describe the breakdown of material as a second order phase
transition [14, 13|, as well as a first order phase transition [15-17].

We will apply now the mesoscopic concept to a damaged material with mi-
crocracks. The crack length can take values between a minimal length [, of the
smallest preexisting cracks and a maximal length s, which is limited by the
linear dimension of the continuum element. The orientation of the unit vector n
can be given by an element of the unit sphere S?. Therefore in the example of
microcracks the manifold M is given by [l;,lp] x S2. The change velocities of
the mesoscopic variables [ and u:= n are defined in such a way that for At — 0
we have

(2.1) I(t+ At) =1(t) +IAt,  n(t+ At) = n(t) + uAt

at later times t + At. The rotation velocity u and the length change velocity i
are the components in spherical coordinates of the crack velocity v; introduced
in [18]. In this previous paper [18] the set of additional mesoscopic variables n
and [ was called directional variable.

Beyond the use of additional variables, the mesoscopic concept introduces a
statistical element, the so-called mesoscopic distribution function. In our case
this is a distribution of crack lengths and orientations in the continuum element
at position x and time ¢, called here crack distribution function (CDF). The
distribution function is the probability density of finding a crack of length ! and
orientation n in the continuum element.

3. Mesoscopic balance equations

Now such fields as mass density, momentum density, angular momentum den-
sity, and energy density are defined on the mesoscopic space. For distinguishing
these fields from the macroscopic ones we add the word “mesoscopic”. In addi-
tion we introduce the crack number density N as an extensive quantity. The
mesoscopic crack number density N(I/,n,x,t) is the number density, counting
only cracks of length ! and orientation n. For this crack number density there is
a balance equation too, as it is an extensive quantity. The crack number density
can be prescribed independently of the mass density, although the motion of
cracks is coupled to the motion of surrounding material in our model. Therefore
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we distinguish here between the two fields: mass density p and number density
N, although they have the same equation of motion and were not distinguished
in an earlier paper [18].

3.1. Definition of the distribution function

Due to its definition as probability density, the distribution function is the
number fraction

N(l,n,x,t)
(3.1) fl,n,x,t) = NxD)
in volume elements, where the number density N(x,t) is non-zero. Here N(x,t)
is the macroscopic number density of cracks of any length and orientation. Since
the distribution function in Eq. (3.1) is not well defined if N(x,t) = 0, we
define in addition that in this case f(l,n,x,t) = 0. Since there is no creation of
cracks in our model, the distribution function will be zero for all times in these
volume elements. In all other volume elements with a nonzero crack number it
is normalized

Im
(3.2) / / f(l,n,x,t)2d’ndl = 1.

lm S?

3.2. Balance equations of mass, momentum, angular momentum, and energy

For the mesoscopic densities the local balance equations have been derived
from the macroscopic global ones [18-21]. The macroscopic balance equations
express the fact that the extensive macroscopic quantities within a region G can
change due to a flux over the boundary 0G and due to production and supply
within G. This results in the general form of a global balance equation

d 4
(3.3) - / Xd3zdnl?dl = / ox(-)da + / Ex()d3zdnl?dl .
G oG G

A generalized Reynolds transport theorem on the mesoscopic space, analo-
gous to the one in [22], is used to transform the time derivative, and a generalized
Gauss theorem is applied. The boundary dG of G consists of parts in the posi-
tion space, in the orientation space, and in the length interval. In regular points
of the continuum we get the general form of a local mesoscopic balance equation
[18] with the abbreviation (-) = (I, n, x,t):
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SX() + V- [VK() = SO] + T [a(K() ~ RO
+ o (PIEXO-Ri()) = 20),

where R and R, are the non-convective fluxes over the orientational and length
part of the boundary of G, and G is a region in R3 x $2 x [l,5,, [zs]. The derivative
with respect to the mesoscopic variable (I, n) is represented in spherical coordi-
nates. In the derivation of the local balance equation it has been supposed that
there is no flux over the boundary of the total mesoscopic space:

(3.4) /Oo / 7v - ox (-)d*zdnl?dl = 0.

—0o0 S2 lm

Otherwise such a non-zero flux term (3.4) could be interpreted as an additional
source term on the right-hand side of the equation.
Explicitly we have:

Balance of mass

(35)  orol)+ Va {olV0 0} + V- {olhute, 0} + o (o)) =0,

Balance of momentum
(36) o lel)vix, 0] + Ve [vix, Dol v, 1) ~t7()]

+ Vo [0, 000)v06 1) = TTO)] + oy (Pl )vix ) - ()

= 0()f(").

Here f(-) is the external acceleration density, t ' (-). the transposed mesoscopic
stress tensor, and T (-) the transposed stress tensor on orientation space (non-
convective momentum flux in orientation space), T(-) is the momentum flux
vector with respect to the crack length variable. We introduced already the
assumption that the material velocity v and the rotational velocity u are the
same for cracks of all orientations and lengths.

Angular momentum

The balance of angular momentum has to be taken into account as an ad-
ditional equation independent of the balance of momentum, because there is an
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internal angular momentum due to crack rotations. The total angular momen-
tum

(3.7) S(x,t) := x x v(x,t) +s(:)

is the sum of the moment of momentum and the internal angular momentum.
(38) 2SO+ Va- [vix0e()S0) = (x x T()T =T ()]
+ Vo [u(x,02()S() = (e x T() T =77 ()]

+ o (Piol)S() - () = o()x x k() + 20

Here n x g is the vector of couple forces (acting on crack orientation), the tensor
IT is the surface torque, and m is the analogue with respect to orientation, and
w is the analogue with respect to crack length. These constitutive quantities
appear in the non-convective fluxes in the position space, orientation space, and
in the length interval, respectively. This equation can be simplified with the as-
sumptions that the material velocity and the rotation velocity depend only on
position and time v(x,t) and u(x,t).

However, the spin is only relevant, if the model allows for crack rotations
independently of the rotations of material elements, and this is not the case in
our simplified example dynamics.

Similarly the balance of energy can be given, which is omitted here and can
be found in [18]. In all balance equations, in addition to the flux with respect
to the position variable, there appear additional flux terms with respect to the
additional mesoscopic variables crack orientation and length.

Balance of crack number

In our model the cracks move together with the material element. Therefore
their flux is the convective flux, having a part in position space, a part in orien-
tation space, and a part in the length interval. There is no production and no
supply of crack number. Therefore we have for the crack number density N:

39) 2N 4V NV} + Va - (N(ulx, 1)} +zizaaz (IQ[N(-)) =0.

ot
In a fixed volume element this crack number density is proportional to the mass
density, and therefore these two fields were not distinguished in an earlier pa-
per [18].
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We obtain from the mesoscopic balance of crack number density (3.9) a bal-
ance of the CDF f(I,n,x,t), by inserting its definition (3.1):

(3.10) gf(l, n,x,t) + V- (v(x,t)f(l,n,x,t))

ot
L& fq
+ Vo (u(x,0f (n,%,0) + 57 (126 0,m,%,1))
—f(l,n,x,t) (O
= —’% (& +v(x,1) vz) N(x,t)

_ _f(lanaxyt) dN(X,t) =0
~ N(x,t) a7

The right-hand side is equal to zero, as for the co-moving observer the total
number of cracks in a volume element does not change in time, as in our model
no cracks are created. In our model all cracks in a volume element move with
the translational velocity of the volume element v(x,t) and rotate with the
velocity u = V x v(x,t). Therefore the first three terms on the left-hand side
can be summarized as a co-moving time derivative of the distribution function
(the time derivative of an observer moving with the material elements) with the
abbreviation d€/dt:

(3.11) %f(l,n,x,t) +v(x,t)- Vof(l,n,x,t) + u(x,t) - Vo f(l,n,x,t)

_d°f(l,n,x,1t)
= dt '

If we assume in addition an incompressible motion V, - v = 0, we end up with
the equation of motion for the CDF:

d°f(l,n,x,t) . 10

dt 12 9l
This is not yet a closed differential equation for the CDF as long as no expression
for the length change velocity of the crack [ is given. An example of such a closed
equation will be discussed later.

Macroscopic quantities are obtained from mesoscopic ones as averages with
the CDF as probability density:

(3.12) (m'f(l,n, x,t)) — 0.

Inv
(3.13) A(x,t) =//A(l,n,x,t)f(l,n,x,t)danle.

lm S?
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Entropy balance

Besides these mesoscopic balances, the entropy balance is necessary forintro-
ducing the second law of thermodynamics. Because the production of mesoicopic
entropy is not necessarily positive for each crack length and orientation, tie en-
tropy balance is only interesting in its macroscopic form

B.14) S olx e ] + Vi - [ox, (e, v (x, 1) + $x, 1] = 00x, )(x, )

(n = specific entropy density, ¢ = entropy flux density, o = entropy prodiction
density). The second law is expressed by the dissipation inequality

(3.15) o(x,t) > 0.

The set of balance equations is not a closed system of equations, constiutive
equations for mesoscopic quantities are needed. The domain of the constiutive
mappings is the state space; here a mesoscopic one. There are the possililities
that the mesoscopic state space includes only mesoscopic quantities, or that it
includes mesoscopic and macroscopic quantities, and there are examples vhere
such mixed state spaces cannot be avoided [23|. (For instance in the ase of
liquid crystals the macroscopic alignment tensor is included in a mesoicopic
state space. This is necessary to account for the orienting mean field d sur-
rounding ordered particles. Otherwise it is not possible to describe the phase
transition from the isotropic phase to the ordered liquid crystalline phase) Con-
stitutive equations have to be such that the second law of thermodynanics is
fulfilled by any solution of the macroscopic balance equations with the costitu-
tive equations inserted [24]. This requirement restricts the possible constiutive
functions.

Finally, even for the exploitation of the dissipation inequality, which i pos-
sible only on the macroscopic level, the choice of variables can be motivaed by
the mesoscopic background [25, 26]. A relevance of these variables could 10t be
guessed from a purely macroscopic theory.

4. Damage parameter and order parameters
4.1. Definition of a damage parameter

The damage parameter is introduced as a macroscopic quantity growin; with
progressive damage in such a way that it should be possible to relate the chaige of
material properties to the growth of the damage parameter. We define thedam-
age parameter as the fraction of cracks, which have reached a certain lengh L.
The idea is that cracks of this and larger sizes considerably decrease the stength
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of the material, and therefore their fraction is a measure of the damage. This
idea is related to the slender bar model of KrRAJCINOVIC [5] (especially useful in
one-dimensional crack problems), where the damage parameter is introduced as
the number of “broken bars” in the sample,

o0
(4.1) D(x,t) = //f(l,n,x,t)d2n12dl.
L §2
In this definition of the damage parameter the possibility of cracks of any length
(Im — o0) is included. This is consistent with many possible laws of crack
growth, where the crack does not stop growing.
More sophisticated definitions, taking into account the orientational distri-

bution too, are possible and will be discussed elsewhere. Another measure of
damage which could be introduced is the average crack length [27].

4.2. Length order parameters

From the mesoscopic distribution function two different kinds of moment
series can be built because of the dependence on crack length and on crack
orientation. We can introduce moments of the distribution function with respect
to crack length:

Im
(42) [ 10nx.0P0Fd = pytn,x,),
Im
where Py (l) are polynomials being orthogonal with respect to the measure [2dl:
Im
(4.3) /B(I)Pj(l)l?dz = dij.
Im

The moments introduced in Eq. (4.2) still depend on crack orientation. Aver-
aging over all orientations gives macroscopic fields, the length order parameters:

(4.4) me(x,t) = | Pi(n,x,t)d*n.
/

In the following we will investigate the moments of the distribution function
with respect to crack orientation.
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4.3. Orientational order parameters

We can introduce the following set of alignment-fabric tensors of succsssive
tensorial order

Im
(4.5) a®)(x,1) := //f(l,n,x,t) no..on l2dld*n,
lm S2? k

where = denotes the symmetric irreducible part of a tensor [28]. Renark-
able, that only the even order tensors appear in the series because th: mi-
crocracks are represented by axial vectors, the unit normal to the crack sur-
face, i.e. n and —n are not distinguished. Due to this symmetry all odl or-
der moments vanish. The tensors defined above are macroscopic quanities.
We want to call them alignment-fabric-tensors. Originally tensorial damage pa-
rameters were introduced on a purely statistical ground, without a mesosopic
foundation and were called “fabric tensors of the second kind” in damage me-
chanics (see KANATANI [6] or KrRAJCINOVIC [5]). The alignment-fabric-teisors
represent the orientational distribution of microcracks, but do not take into
account their lengths. They have to be distinguished from the scalar lam-
age parameter which is a measure of the growth of cracks. These alignnent-
fabric tensors form a whole set of internal variables in the sense of thernody-
namics.

The alignment-fabric tensors are a measure of the deviation of the cract ori-
entation distribution from isotropy. They are all zero, if all crack orientatiors are
equally probable, and at least some alignment-fabric tensors are nonzero incase
of anisotropic distributions. The orientation distribution of cracks and ther:fore
the alignment-fabric tensors become important in the dynamics of the wack
distribution. There are usually the specimen geometry and loading condiions
rotation symmetric around an axis d (uniaxial conditions). It is reasonabe to
assume that also the distribution of crack orientations is rotationally symmetric
around the same axis d. Then, for symmetry reasons, all alignment-fabric ten-
sors of different orders can be expressed in terms of scalar orientational «der
parameters S*) and the unit vector d in the following way:

(4.6) a® =5k do...0d (k =2,4,..),
k

where the order parameters S*) are one in case of total alignment (the mcro-
cracks stand parallel) and zero for randomly oriented cracks.
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4.4. Equations of motion for the alignment-fabric tensors
and for the damage parameter

In general a coupled set of equations of motion for the alignment-fabric ten-
sors of different order can be derived from the differential equation for the crack
distribution function by taking moments of this equation, i.e. multiplying with
the dyadic product mo...on and integrating over all orientations n € S2. This

N——

set of equations is a,na,logous to the differential equations for the alignment ten-
sors in liquid crystal theory [19] and will be discussed elsewhere in more detail.
In general the equations for the different tensor orders are coupled.

As in our model all cracks in a volume element have the same angular velocity,
namely that of the surrounding material, this set of equations simplifies to a set
of very special balance type equations without production, and without non-
convective flux, which are not coupled:

9ak)

(4.7) o

+v(x,t)- Va®) + % (Vxv)-a®) — %a(k) (Vxv)=0,
(4.8) or 4 =0

for any tensor order k. This special form arises due to the model assumption
of a fixed crack number and in addition cracks not moving and rotating inde-
pendently of the surrounding material. Therefore for an observer co-moving with
the material, the orientation distribution and the alignment-fabric tensors do not
change. These equations are the equations of motion for the internal variables,
which have to be postulated in a purely macroscopic theory. For our simplified
crack dynamics the dynamics of the alignment-fabric tensors is not independent
of the motion of the material elements. Therefore the change of the alignment
tensors in time is not relevant to be considered in our simplified model, as it
is completely determined by the motion of the surrounding material. However,
the situation is different for other, more complicated crack dynamics. In any
case, even if the dynamics of the tensorial damage parameters is not interesting,
the orientation distribution itself is relevant, because of the dependence of the
effective stress on crack orientation (see below). This effective stress determines
the dynamics, as it appears for instance in the Griffith criterion for the onset
of growth, and it also appears in the expressions for the length change velocity
discussed in the examples below.

Orientation dependence of the effective stress

In an experiment with uniaxial tension ¢ applied to the sample the stress
component oy, normal to the crack surface, depends on crack orientation.
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Let us assume that in an experiment a uniaxial tension o is applied along
the z-direction. Then the stress component in the direction n, acting on a crack
surface with surface unit normal n is

(4.9) Oeff = o€ - n)27

where e, is the unit vector in z-direction. This dependence of the effective stress
on crack orientation leads after averaging over all orientations to

(4.10) /oeﬁf(l,n,x,t)dZn = /a(ez -n)%f(l,n,x,t)d*n

S? S2

1 1
— /a (nn— 56) f(l,n,x,t)d2n+ gé/af(l,n,x,t)dQn 1 e,e,

S2? g2

= a+16 re,e, = a+1
=0 3 €6, =0 2z 3]

where a,, is the zz-component of the second order alignment-fabric-tensor a.
This dependence of the effective stress on the alignment-fabric-tensor leads to
a dependence of the crack dynamics (for instance the critical length) on the
orientational order. Thus macroscopic equations of motion of damage param-
eters depend on the orientational order characterized macroscopically by the
alignment-fabric tensors. Hence it would be interesting to study the dynamics of
the alignment-fabric-tensors, too.

4.5. Differential equation for the damage parameter

Differentiating the definition of the damage parameter equation (4.1) with
respect to time we get the following differential equation for the damage param-
eter:

Im
dD(x,t) _d 2 19
L S§?

Im

= [ [ (§r0nxo0 + r0nx2) éna

L §2
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(41) //<__12znxn)+funxﬂw)fmz

L §?

——P%unxt +2//flnxum%m

L s2

The differential equation for the damage parameter depends on the crack
distribution function itself, and therefore also on the initial crack distribution,
and it also depends on the dynamical equation for the crack length.

5. Examples of closed differential equations
for the distribution function

Some model on the growth velocity of a single crack is needed in order to
make a closed differential equation for the length and orientation distribution
function out of Eq. (3.10). Two different dynamics of crack extension from the
literature will be given here as examples. In the second example we suppose that
for a given load not all cracks start growing but only cracks exceeding a certain
critical length [., which is given by the Griffith criterion. As in many examples
of a crack length change dynamics, the cracks do not stop growing but extend
infinitely, in all these cases the maximal crack length has to be set to I = oo.
However, when the cracks become macroscopic their growth dynamics, becomes
more complicated (showing for instance branching) than our example dynamics.

5.1. Mott’s extension of Griffith’s energy criterion including a kinetic crack energy

When the cracks are growing the system has a kinetic energy due to the
growth by virtue of the inertia of the material surrounding the separating crack
surfaces. This extension of the original Griffith energy concept (see below) by
a kinetic energy term goes back to MOTT [29]: A kinetic energy term is added
to the sum of the crack surface energy and the elastic deformation energy of
the surrounding elastic material, and the crack length is such that the total
energy of the system is constant. Two different loading conditions are especially
interesting: fixed loading (“dead weight”) and “fixed grips” conditions. In both
experiments uniaxial symmetry is assumed. In the first case a constant force is
applied to the ends of the specimen, leading to a tensile stress. In the second case
a fixed displacement is prescribed at the outer boundaries of the specimen. For
these two loading conditions, requiring a constant total energy and an argument
based on geometrical similarity, the following expressions for the crack length
change velocity have been derived ([30] p. 93):
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“Dead weight”:

(5.1) [ =l (1 - lTO)

where I is the so-called terminal velocity, not depending on the crack length,
but on the applied load o, and therefore on crack orientation. ly is the nitial
crack length.

“Fixed grips™
. l l
(5.2) [ =i 1—70(2—70)

where the parameter « is defined as

ol 8mid
(5.3) T Ty
It is the ratio of the initial crack area to the surface area A of a cross-s:ction
of the specimen. In the “fixed grips” geometry the crack extension migh' stop
again after a certain growth. This can be understood, because of the increise in
compliance associated with crack extension in a finite specimen. This leads to a
diminishing applied force and decreasing tendency of the crack growth.

From the mesoscopic point of view the growth laws, Eqgs. (5.2) as vell as
(5.1) are mesoscopic constitutive equations relating the length growth velccity [
to the external load in a material-dependent manner.

In both loading conditions discussed here the crack velocities have bem de-
rived for single cracks. If we apply these growth velocities in our differntial
equation for the length distribution function, Eq. (3.10), this means that ve ne-
glect interaction between cracks. However, crack interactions can be taker into
account by more sophisticated expressions for the length change velocity.

Inserting the length change velocities of the previous section into tle dif-
ferential equation for the crack distribution function, and integrating ower all
orientations leads to the following closed differential equations:

“Dead weight”:

df(Lae ) 15 1 : lo
(5.4) e <12f(l,x,t)lT (1 — 7)) .
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The parameter lT depends on the effective load oo and therefore on the second
order alignment-fabric tensor.

“Fixed grips”:

12 1/2
14+ a=
dfl,x,t) 10|, . I 2
. SR e P Ol (Bt i ;
&) dt zg |V fbx i it s gt

5.2. Griffith criterion for the onset of growth

The criterion for the cracks to start growing adopted in the example is the
energy criterion introduced originally by GRIFFITH [31]. According to GRIFFITH
[31] there is a criticality condition for the crack growth to start, and for cracks
larger than a critical length there is a velocity of crack growth [. From ener-
getic considerations GRIFFITH [31] derived a critical length of cracks with cracks
exceeding this length starting to grow. This critical length is given by:

K
r.6 l(‘:_‘—,
(56) =5

where K is a material constant, and oy, is the stress applied perpendicularly to
the crack surface. It is assumed that a stress component within the crack plane
does not cause the crack growth. For cracks smaller than the critical length [,
the energy necessary to create the crack surface exceeds the energy gain due to
release of stresses.

5.3. Rice—Griffith dynamics

A possible crack dynamics, taking into account the criticality condition of
Griffith, is derived from a generalization of the Griffith energy criterion on ther-
modynamic grounds, introducing the Gibbs potential [32], which includes the
stress normal to the crack surface and crack length as variables. The resulting
crack evolution law has the form

(5.7) [ =—a+ o2l for &>l

(5.8) =0 for 1<l
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with material coefficients «, and 3. In case of a constant time rate of the applied
stress, 0 = v,t, it results:

(5.9) | = —a+ vl for 1>,
(5.10) [=0 for 1<l

v, 18 the time derivative of the applied stress normal to the crack surface. The
dependence of this normal stress on crack orientation leads to the following
orientation dependence of the dynamics:

(5.11) [ = —a+ o2 jlt’(e, -m)* for 1>1,
(5.12) [=0 for 1<l

where v, ¢ is the change velocity of the stress applied in the z-direction.

After averaging over all orientations, this orientation dependence leads to a
dependence on the fourth moment |, g2 nnnnf d?n of the distribution function.

This dynamics also includes a criticality condition for the crack to start
growing.

With this model for the length change velocity we end up with the following
differential equation for the distribution function:

dfl,n,x,t) 10

gt _ 29 q2(- 27,2 >
(5.13) o 20 (I? (—a + By (n)?it?)) for 1>1,,
(5.14) w =0 for I<I,.

Solutions of this differential equation are discussed in [27].

6. Conclusions

In the mesoscopic description we have introduced mesoscopic fields, defined
on an enlarged space including crack size and orientation. Averages over crack
sizes and orientations, i.e. macroscopic quantities are calculated with a distri-
bution function f. The differential equation for this distribution function was
derived from the mesoscopic balance equations and crack growth law for the
single crack. Different crack growth laws from the literature were discussed.

Macroscopic quantities accounting for the progressive damage have been de-
fined as integrals calculated with the distribution function. These are scalar dam-
age parameters, like for instance the average crack length, and fabric-alignment
tensors. For these different scalar and tensorial damage parameters equations of
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motion have been derived. The time evolution of fabric-alignment tensors will
be of special importance under biaxial loading conditions.

The equations of motion for the damage parameters can be compared to
the evolution equation in phase field models (or in Landau theory of phase
transitions). In phase field models an additional wanted field, the phase field
is introduced. The form of the equation of motion, often in the form of a con-
servation law is postulated [33, 34|. This phase field can be compared to the
damage parameter introduced here, and in the non-unilateral case also to the
fabric-alignment-tensor. The equation of motion for the damage parameter is of
the same type. It is a special form of a balance equation, here with a zero flux
term, because spatial inhomogeneities were not taken into account. However,
this form of equation of motion has not been postulated here, but derived from
mesoscopic considerations, i.e. mesoscopic balance equations.
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