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A CONSTITUTIVE THEORY, finite element formulation and topology optimization for
anti-vibration rubber are presented. Many vibration isolators made of rubbers are op-
erating under small oscillatory load superimposed on large static deformation. A vis-
coelastic constitutive equation for rubber is proposed considering the influence of
large static pre-deformation on the dynamic properties. The proposed model is de-
rived through linearization of Simo’s viscoelastic constitutive model and introduction
of static deformation correction factor. And then the model is implemented in a fi-
nite element code to analyze the behavior of rubber elements under general loading
conditions. Dynamic tests are performed in order to verify the model under multi-
axial deformation. The computed results by the FEA code are compared with the
experimental results and the suggested constitutive equation with static deformation
correction factor shows good agreement with the test values. For the stability and low
transmissibility of isolation systems, both static and dynamic performance must be
concurrently considered in the design process. The continuum-based design sensitivity
analyses (DSA) of both the static hyperelastic model and dynamic viscoelastic model
are developed. And then the topology optimization methodology is used in order to
generate the system layouts considering both the static and dynamic performance.

1. Introduction

MANY RUBBER COMPONENTS, which are used as vibration isolators, experi-
ence small oscillatory loads superimposed on large static deformation. Most of
dynamic properties of vibration isolators can be described by linearized steady-
state harmonic response. Considering nonlinear behavior of rubber under large
deformation, it is evident that even linearized dynamic properties depend heav-
ily on prestrain. The accurate constitutive equation that describes rubber under
the loading conditions is essential in analyzing the dynamic behavior of rubber
and designing the shape of rubber elements.
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Morman’s model is widely used to describe viscoelastic behavior of rubber
that is under small oscillatory loads superimposed on large static deformation
[1-5]. Morman derived a viscoelastic constitutive model from the assumption
that the time effect and large prestrain effect can be separable. The separability
assumption leads to simple relaxation function that is independent of deforma-
tion. It is observed in experiments that the separability assumption is applicable
to unfilled rubber [1, 6]. In filled rubber, however, the relaxation function is a
function of prestrain [6, 7]. Rubber is seldom used as pure gum, because ad-
dition of fillers to elastomers improves mechanical properties [8]. Therefore it
is very important to consider the effects of prestrain in the constitutive theory
of small viscoelastic motion superimposed on large static deformation in many
engineering rubber materials [9].

In the previous work [9], the authors have proposed Linearized Simo’s Vis-
coelastic Model (LSVM) with static deformation correction factor as a consti-
tutive equation of rubber that is under small oscillatory loads superimposed on
large static deformation. In this constitutive model, the statically pre-deformed
configuration has been used as the reference configuration. And static deforma-
tion correction factor has been introduced to consider the influence of prestrain
on the relaxation function. In the previous work, it has been observed that the
proposed model works well under single stress component.

In this work, the proposed model is implemented in a finite element code
that enables us to predict the behavior of rubbers for general complex shapes
and loading conditions. And dynamic tests are executed in order to verify the
proposed constitutive model. Complex stress-state tests are included in the dy-
namic tests in order to assure the proposed model under multi-axial stress states.
The computed results by the FEA code are compared with the experimental re-
sults in order to estimate the performance of the model.

Many works for engine mount system of vehicles and aircrafts used two-
level design approaches [10]. First step is the system level design in order to
decide the mounting location and mount stiffness. In this level, simple spring-
damper models are generally used with constant parameters such as dynamic-
to-static ratio and loss factor. However these models are too simple to describe
the complex behavior of rubber-like materials. Second step is the isolator shape
design to get target stiffness decided in the first step. Various optimization ap-
proaches [11-13] are applied to the shape design, but they consider the only
static hyperelastic behavior of rubber. Most vibration isolators must endure
the static loadings due to large gravitational and inertial forces. And also they
must be dynamically flexible in order to have small natural frequencies and re-
duce the transmitting dynamic force from the vibrating systems to the other
structures. Therefore in the stiffness and shape design process of the vibra-
tion isolators, both static and dynamic behavior of rubber materials must be
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simultaneously considered for the structural stability and the vibration isola-
tion.

For the stability and low transmissibility of isolation systems, both static
and dynamic performance must be concurrently considered in the design pro-
cess. Among the various design methods, a topology optimization approach can
be applied for the shape design of vibration isolator made of filled rubber. For
easier application of the optimization algorithm, two kinds of continuum-based
design sensitivity analysis method are developed. Material property design sen-
sitivity analysis of both the hyperelastic constitutive equation and the steady-
state viscoelastic one are developed for topology optimization using the mean
compliance and adjoint variables. In order to consider simultaneously the static
and dynamic behavior of rubber, a proper topology optimization formulations is
proposed.

2. Constitutive equation and FE formulation
2.1. Notation

The small deformation superimposed on the large static deformation is de-
picted in Fig. 1. Let &, denote the configuration of the body % at instant €.
Configuration @y, @4, and &, refer respectively to the undeformed, the statically
deformed and the current configuration. (T (7) represents a tensor T at time
n with respect to a configuration @¢. For convenience, the following simplified
notations are also used:

(21)  T(n) =¢T(n), ¢To = ¢T'(to), oT(§) = 4, T(§), T = ¢T'(2).

The deformation gradient and volume preserving deformation gradient tensor
are denoted by

dz; (t)
9X; (§)

(2.2) (F (1), = ( ) ,  F=J713%F,

where J is det (¢F'). Left and right Cauchy—Green tensors that correspond to EF
and ¢F' are

(2.3) (C=¢FTeF,  (C=¢F (F,
(2.4) ¢B=¢FF",  (B=F¢F
and Green strains are defined by

(2.5) E = %(fc ~1), (E=



452 WAN-SUL LEE, SUNG-KIE YOUN and BONG-KYU KiMm

t=t

Static
X 3 f;

X2
Xl

Fi1G. 1. Large static deformation + small dynamic deformation.

2.2. Linearized Simo’s viscoelastic model (LSVM)

Simo proposed a finitely deformable viscoelastic model from the generaliza-
tion of standard linear solid model [14]. The characteristics of Simo’s model are
decoupled bulk and deviatoric responses over any range of deformations and lin-
ear rate constitutive equation. Simo’s nonlinear viscoelastic constitutive model
is written as follows:

(26) S=JCT'o5+ J7 DEV[(()E

t

.- d ov
J2PDEV / t — &) —DEV ( ) de| |
* 9(t=8) 5¢ 98)
0
where DEV [o] = (¢) — 1/3[C : (¢)] C~!, U and ¥ are the volumetric and devi-
atoric parts of the ela%tlc fxee energy function. From this model, static stress is

given as
(2.7) o9 = Pyl + dev [80] ;
ou oV —

where Py = ﬁ’ JFO(T)fFO and dev [e] = (o) — 1/3[I : (¢)] I. We know
from the above equatlon that static behavior of Simo’s model is exactly equal
to that of hyperelastic material. The static stress caused by prestrain is deter-
mined only by the last state of static deformation. Because of the fading memory
hypothesis [15, 16] of the viscoelastic material, the effects of the deformation his-
tory are relaxed out. Thus we can assume that viscoelastic effects depend only
on the superimposed small vibratory deformation.

A linearized constitutive equation that specifies the behavior of rubber under
small oscillatory load superimposed on large static deformation can be derived
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from the assumption that the superimposed motion is small. Repeated applica-
tions of the chain rule to Eq. (2.6) and the reference configuration transformation
yield the relation between the stress increment AgS and the superposed strain
increment €.

o*U

(2.8)  ApS = (JE]—2 +

P) Ekk[ — 2P¢

t
2
_g[dev(30)®1+l®dev(80)] :6+(€:E+/g(t—f)‘€:éd£,
0

(2.9) %:%(3:1) (f— %1@1)

1
+(¢—§[(9;1)®1+1®(<?:1)]+§(I:?:I)I®L

52
where Fjp = %FUFNF“\'F”, (g) and T is the fourth order identity
OE"/ 1uKkL
tensor.
Let us suppose that the superimposed deformation is steady-state harmonic
such as € = £*e™!. Then the complex constitutive relation is extracted from

Eq. (2.8).

o%U

(2.10) AoS* = (Jb—ﬁ A

P) exil — 2P¢€*

2 2% :
- §[dev(8)®l+[®dev(a)] cef 4+ (1 +iwg) €€,

oo

where ¢g* is the Fourier transform of g(t) ie g*(w) = / g (t) e ™dt. The
0
relation between g* and complex shear modulus G* = G’ +iG" is as follows:

Gl/ GI
11 = = .
(2.11) wg o + (1 G@) i

2.3. Static deformation correction factor

Thus far it has been assumed that g (¢), which represents the time effects,
is not affected by static deformation. This separability assumption of time and
large prestrain is suitable for the rubbers that do not contain such fillers as
carbon black [6, 7]. However, it is known from experiments that g (¢) depend
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on the static deformation for filled rubber [6]. Unfilled rubber is seldom used for
engineering applications, because the addition of fillers improves their mechanical
properties [8]. Therefore the influences on g (¢) due to the static deformation must
be considered in order to develop a realistic viscoelastic constitutive model. In
order to describe the non-separability nature of filled rubber, we introduce a
static deformation correction factor ¢* (Bp) to the constitutive equation. Now
we define g~ which is the correction of 1+ iwg* in Eq. (2. 10).

(2.12) g = (1 +iwg")c* (Bo),

where c¢* (By) is a complex-valued function that depends on the static deforma-
—~* o .
tion. g can also be described as follows using complex shear modulus and ¢*(By).

G* (LU) i _ Gl _G” % = a*
Bl c (Bo)— (@"}'2@ c (Bg)——Goo

In the above equation, G* can be interpreted as an effective complex shear mod-
ulus under static deformation. The static deformation correction factor can be
expressed by the modulus and argument of c*,

(2.13) 9" (w,Bo) =

(2.14) ¢* (By) = ce'?.

To define ¢* in a specific form, we need to measure the static deformation that
is described by the tensor By. It is observed that generalized octahedral shear
strain has good performance as a static deformation measure. The generalized
octahedral shear strain [17] is defined as

U e STy
(2.15) I, =¢ (211 43 612) ,

where T; and T, are the first and second invariants of the right Cauchy-Green
tensor C. I, is an invariant of By and represents the octahedral shear strain
under infinitesimal deformation. Since the value of ¢* is unity without the static
deformation, the following polynomial forms can serve as the static deformation
correction factors:

(2.16) & (T} = e,
(2.17) ¢y (Iy) =1+ 2y Iy + 24,12,
(2.18) BT =z L

where z,,, 2, and gz, are material constants. The material constants can be
easily determined by the results of uniaxial tension test.
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2.4. Mixed FE formulation of static deformation

For the FEA of a rubber element that is under small steady-state dynamic
load superimposed on large static deformation, the static analysis results such
as statically deformed shape and static stress state are required. Since rubber
can be idealized as a hyperelastic material as mentioned in the previous section,
static deformation analysis results can be easily obtained using the techniques
that are developed for the FEA of hyperelastic material. In the static analysis,
nonlinearity due to large deformation and incompressibility characteristics of
rubber should be effectively treated, and so the updated Lagrangian formulation
with displacement-pressure mixed method (u/p mixed method) is used in this
paper.

The mixed finite element formulation that was proposed by SUSSMAN and
BATHE (18] is used in order to analyze the incompressible large deformation
problems. In the mixed method, pressure that is defined by —ogx/3 is indepen-
dent of the displacement field and interpolated by its own shape function. The
independent pressure variable is denoted by p and the pressure computed from
displacement is represented by 7. By definition of pressure and Eq. (2.7), p has
the following description:

ou

2.19 b e
(2:19) i
The stress is composed of the derivatives of the strain energy function that is
obtained from the displacement field and the independent pressure field.

1 I L1, L
2.20 S (tg) =o(tg) = —dev|Fo—=F, | — pI.
(2.20) 0 (to) (o) W {an o] p

The governing equations in the u/p mixed method are described by the following
weak forms:

S o\ i : i
(2.21) /(80E—K—Jo(p—;ﬁ)—>.50EdV—/OS.(50EdV—5)?,

1
(2.22) = P-p)épdV =
/

In the above equations, the first and second equations are respectively the
equilibrium equation and pressure constraint between p and p. R and K represent
the external virtual work and bulk modulus of rubber, respectively. oW that
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is the strain energy per unit volume of statically deformed state is defined as
follows:

~

(2.23) i ;DO Jlo (np = U)

In this paper, U and ¥ are described by the Mooney-Rivlin model and the
second order polynomial of J. The specific form of the strain energy function is

(224) U =q (71 - 3) + Cc2 (T) . 3) ,
(2.25) U= %K(J ~1)%,

where ¢, ¢ and bulk modulus K are the material constants of rubber.

The solution of the governing equations cannot be obtained directly because
the equations are nonlinear. Thus we use the Newton-Raphson method in which
the linearized governing equations are solved by the iterative technique. The
incremental form of the governing equation can be written as follows:

(2.26) /55 —p 1@ T 2?)] e dV

+/UU:A50EdV+/—Aﬁ[:éde:SR—/Ug:ést,
1% 1% 1%

1 1
2 —opI L pAD dV = — | —— (P, — Do) 0P d
(2.27) / pl : edV /KJ05P p dV /KJo (Po — Do) 0pdV,
v

v v
0 0 1 0w
where de;; = ((())Tul + 00;?) and 2 = T 9EGeE To solve Eqs. (2.26)

and (2.27), tho displacement and pressure field are approximated by the shape
functions.

(2.28) u; = N'u],
(2.29) p=N 7

In the above equations, N is the interpolation function for the displacement
and le is the interpolation function for pressure. u{ is the displacement at the
I-th node in the 7 direction and p’ is the I-th pressure degree of freedom. The
element used in this study has 27 displacement nodes and 4 pressure degrees
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of freedom. The interpolation function for displacement field is the conventional
isoparametric shape function that continuously interpolates the field between
elements. The pressure field is interpolated by a linear polynomial using element
local coordinates and it is discontinuous between elements. Using finite element
approximation, the governing incremental equations are converted to the follow-
ing matrix equation:

Kyuv Kuyp Au { 74 } Fy

2.30 iy ,
) Kpy Kpp Ap 0 Fp

where Kyy, Kyp, Kpp, Fy and Fp are defined as follows:

(2.31) (Kuy),, = % [@ —p (1 @I= 2f)] i ZZ’:J‘
+ /o—u ad }’g" av,
(2.32) (o s R
oz,
(2.33) (Kpp)g = — .ETONth dv,
(2.34) (e, = / aij 362; dv,
(2.35) / 2 Jo p) NZ dV.

In the above equations, m and n denote respectively the displacement degree
of freedom at the I-th node in direction r and the J-th node in directions in the
global matrix.

2.5. FE formulation of steady-state dynamic deformation superposed on large
static deformation

The finite element formulation for the dynamic analysis is easily derived
through generalization of the static incremental formulation. In the dynamic
formulation, the viscoelastic behavior that alters the stress-strain relation and
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the inertia effects must be considered. Assuming that the displacement and ex-
ternal force increments which are superimposed on the static deformation are
varying in steady-state harmonic manner, the increments are written as follows:

(2.36) Au= Au*e™, Ap=Ap‘e™t, AR =ARZe, AS=ASE

The stress increments are determined by the proposed constitutive equation.
Because we use the mixed method in the FEA, the pressures and their increments
in the constitutive relations are converted to the independent variables. The
stress increments are calculated by

(2.37) ASE =G e =y (1 I 2f)  ef — AP,

where 9* = g ¢ — 2/3[dev (60) ® I + I ® dev (6¢)]. The inertia effects due to
dynamic deformation can be regarded as the body force pw? Au* by d’Alembert’s
principle. We can obtain directly the dynamic finite element formulation using
the same procedure that is used in the previous static case except for the complex
constitutive relation and the inertial body force. The finite element matrix equa-
tion for a rubber element subject to steady-state harmonic motion superposed
on finite static deformation is

M ‘+’ Kl*/'(} KUP A/Il,* { A'///* }

238 : L
2 Kfp Kpp Ap 0

In the above equation, the mass matrix and the dynamic stiffness matrix is
written as follows:

(2.39) Mpn = —6rs | pu?NINT dV,

Oe;; Oct
2.40 K i [6 ¥ bl ne—2f ] kL
( ) ( UU)mn 6“;:1 7)0( ® ) «L]kl au’;'} C
0 E;;
it /U” ourloust

The dynamic stiffness matrix depends on the static prestress and frequency due
to the definition of 2* and Eq. (2.40). Comparing Egs. (2.30) and (2.38), we
see that the steady-state dynamic finite element equation has the same structure
as the incremental equation for static deformation, except that the dynamic
equation has the mass matrix and the complex stiffness matrix.
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3. Experiment and prediction by the constitutive model

Dynamic tests in which the rubber specimens are subject steady-state har-
monic motion superimposed on large static deformation have been executed in
order to verify the proposed constitutive model. The tests performed in this
work are composed of the uniaxial tension tests and the complex stress-state
tests. The coefficients in the proposed model are determined by uniaxial tension
test. The determined coefficients are required in FEA of complex stress-state
test to specify the constitutive model. In the previous paper [9] it was observed
that the proposed model works well under single stress component. In this paper,
the complex stress-state test is carried out to verify the model under multi-axial
stress state. Varying the size of static deformation, the dynamic stiffness of each
specimen is measured and compared with the predicted value that is calculated
by FEM using the proposed model. By comparison of the results, we can verify
whether the model effectively describes the behavior of rubber subject to the
steady-state harmonic motion superposed on finite static deformation.

The tests have been performed at room temperature (26°C) using a servo-
hydraulic rubber tester(Instron-5802). To subject the specimen to small dynamic
motions superimposed on finite static deformations, experiments are conducted
in two steps. Finite prestrain is applied to each specimen with 20 minutes of re-
laxation time in order to achieve the static equilibrium. After that, the dynamic
load is superimposed on the static deformation. The dynamic displacement am-
plitude is 0.5% with respect to the deformed specimen length. Initial conditioning
has been applied 12 hours in advance before the test. For the initial condition-
ing, each test specimen is exposed to the highest strain and frequency in the test
series in order to remove irreversible material structures [19]. The measurement
is executed after 50 cycles of initial dynamic loading. When the test is executed
using the displacement-control mode, the dynamic displacements and the corre-
sponding dynamic driving forces are measured as the experiment results. And
then from these test data, the dynamic modulus and stiffness can be calculated
considering the size of specimens.

Table 1. Recipes of specimens.

Ingredient | Content (phr) Ingredient Content (phr)] Ingredient |Content (phr)
NR 100 Carbon black GPF 50 Antidegradant 4
ZnO 3 TBBS 1.0

Stearic acid 1.0 S 1.75
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Table 2. Material constants and the coefficients of static deformation correction

factor.
Material constant Value | Material constant | Value |[Material constant| Value
c1 (MPa) 0.46 p (kg/m?) 1124.7 02+ -0.0627
c2 (MPa) 0.08 241 -2.841
Goo(MPa) 1.08 22 10.81

The rubber specimens used in this work are made of natural rubber and
other ingredients. The recipes and material constants of the rubber are shown
in Table 1 and Table 2. Aluminum plates are bonded to both ends of the rubber
specimen by quick setting adhesive and each plate is bolted to the test machine.
The pictures of specimens used in uniaxial tension test and complex stress-state
test are shown in Fig. 2 and Fig. 3.

Fi1g. 2. Tension specimen.

FiG. 3. Complex stress-state specimen.
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3.1. Uniaxial tension test

Using the uniaxial tension test, the behavior of rubber under tensile loading
conditions can be examined and the performance of the proposed constitutive
model can be verified by comparing the test results with the calculated results. As
a pre-deformation, the static deformation in the range from 0% (A = 1) to 30%
(A = 1.3) is applied to the specimen. The 0.5% dynamic strain amplitude with
respect to the deformed specimen length is superimposed on static deformation
in 1 ~ 30 Hz frequency range. The definition of stretch and dynamic strain is as
follows:

I o+ Al Al

(3.1) Ll SRR
lo lo lo
Al

In the above equations, lg, [, Aly and Al are respectively, the original length of a
specimen in the direction of the test machine axis, length of the specimen after
static deformation, static displacement and dynamic displacement amplitude.
As results of the dynamic tension test, storage and loss modulus of the spec-
imen are shown in Fig.4 and Fig. 5 as a function of vibrating frequency for each
static tension case. The well-known near-linear relation between the stiffness and
log frequency is observed under different static deformation. We also can observe
that the dynamic stiffness is moved vertically with static deformation and con-
clude that the frequency effect is not influenced by static deformation. In order to

74
—=—)=1.00 | —&—2=1.20 %
721 e 2=1.05| ——)=1.25 e
704 —4—2=1.10 | —<— =130 /x/ e
—w— =115 - Ty
68 B /i:/'
66 % :;:/./-/' +/+/+
£ ea]i—— i o
é 1 —+ ! ././O;X
w62 T ._./o//;%{
1 N - ././o /.,;?X
604 —— o« o _x L
./’/'/x/x/x
5.8 o/‘/x -
56 ’?'/
.0 x/
1 e
Frequency (Hz)

FiG. 4. Storage modulus against frequency at different static stretch for uniaxial tension
specimen.
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FiGg. 5. Loss modulus against frequency at different static stretch for uniaxial tension

specimen.
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FiG. 6. Storage modulus against static stretch at 10 Hz for the uniaxial tension test.

estimate the performance of the constitutive equation, the measured dynamic
modulus and thecalculated ones are plotted at 10 Hz with respect to static de-
formation in Fig. 6 and Fig. 7. The proposed model successively describes the
effects of static deformation. It is observed that the complex Young’s modulus
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of rubber shows an initial decrease followed by an increase with enlargement
of static stretch in the uniaxial tension test. In the uniaxial tension test, Mor-
man’s model and LSVM in which static deformation effects are not considered,
cannot describe the variation of the modulus by static stretch. The proposed
model describes properly the dynamic behavior of the rubber. The constitutive
equations in which static deformation effects are not considered tend to predict
higher dynamic stiffness than the value measured in the compression test.

iy § P Experiment
1 | —®— Morman
065 | —A— LSVM
{1 | —w— Proposed
0.60 il
=1 ‘//
5 - e
S 055 P
< e Ll &
5 ] .&t e p Iw e el
0.50 ~ \Q\u\ n
~ \\
\\.'_ S .//
5 Bl G
0.45 -~ o
4 \* — r——-‘V’//
0.40 T . . ————r - T r T - T
1.00 1.05 1.10 1.15 1.20 1.25 1.30

Stretch (%)

Fi1G. 7. Loss modulus against frequency at different static stretch for uniaxial tension
specimen.

In the prediction of loss modulus, the proposed model anticipates smaller
value than the measured result but shows a similar trend. Since the loss mod-
uli are very small compared with the storage modulus and are very sensitive
to experimental condition, consistent experiments are difficult to be performed
for the loss moduli. The differences between the computed values and the mea-
sured ones could be caused by these difficulties. However, the dynamic moduli
calculated by the proposed model show the trends of initially decreasing and
gradually increasing against the static deformations, as similarly shown in the
experimental results.

The storage modulus is plotted with respect to the static deformation at fre-
quencies 5 Hz and 30 Hz in Fig. 8 and Fig. 9. In these figures we can observe
that the proposed constitutive model works well at other frequencies. The value
of ¢* used in the analysis at frequencies 5 Hz and 30 Hz is determined by the
uniaxial tension test results at 10 Hz. This means that the static deformation
correction factor determined at one frequency is effective at other frequencies in
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the tested range. This confirms authors’ assumption that ¢* is only a function
of static deformation.

By the discussion given in this section, the constitutive model proposed in
this work efficiently describes the effects of static deformation and shows better
performance than the conventional constitutive model in predicting the dynamic
behaviors of rubber specimens subject to large static deformations.

85+ | —=— Experiment
—e— Morman
—&— LSVM
—w— Proposed

8.0

—~ 757 /
©
% 4
~ 7.0 4 A
- o
i :

6.5

6.0 4

Stretch (1)

F1G. 8. Storage modulus against static stretch at 5 Hz for the uniaxial tension test.
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©
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2 754
w
7.0
6.5
6.0

Stretch (%)

F1G. 9. Storage modulus against static stretch at 30 Hz for the uniaxial tension test.
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3.2. Complex stress-state test

Complex stress-state test in which the specimens are under more complicated
stress state is used to verify the proposed constitutive model. The specimen used
in this test has the shape of a hexahedral block with a central hole and is under
intricate stress state when it is deformed as shown in Fig. 10 and Fig. 11. The
static deformations are applied to the specimen and the values of deformations
are in the range from 15% compression (A = 0.85) to 20% tension (A = 1.2). The
0.5% dynamic strain amplitude with respect to the deformed specimen length
was superimposed on the static deformation over 1 ~ 30 Hz frequency range.
Varying the magnitude of static deformation, the dynamic stiffness defined by
the following equation is measured and compared with the computed result:

AP1*
VAV il

where AF* and Al* are the dynamic force and displacement.

(3.3) K*=K +iK" =

Fi1G. 10. Static stress distribution for the complex stress specimen (von Mises’ stress,
A =0.85).

From the results of complex stress-state test, the relations between dynamic
stiffness and frequency for each static deformation show the nearlinear relation.
This trend is very similar with uniaxial tension test results shown in Fig. 4
and Fig. 5. The dynamic stiffness moves upwards with static compression and



466 WAN-SUL LEE, SUNG-KIE YOUN and BONG-KYU KIM

downwards with static tension. The effective cross-sectional area of the speci-
men increases with the compression and decreases with the tension, as shown in
Fig. 10 and Fig. 11.

FiG. 11. Static stress distribution for the complex stress specimen (von Mises’ stress,
A = 1.20).

In order to appreciate the performance of the constitutive equation, the mea-
sured dynamic stiffness and the calculated one are plotted at 10 Hz with respect
to static deformation in Fig. 12 and Fig. 13. The minus sign in the static dis-
placement means that the specimen is compressed by the test machine. It is
interesting to notice that the slope of dynamic stiffness curve has a discontinuity
at the point with no static deformation. It is clearly observed that the unde-
formed state is expressed as a local maximum point in the dynamic stiffness
plot. It has been shown in uniaxial tension test of the previous section, that
the modulus of rubber decreases with static deformation in the vicinity of the
undeformed state. The dynamic stiffness of complex stress-state test specimen is
decreased by both pre-applied tension and compression pre-deformation. Thus
the dynamic test results have a peak when the specimen is under no prestrain.
The constitutive equations without static deformation correction factor cannot
describe the peak and anticipate higher dynamic stiffness than the experimental
value. The proposed model, however, effectively describes the effects of prestrain
that cannot be expressed by conventional constitutive models as shown in the
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figures. The dynamic stiffness is plotted against the static deformation at 30 Hz
in Fig. 14. It is observed that the proposed constitutive model works well at other
frequencies. This result confirms the fact that the static deformation correction
factor determined at one frequency is also effective at other frequencies in the
tested range.
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FiG. 12. Real part of complex stiffness against static deformation at 10 Hz for the complex
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complex stress specimen.
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Fi1G. 14. Real part of complex stiffness against static deformation at 30 Hz for the complex
stress specimen.

In prediction of the loss stiffness, the proposed model predicts greater value
than the measured result but shows same trend. In case of no static deformation,
all constitutive models yield the same value because every model becomes a linear
viscoelastic one. The material properties used in the calculation are determined
by the uniaxial tension test results. The difference between the computed value
and the measured one under no static deformation is caused by material property
difference between the test specimens. It is suspected that the material property
difference between the specimens comes from curing condition variation during
preparation of specimens and the effects caused by adhesive bond between the
specimen and fixing plates. There are some experimental difficulties similar to the
tension test since imaginary parts of stiffness are very small compared with real
part and very sensitive to experimental condition. In spite of these differences,
the proposed model shows more precise prediction than the conventional models.

4. Design sensitivity analysis and optimization

In the designs of vibration isolators, both static and dynamic characteris-
tics of rubber must be concurrently considered in order to assure the structural
stability and low transmissibility. As mentioned before, the static and dynamic
behavior of rubber can be respectively described by a hyperelastic model and
a steady-state viscoelastic model. A topology optimization approach can be ap-
plied for the shape design of vibration isolator made of filled rubber. For easier
application of the optimization algorithm, material property design sensitivity
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analyses of both the hyperelastic and viscoelastic constitutive equation are devel-
oped for topology optimization using the mean compliance and adjoint variables.
In order to consider simultaneously the static and dynamic behavior of rubber,
a proper topology optimization formulations should be proposed.

4.1. Design sensitivity analysis of the hyperelastic model

The hyperelastic constitutive equation can be written with the following non-
linear energy form and load linear form:

(4.1) a7 =di(F) VreU x P,

where U and P are spaces of kinematically admissible virtual displacements and
hydrostatic pressure, r = [71,1,u2,u3,p]T is the vector of the displacements and
hydrostatic pressure. In this equation, each side can be written with integral
terms as follows:

X 1 "
(4.2) a(r,7) =20 /0W+0QdV =4 /OW— KT (p—p)Pdv |,
Vv %
(4.3) 1(F)="R= /f u dV + /T u dS,
v S

where oW represents the energy density function. f and T represent the external
volumetric and surface forces.

Material property design sensitivity analysis of hyperelastic model was de-
veloped [11]. When a structural system with a given design b is in the final
equilibrium configuration at time ¢, the system reaches another equilibrium at
time t + At due to design perturbation 76b.

(4.4) aptrob (1 7) = lpiren (F), VP €U X P.

Since the difference between the final equilibriums of two designs becomes
smaller as design perturbation becomes smaller, the first-order variations of the
nonlinear energy form and the linear load form with respect to the design variable
can be defined as:

L d =i
(4.5) ag (r,7) = S Qbrdb o) g
i =0
(46) R s R
. T)= — 5
&b e b+766 \T i
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By the chain rule of differentiation, the first order variation of Eq. (4.4) is ob-
tained as:

(4.7) ay, (r;r',i‘) =I5, (F) — ajy (, 7).

Generally, the following static mean compliance can be selected as the static
) P
performance measure of the structural system:

(4.8) w= | frdv.
/

If the external force f is independent of the design changes, the first-order vari-
ation of the mean compliance is written as follows:

(4.9) W = [ fr'av.
/

Using the adjoint equation, the design sensitivity of static mean compliance is
written as:

(4.10) Y = —aj (1, 7).

In this equation, the first order variation of energy form with respect to the
design variable can be written in terms related to design variables as follows:

T=0

! . g o 8 G S
(4.11) aéb(ur)—/ée.E—T—[j(b—kréb)] cedV
J

)
5 / = [00 (b + nsb)} 1 A%EdV.

v
4.2. Design sensitivity analysis of the steady-state viscoelastic model

Introducing the virtual variable, the complex viscoelastic constitutive equa-
tion (2.37) is written as the following energy equilibrium equation:

(4.12) o (r*, ) = SW* = AR* =1 (7*), V" eU* x P*,

where U* and P* are spaces of kinematically admissible virtual complex displace-
ments and hydrostatic pressure. The first-order variation of energy equation can
be obtained similarly to the static case.

(4.13) ajy (7% 707 ) = Uy (F1) — ay (7%, 7).
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In the vibration isolation system, the dynamic performance of the system is
the transmissibility from the vibrating systems to the base structures. As shown
in Fig. 15 and Fig. 16, the transmissibility of the system has a very similar
tendency compared with the dynamic compliance, therefore dynamic compliance

can be the dynamic performance measure of structures.
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The steady-state dynamic compliance can be defined as:

(4.14) N
/

If the vibrating external force f* is independent of the design changes, the
first-order variation is obtained as:

(4.15) v = [ frdv.
/

The design sensitivity of static mean compliance can be written by using the
proper adjoint equation similar to the design sensitivity of static mean compli-
ance,

(4.16) P = —aly, (r*, ).

In this equation, the dynamic compliance and its first-order variation are the
complex variables defined as ¥* = (; + i1p2) and 8 (¥*) = (641 + i6¢p2). There-
fore, the following two scalar variables can be used as the real-valued performance
measure and its design sensitivity.

(4.17) 1l = /3 + 2,
1/ . 5\ —1/2
(4.18) 5wl = 5 (07 +u8) " (2n00 + 2aia).

4.3. Optimization formulation

Generally, in order to strengthen the static stiffness, the static mean compli-
ance of the structure should be minimized. In this work, the density distribution
approach is used as the topology optimization methodology. The topology opti-
mization problem can be formulated with the maximum volume constraint using
the element density 7); as the design variable.

Ny
minimize ) = /f rdV = iju]-,
v J
(4.19)

nel
subject to /ndV = Zme < Vinaxs 0<n <1
v :
In the optimization for transmissibility, we can use the dynamic compliance
as the objective function and then the optimization problem can be formulated as
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follows. In order to minimize the transmissibility, the dynamic mean compliance
should be minimized. The volume constraint must be reversed to minimum value
because the structure will become very flexible in view of low force transmission.

Ny
minimize ¢ = ||¢*] = /f*r* dV'}| = Zfi*u;
4 7
(4.20)

nel
subject to /71 dv = Znin > Viins "0 < < 1
174 7

In order to make an isolator endure the static loadings and reduce the force
transmission, the static and dynamic compliance of the structure should be si-
multaneously considered. Multi-objective optimization can be used for this prob-
lem, but the sensitivity differences of static and dynamic compliance cause some
difficulties. In this paper, the dynamic compliance is minimized with the maxi-
mum static compliance constraint as well as the volume constraint. Such topology
optimization problem can be formulated as:

Ny
minimize P =|v*| = /f* r* dV| = Zfi*u; ;
J j

Ny
subject to  hy = /f rdV — Cpax = Zfi“i — Chax <0,
J

1%
(4.21) nel
hQZ/UdV_Vmax:ZUiVie_VmaxSO,
b :

nel
h3 = Vinin — /"7 dV = Viin — Znivie <0,
v :

0<m<1.

As mentioned before, the density distribution approach is selected and the
design densities indicating the material existence are used as design variables.
In order to assure the existence and uniqueness of a solution, a relaxed and
penalized artificial material model is selected. The relation between the elastic
modulus and the design density in this artificial material model is represented
by the following equation and its characteristics are presented in Fig. 17. As
parameter « increases, the relation becomes more penalized.
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n:
(4.22) I W R,

g l+a(l—mn) "

In this work, the three-dimensional quadratic hybrid elements are used in FE
analysis for each static and steady-state dynamic problem. The hybrid elements
have 27 displacement-nodes and 4 hydrostatic pressure degrees of freedom for
the treatment of incompressible or nearly incompressible behavior. Therefore the
locking phenomena and checkerboard pattern can be effectively removed. And
also the continuation methods for volume and static compliance constraints are
used in order to prevent the local minima. A sequentially linear programming
(SLP) algorithm is selected as the optimization algorithm, which updates the
design variable to improve the performance of structures.

5. Design examples

A simple structure shown in Fig. 18 is selected as a numerical example to
demonstrate this approach. A natural rubber filled 70 phr carbon black is applied
as the isolator material and steel (ASTM A36) is selected as a non-design mass
material. A mass to be isolated is located on the top center surface of rubber.
A large static deformation is generated by self-weight of the mass and external
vibrating forces are vertically applied to the mass center. The volume constraint
for design is set to 50% for all following problems.
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Fi1G. 18. Schematic diagram of simple structure problem (¢ = 10 mm).

At first, the static design result for minimizing the static compliance and
obtaining the highest stiffness is shown in Fig. 19. A very stiff structure within
the given volume constraint was obtained and this structure is strong enough to
endure the large static load. For the design problem to minimize the transmis-

Fi1G. 19. Maximum static stiffness design of simple structure problem.
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sibility for 20 Hz vibrating frequency, a very flexible structure is obtained and
shown in Fig. 20. This structure has a very small natural frequency and shows
very low transmissibility, however it is too weak to endure the self-weight of the
mass. It is obvious that the static stiffness compared to the mass is very small
because of a large cavity under the mass. If this design is applied for isolator,
very large static deformations may be generated by self-weight of mass and the
structure may become unstable due to small disturbances. Therefore it is im-
possible that the design results considering only the dynamic behavior of rubber
could be applied to vibration isolator.

FiG. 20. Minimum transmissibility design of simple structure problem (f — 20 Hz).

For this reason, the static and dynamic behavior of rubber must be simul-
taneously considered in the design process of anti-vibration rubber. A topology
optimization process to minimize the dynamic compliance with the static com-
pliance constraint as well as volume constraint is attempted. During iteration
of the optimization, structure may become flexible in order to minimize the
dynamic compliance and then a large deformation occurs with the element dis-
tortions. The continuation of volume and static constraints is applied to avoid
this mesh-distortion problem. The design result within 120% static constraint
is represented in Fig. 21. The 120% static constraint means that the structure
can be deformed within 120% of static deformation of maximum static stiffness
design. The obtained result shows a complex truss-like structure. As represented
in Table 3, this structure has a sufficient stiffness for static loading by the mass
and shows about 20% lower transmissibility compared to the static stiffness de-
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sign. On the contrary, the static deformation due to static loading increases by
about 20%. We can conclude that the proposed design method is effective for
vibration isolator design.

FiG. 21. Simultaneous design result of simple structure problem (f = 20 Hz, 120% static
compliance constraint).

Table 3. Design results of simple structure problem.

Design method Static design | Dynamic design | Simultaneous design

Static compliance |0.1990635E+00| Not available 0.2401379E+-00

Transmissibility 0.1577919E+00 | 0.2596466E-02 0.1262678E-+00

Dynamic compliance | 0.1181939E-05 | 0.1030806E-05 0.1151566 E-05

6. Conclusions

A constitutive model, FE formulation and topology optimization for rubber
that is under small oscillatory loads superimposed on large static deformation
was discussed. The constitutive model was proposed and implemented in a fi-
nite element code to calculate the behavior of rubber under complicated loading
conditions. Updated Lagrangian formulation with displacement—pressure mixed
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method was used to treat the incompressible large deformation problen. Dy-
namic tests under specified loading conditions were executed in order to verify
the proposed constitutive model. Complex stress-state tests are included in the
dynamic tests to verify the model under multi-axial stress states. The jesults
computed by the FEA code were compared with the test results to estimee the
performance of the model. In the complex stress-state test, it is clearly obierved
that the undeformed state is expressed as a local maximum point in the dyramic
stiffness plot. The proposed model successfully predicts the peak point and its
computed results agree well with the experimental ones.

For the stability and low transmissibility of isolation systems, a tojyology
optimization method was proposed considering both the static and dyiamic
performance. Material property design sensitivity analysis of the hyperlastic
model and steady-state viscoelastic one were developed using the mean oxmpli-
ance and adjoint variables. A simple design example was presented and lesign
results showed that the proposed design process could simultaneously cosider
the static and dynamic behavior of rubber with adequate constitutive mcdels.

The amplitude of dynamic deformation generally affects the dynamic stffness
(Payne effect). It is anticipated that the amplitude effects increase with larger
strain amplitude and amplitude variation. As a future work, we are now tring to
include the Payne effect in our constitutive equation and consider more ralistic
loading conditions for the isolator design.
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