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THE AIM OF THE PAPER is to formulate a particular case of the J. Rychlewski yield
condition for anisotropic linear elastic solids with Hooke’s law and the limit tensor
representing elastic range in the Mises yield condition under the assumption that
different symmetry of elasticity tensors and the limit tensor appears. The elastic-
ity tensor C is assumed to have cubic symmetry. The yield condition is based on
the concept of stored elastic energy density, the theory of proper elastic states and
energy orthogonal stress states developed by J. RycHLEWSKI [1-3]. Three possible
specifications of energy-based yield condition for cubic crystals are considered: the
criterion based on the total distortion energy, the criterion based on the energy ac-
cumulated in the three proper states pertinent to cubic symmetry and the energy
based criterion for cubic symmetry in elastic range and orthotropic symmetry in the
limit state. Physical motivation, comparison with available experimental results and
possible applications in mechanics of anisotropic solids as well as in nanomechanics
are discussed.

1. Introduction

THE AIM OF THE PAPER is to study some particular cases of the RYCHLEWSKI
yield condition [2, 3] for anisotropic linear elastic solids with Hooke’s law

(1.1) 0=S-¢t< 0y =5 nen, €=C-0o cnn=Chnnijoi
such that

1
(1'2) CoS=8S0C=1Is5« Sijklcklmn = 5 (6im5jn + 5in6jm)

and the limit tensor H representing elastic range in the Mises yield condition
(1.3) 0-H:0=Hjjpoijon <1,

under the assumption that different symmetry of elasticity tensors of stiffness S
and compliance C vis-a-vis the limit tensor H appears. The elasticity tensor C is
assumed to have cubic symmetry, while at the limit the state material becomes
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cubic or tetragonal or in general orthotropic. Three possible formulations of the
energy-based yield condition are considered.

In the simplest case, the energy of distortion, which can be separated from
the total elastic energy density, is taken as a measure of material effort. This is a
direct extension of the approach proposed independently by J. C. MAXWELL [4],
M. T. HuBER [5] and H. HENCKY [6] for isotropic solids, which is based on
the assumption that only a part of the density of elastic energy — energy of
distortion — is responsible for reaching a limit state. In this case, only one crit-
ical value of the limit state exists, e.g. yield strength. Such an approach can be
applied only for solids of isotropic or cubic symmetry because only in such a
case the part of elastic energy related with volumetric change corresponds to
proper elastic state and the assumption of material incompressibility is admis-
sible. For other symmetries, a volumetric change does not correspond to proper
elastic state and W. BURZYNSKI condition [7] should be assumed in order to
extract the density of elastic energy related with spherical part of stress from
the total one. This confines the considerations to the class of solids with volu-
metric (spherical) isotropy and enables introduction of the simplifying constraint
of incompressibility (cf.[8]).

The second case is related with the elastic energy densities corresponding
to three proper elastic states, as derived in [9, 10]. In such a case three critical
values of limit state (e.g. yield constants) can appear in the limit condition.
Under incompressibility assumption the number of critical values reduces to
two. The advantage of J. RYCHLEWSKI approach [2, 3] lays in the possibility of
consideration of different symmetries of a solid body in the elastic range and in
the limit state. This enriches the spectrum of possible applications. Therefore, in
the third case, the energy-based yield criterion is derived for the situation when
a body is of cubic symmetry in elastic range and becomes orthotropic in the limit
state. Physical motivation is presented and possible experimental verification of
the proposed energy based criteria is discussed.

2. Physical motivation

The well-known examples of solids with cubic symmetry are metal single crys-
tals of FCC and BCC lattice. Since early investigations of E. SCcHMID [11, 12],
the assumption that single crystal starts to yield, if the shear stress resolved
onto the crystallographically defined slip plane and in the slip direction reached
a critical value, is commonly used in plasticity of single crystals and polycrys-
talline aggregates. Such a criterion, known as the Schmid rule, can be expressed
in the case of a single crystal subjected to tensile load P in the form:

P
(2.1) — cos(pcos A= T,
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where ¢ and A are, respectively, the inclination angle of the normal to the slip
plane n with respect to the tensile axis and the inclination angle of the slip
direction b with respect to the tensile axis, while 7., denotes critical value of
shear stress once plastic glide starts to operate. In general, for arbitrary Cauchy
stress tensor o the criterion reads

(2.2) bon = 7.

The experimental investigations reveal a good confirmation of this criterion for
HCP and FCC single crystals in situations, when only a single slip system oper-
ates. Remarkable deviations have been observed, however, in cases when multiple
slip occurs, e.g. for the orientations of tensile axis lying near to the corners of the
fundamental triangle of stereographic projection. The plastic yield in BCC single
crystals also does not conform to the Schimid criterion. These facts have been
already reported in [12, 13]. The studies concerning localization of plastic defor-
mation in single crystals [14, 15] also show that modification of the Schmid condi-
tion accounting for other components of stress tensor provides better prediction
of localization phenomena. The atomistic study based on molecular dynamics
simulations and examining the effect of crystal orientation on the stress-strain
relationship of Ni single crystal shows large deviations from the Schmid criterion
[16]. The recent investigations of [17, 18] related with atomistic calculations of
the behaviour of dislocation core and the so-called non-Schmid effects in the
plastic yielding of BCC single crystals led the authors to the yield criterion in-
cluding non-glide components of stress. Although the mentioned applications of
molecular dynamics simulations provide deeper insight into the phenomenon of
the onset of plastic glide and the core structure of a dislocation in BCC metals,
the criterion accounting for non-glide components bears an empirical character.
Therefore, such an approach cannot be generalized for other situations, which
might be related with other crystalline structures, e.g.: nanostructures, thin lay-
ers or interfaces. In the case of nanocrystals the difference in the interatomic
distances, with resulting change of symmetry of the bulk material and strained
surface layer becomes essential (cf. e.g. [19]). The strained surface layer is often
a site, where a limit state can appear first. Under the limit state, we can under-
stand in such a situation breaking of atomic bonds, which may lead to formation
of a point defect or a dislocation. Evaluation of the critical energy of breaking
of atomic bonds with application of a quantum-mechanical model of an ideal
Cu crystal was presented in [20]. The question arises then, how to formulate the
limit criteria for solids exhibiting different symmetry in elastic range and in limit
state.

The problem was studied afresh in [21], where a new approach has been pro-
posed. It is based on the fundamental concept of density of elastic energy of
distortion accumulated in a strained solid, anticipated in 1856 by J. C. Maxwell



434 K. KowALCZYK, J. OSTROWSKA-MACIEJEWSKA, R. B. PECHERSKI

in his private letter to W. Thompson [4] and discovered, independently, by
M. T. Huber [5]. This pivotal idea, proposed originally for isotropic solids, was
further extended for elastic anisotropic solids in the studies of W. BURZYNSKI [7],
W. OLszAK, W. URBANOWSKI [22], W. OLSZAK, J. OSTROWSKA-MACIEJE-
WSKA [23] J. OSTROWSKA-MACIEJEWSKA, J. RyCHLEWSKI [9] and J. RyCH-
LEWSKI [2].

3. Formulation of the problem

The yield conditions are based on the concept of stored elastic energy, the
theory of proper elastic states and energy orthogonal stress states developed by
J. RYCHLEWSKI [1-3], who proved that the Mises limit criterion bounds the
weighted sum of stored elastic energies of uniquely defined, energy orthogonal
states of stress
(3.1) U-H-(I:—1—@(01)+~~+—1—¢(0p), p <6,

hy hy
where 0 = 0] + 02+ - - + 0, is the unique decomposition of stress tensor o into
energy orthogonal states, oy-C-0; = 0 for k # [, and hy, ..., hy are the pertinent
energy limits of elasticity, which we called in [20] the Rychlewski moduli.

If the compliance tensor C possesses cubic symmetry, three elastic proper
states exist. The spectral decomposition of the compliance tensor for cubic sym-
metry has the form |9, 10

1 1 1
3.2 C=—-P +—P —P
(3.2) P 1+ 1 + g 1,
where the projectors Pg, K =1, II, III are given by

1
P] = 51 ® 1 ,
1

(33) P = (K - 51 ® 1) 5

Py = (Is — K)

and Ar, A\;p and Arpp are the Kelvin moduli, which can be expressed by elasticity
constants representing the components of stiffness tensor (cf. 24|, where the op-
posite notation for the tensors of compliance - S and stiffness — C in comparison
with our work was assumed):

A = A1 = S + 251122,
(3.4) All = A2 = A3 = Ag = S1111 — S22,
Al = As = A = 259323,
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whereas the fourth-order tensor K is defined by unit vectors lying along the
edges of the elementary cube (m;, mg, mj)

3.5) K=m;®m;®m; ®m; +m; ®m; ®my ® my + m3 ®m3 ® m3 ® mj.

The stored elastic energy for unit volume is composed in such a case of three
parts [9, 10]

(3.6) 9 (o) = %0‘- C-o =9 (0) +djlf[ (o) + dilf“ (o)

(trc)2+i G-K-(r—%(tro)2 tro’ - o K- 0),

11 g (
6 | 211 2 m

the energy of hydrostatic states @} (o) and the energy of distortion @/ (o) =
<15If] (o) + @If” (o) related with two deviatoric states, respectively.

4. Criterion based on the energy of distortion

In the first approach, the energy of distortion @ (o) that can be separated
from the total elastic energy density is taken as a measure of material effort:

(4.1) &5 (o) =Y (o) + 9} (0)

: 1
(mlcrml)2 + (m20'm2)2 + (m30m3)2 R (trO')2

221

00— (m10m1)2 + (mgcrmz)2 + (m;;amg,)2

_+.
221

The criterion of energy of distortion for solids of cubic symmetry, in particular
for crystals of cubic lattice, can be stated as follows [21]:

The yield condition is satisfied, if the density of energy of distortion accumu-
lated in a body of cubic symmetry attains certain critical value @,

(4.2) B (0) = Dey.

The critical value of energy of distortion can be determined experimentally
in a tensile test of a single crystal along the direction of unit vector n = lm; +
mmy + nmg3 with stress ¢ = o,n ® n. The energy of distortion takes in such a
case the form [10]:
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(4.3) P (op,m)

2/111 (14 +m*+nt— 1) + 5)\—1[;02 ( — (l'1 +m? +n4))

p 1 1 1 1
2 4 4, 4

=0 ——— | ("+m +n") + —
L [(2)\” 2/\[]1) ( ) 2 6/\11

Let us observe that there are two initial orientations of the crystal subjected
to tension, for which the formula (4.3) obtains a particularly simple form [21]:

e Initial orientation chosen for one of the edges of elementary cube, i.e. [100],

(010] or [001].

e Initial orientation taken along the normal to the octahedral plane [111].
For the orientations [100], [010] or |[001] we have, respectively, =1, m=n =0,
m=1,l=n=0, or n=1, [=m=0 and the energy of distortion can be expressed
by means of tensile stress along one of the cube edges:

11 . 11 11 11
(44) @I (0'[100]) 3 /\”0'[2100] 3-}-\;0[2(”0] = 5-)\—;(7[2001], ch = 5—)—\-[:}/22,
while
(45) ¢If“ (0'[100]) = (p}“ (0’[010]) = dilf“ (U[OO]]) = O

On the other hand, for the initial orientation [111] the distortion energy takes
the form

11

9 11 _.
4.6 ot B = =—Y2,
( ) f ( [111]) 3)\”1 [111]a cr 3 Mt 3
while
(47) qufl (0[111]) = ()

It means that in the limit state the ratio of two critical values of tensile stress
at yield is determined by Kelvin moduli Ajj and Aqpp

(48) LY
, Y3 At
Then, the tensile tests of a single crystal along one of the edges of elementary
cube and along the initial orientation [111] lead to two deviatoric states, which
are energy orthogonal. It can be also proved that these directions correspond to
the extremal values of Young modulus (cf. [10]). Due to this we can use one of
these tests to measure the yield stress and the other one to verify by means of
(4.6) the proposed criterion of energy of distortion.
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5. Specification of the criterion for cubic crystals for spectral
decomposition of the elasticity tensor C

The second case of possible formulations of energy-based yield condition is
related with the elastic energy densities corresponding to three proper elastic
states (3.3), as derived in |9, 10]. It is the specification of general criterion (3.1)
that was obtained originally by J. Rychlewski from the main energy orthogonal
decomposition for cubic symmetry. According to [9] it takes form:

2 2 2
g O: (o}
(5.1) < +—2+2<1

where Uf = 0,05, kf = 2h;A;, 1 =1, 2,3 — nosummation for :. In such a case
three critical values of limit state (e.g. yield constants) can appear in the limit
condition. If k; — oo, we say that the i-th state is safe for any state of stress.
In the theory of plasticity of isotropic metallic solids it is often assumed that
the spherical parts of stress tensors are safe. Such an assumption can be also
extended to bulk metallic solids of cubic symmetry, since the hydrostatic state is
a proper elastic state. Therefore, sometimes a body of cubic symmetry is called,
if we abstract from its crystallographic features, a body of cubic isotropy. It
should be mentioned however that for other types of symmetry (anisotropy) the
hydrostatic state is not a proper elastic state. If we assume for certain reasons,
for simplicity or having experimental justification, that the material is pressure
insensitive, we confine at the same time our considerations to certain class of
bodies with constraints, which are volumetrically isotropic (cf. [2, 8]). It is also
worthwhile to observe that the limit condition (5.1) can be obtained also if we
assume that the limit tensor H possesses the same symmetry as the compliance
tensor C (they are coaxial, i.e. they have the same proper subspaces but different
proper values).

If the hydrostatic state of stress is safe, we have k; — oo and the quadratic
limit condition (5.1) can be expressed only for two deviatoric states

R | ,

o2  o? (m;om;)? 4+ (myomy)? + (m3om;)? — 5 (tro)?
5.2 - ‘
©Y o gtR K2

g -0 — [(mlcrml)2 + (mgamg)2 + (m30m3)2]

k3

+ <1,
where k% = 2ho 1, k% = 2hgA are the limit constants, which should be
determined experimentally, e.g. in tensile tests. The tensile tests for single FCC
crystals with different initial orientations have been proposed in [20] to verify
experimentally the new yield criterion. Accordingly, the yield stress in tension
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along the direction n = lm; + mm; + nmg, while the elasticity tensor C and
the limit tensor H are coaxial for single cubic crystals, was calculated under the
assumption that k; = oo

(5.3) Y L Ly (L-] (1* +m* +nt) o
) = |—— — i 7 n .
3k k2 \kE k]

Two limit constants ke and k3 can be determined in the independent tensile tests
for a single crystal with initial orientation chosen along one of the edges of elemen-

3
tary cube [100], [010] or [001], what gives o(i00] = 0010 = O[001) = Y2 = \/;kg,
L
V3

3
and along the direction n = (111], what leads to o1 = Y3 = \/;kg.

6. Specification of the Rychlewski approach for materials
of cubic elasticity and orthotropic limit state

In the foregoing discussion there was not necessary to specify the limit tensor
H. The limit conditions were derived on the basis of the elasticity tensor S and
compliance tensor C. If we assume that H is coaxial with C, then the criterion
of the form (5.1) can be also obtained

d(0y) ¢P(02) P(03)
<1
b T he T By =

(6.1)

where the Rychlewski moduli h; = & (0;) , @ = 1, 2, 3 correspond to critical
energy of pertinent proper state.

In the general approach of J. RYCHLEWSKI [2] tensors C and H are not
interrelated and can possess arbitrary symmetry. In the third case of energy-
based limit condition, cubic symmetry of elasticity tensor C and orthotropy of
limit tensor H is studied. As an example, we can consider a single crystal with
the lattice of cubic symmetry in a natural state. According to the Cauchy-Born
hypothesis, which says that the lattice vectors deform like “material filaments”,
an extension along one of the edges of the cell with cubic lattice transforms it
into the cell of tetragonal lattice. Such a situation appears also if we consider
nanocrystals, where the difference in the interatomic distances in bulk material
and strained surface layer results in the change of symmetry from cubic to tetrag-
onal. Similar situation appears in the case of heterostructures composed of layers
of cubic symmetry and strained interface of tetragonal symmetry. Therefore, in
the elastic regime the bulk material remains cubic and the limit state can appear
first in the surface layer or interface, which is of tetragonal symmetry. This is
a special case of an orthotropic limit state. In further considerations, we assume
that the symmetry axes of the material in elastic range and limit state coincide.
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As it was observed in [25], for orthotropy the spherical tensor is not a proper
elastic state. However, for the additional constraints H-1 = 0, it becomes the
proper state with the eigenvalue equal 0. Such an assumption is often made in
order to eliminate the influence of spherical part of stress on plastic yield. In
such a case, it can be shown that spectral decomposition of the limit tensor H
takes the form [26]:

1 1
6.2 H=-—-T ...+ —7T%,
(6.2) g T1t- -+ T
where I'y, ..., T'g, are the orthogonal projectors for H. The orthogonal projectors

T'; are defined by proper states x; corresponding to the different eigenvalues K;
of the limit tensor H that is:

(6.3) Fi=x19X1, -, T's =Xs®Xe-

Proper states x; of the tensor H can be expressed as follows

=1,
X1 \/3
X2 = cosayy + sinay,
X3 = —sinay + cosay,
(6.4) - e
= — +m3@mgy),
X4 \/5( 2 ® X3 + m3 ® my)
1
X5 = ——2- (ml ®X3'+‘ m3®m1)1
1
X6 \/i,

where (m;, mg, mj3) denote the unit vectors lying along the edges of the ele-
mentary cube, whereas the tensors aj; and ayp are defined by the formulae

aj = m; @ m; —mp @ my),

: (
V2
(6.5)

m; @ my +m2®m2—2m3®m3)

=
aq =
V6
and 1 is the strength distributor that depends on the components of the limit

tensor H.
From (3.3) and (6.3) it follows that

(6.6) ="y, 'y +I's =Py, Iy +T's + T's = Py,
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what results from (3.2) in

(67) C:iI‘l+L(I‘2+I‘3)+L(I‘4+I‘5+I‘6).
Al Al Al

By comparing (6.2) with (6.7) one comes to the conclusion that, in the con-
sidered case, the limit tensor H is partially coazial with the compliance tensor C,
that is all the proper states of H are the proper states of C (but not opposite).
It means that the symmetry group of H is contained in the symmetry group
of C.

Let us formulate the Mises-type condition (1.3) for the assumed tensor H
given by (6.2) in the energy-based form (3.1). In order to obtain this form,
according to [2], the following eigenvalue problem is to be solved

(6.8) (H s %c) Kk =0.

Substituting (6.2) and (6.7) into the above formula it is found that

1
d — =] =
et (H 2hC> 0

(69) K1 K2 KS
Ry = ok iy el By & o,
L=y o St BT
; Ky ; K5 Kg
4 = 3 5 = ) 5 =
47 2 2 * T 2

and k;=x; (I = 1,...,6) given in (6.4), so in this case the energy proper states
K; are equal to the proper states of the tensor H. The energy orthogonal stresses
o; are then calculated as

(6.10) o,=TI;-0 and =01+ 092+ ...+ 0.

Graphical illustration of the above stress state decomposition for the analysed
case of material symmetry is presented in Fig. 1, where the following notation
is used:

1
T = 5(011 + 092 + 033)
s = m[an + 099 — 2033 — 7y (011 — 022)],
kT 1
T 23+9?)

(6.11)

U [3(o11 — 092) + v (011 + 092 — 2033)],

p =013, q = 033, v =012, v =—V3cot .
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Fic. 1. The energy-orthogonal decomposition of the stress state for the material that has
cubic symmetry in the elastic range and becomes orthotropic in the limit state.

Energy-based formulation of the limit criterion for the considered case is
therefore due to (3.1) and (6.9) as follows:

2/\11 2211

2\ 22 22
+T¢( ) K- @(0’5)4-—[—(—45( ) 1.

It should be noted that from (3.6), (4.1) and (6.12) it transpires that

(6.13) @Y =&(0.) +P(0;) and &' = B(0,) + &(0;) + B(06).

7. An energy interpretation of the Hill yield condition
for orthotropic solids

The equation (6.9) enables an energy-based interpretation of the Hill yield
condition for plastically incompressible orthotropic solids that exhibit cubic sym-
metry in the elastic regime. The Hill yield condition for the orthotropic solids is
given by the formula [27]:

(7.1) F (092 — 033)% + G (033 — 011)°

+ H (011 — 022)° + 2No?y + 2Mol; + 2Los; = 1,
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where the constants F, G, H, N, M, L can be expressed by the yield limits
obtained in three tensile tests along the orthotropy axes, X, Y, Z and three
shear tests in the planes of orthotropy R, S, T

1 i 1 1 1 1 1 1 1
W=pmtp—x Y=zt v =ty -z
(7.2)
1 1 1

Stress components o;; are the components of the stress tensor o in the or-
thotropy axes. This equation can be rewritten in the form (1.3) proposed by
Mises. Eigenvalues of the limit tensor H and the strength distributor 1) are then
obtained as [26]:

1 1
K2: 1 3 3= 1 )
F+G+H+§\/A" F+G+H—§\/An
1 1 1
K4:_7 K5:_7 K(j:—,
(7.3) 1 M N
F+G—-2H — /Ay
tany = ;

V3 (F -G)

A":2[(H—F)2+(H—G)2+(F—G)2] > 0.

Equivalently, due to (7.2) and (7.3) we have
L.- 144 " 1 i 1
Ky 21\X2 Y2 22
1/2
+11_12+112+112/
21\ X2 22 Y2 Z2 Y2 X2 '
(74 1 _1/1 1 1
K3 2\X2 Y2 22
1/2

11_12+112+112
2 |\ x2 22 Y2 22 Y2 X2 ’

K, =2R?, Ks =252, K¢ = 2T7?,
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(7.4)

[cont.]

G2 G g) )]

A )

tany =

1 1 2

i Xzt
1 1Y’

ﬁ(ﬁ"fﬂ
The particular case of orthotropy with the additional symmetry of rotations
of the angle 7/2 about the axis parallel to m3 was considered. The results are
applied for the analysis of a single cubic crystal which, due to the finite extension
along the one of cubic directions, changes symmetry and becomes tetragonal. In

such a case we have F' = G and L = M, or equivalently X =Y and R = S,
therefore

1 1

SFrem ©Tgp Kas

K- =
3Fa 5

g 1 1
; Pv== K = s
(¥ 2’ 2 L’ N’

1 2+v21 1-V21

K 2 X2' 2z Z¥
(7.6) L_z—\/i1+1+\/§1
Ky 2 X? 2 Z%

Ky = K5 = 252, K¢ = 2T2.

Still tensor H is partially coaxial with the tensor C, but in this case we have
only five uniquely defined energy-orthogonal projectors I';.

(7.7) L;=I; for i=1,..,3 and I'y=Ty+T5 TIj=Ts.

The form of energy-orthogonal decomposition (6.10) of the stress state o
for this special case of material symmetry (tetragonal) is shown in Fig. 2. The
following notation is used (see (6.11)) for v = 0:

1 1
(o1 + 092+ 033), s= R (011 + 092 —2033), u= 3 (011 — 0922),

r =

W —

(7.8)

P = 013, q = 023, vV =012.
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According to (6.2) and (7.6), the limit condition for the material of cubic
symmetry in elastic range and tetragonal in limit state can be expressed as
follows:

(2+v2)Z2 + (1 - V2)X?
X272

2-v2)Z:+(1+V2)X )\111¢ ) Al

X2Z2 (03)+—S‘2— (04) + 73
where, besides the Kelvin elastic moduli Ajj and Ayyp, four limit values are to be
determined; in two tensile tests along the edges of the tetragonal unit cell and
two shear tests changing the right angles between the edges.

(7.9) Al

+ A P (0;)=1,

w'wm’ J- i

il :l”

xil‘
it
mnmuum J

FiG. 2. Energy-orthogonal decomposition of the stress state for the material that has cubic
symmetry in the elastic state and becomes tetragonal in the limit state.

8. Discussion of possible experimental verification and conclusions

From the geometry of slip in a FCC single crystal which is subjected to
tension in the direction [100], it appears that eight potential slip systems can
operate. In such a case we have

(8.1) 100) = Y2 = V67

Similar relation holds for tension in the direction [110] corresponding to ac-
tivation of four potential slip systems, o(;10) = V67 In the case of tensicn in
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the [111] direction, six potential slip systems exist and the critical stress at yield
reads

3v6

(82) 0’[111] = Y3 = 2

Ter-

Comparison of the discussed energy-based limit conditions on the example
of Cu single crystal leads to the following relations:

Y, 2
e Schmid criterion — — = = 20.67, 7, = const.
Y; 3 i
e Hypothesis of elastic energy of distortion — ?2 = 0.56.
3
Y, k
e Energy-based quadratic condition — 22
Ys ks

These relations should be verified experimentally. The results of J. DIEHL
[28] can be applied to make at least an approximate assessment of the ratio Y»/Y3
for Cu single crystals. In [28] (Fig. 12, p. 335) the values of critical resolved shear
stress 7., for different initial orientations of single crystals subjected to tension
were given. We calculated the average values of 7., taken from the neighbor-
hoods of the orientations corresponding to the corners of fundamental triangle
of stereographic projection: (Tcr)[om] = 106.67 [g/mm?] for [001], (Tcr)[“” =

aver aver

127.20 [g/mm?] for [111] and (Tcr)ngle(:} = 110.25 [g/mm?] for [110]. The resulting
values of tensile yield strengths are: Y, = \/G(Tcr)gglr] = 261.29 [g/mm?], Y3 =
i;/—g(Tcr)gl\,Llr] = 467.36 [g/mm?] and o110 = \/E(Tcr)gvle?] = 270.06 [g/mm?],
respectively. It is visible that the resulting ratio Y5/Y3 = 0.56 is close to the
value obtained from the hypothesis of elastic energy of distortion. The equality
within two digits of accuracy is rather coincidental because the assessment of
experimental data is very rough. Nevertheless, rather large discrepancy with the
prediction of the ratio Y2/Y3 = 0.67 calculated according to the Schmid criterion
should be noted. The test for the direction [110] does not provide so good con-
firmation. We can observe that due to (4.3) and (4.4), with an account of Kelvin
moduli for Cu single crystals A;; = 47 [GPa], A = 150 [GPa), the theoretical
prediction of the ratio Y3/0(;1,9) = 1.39 and the discussed above experimental
data provide Y3/0(;19) = 0.97. The program of systematic experimental tests is
necessary to verify the proposed criteria. The main difficulty lies in accuracy of
measurement of yield limit for single crystals.

The proposed energy-based criteria can be applied in mechanics of anisotropic
solids, e.g. formulation of yield criteria for metals subjected to shaping opera-
tions as well as for polymers and composites. For example, it could provide deeper
insight into the description of elastic and plastic anisotropy in sheet metals pre-
sented in [29]. The application of spectral decomposition of elasticity tensor
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and energy orthogonal stress states proposed by J. Rychlewski for transversely
isotropic material, representing fiber reinforced composites, was studied in [30].
Also in the field of nanomechanics the proposed approach can appear helpful fill-
ing the gap between the atomistic calculations and continuum mechanics mod-
elling of the behaviour of different kinds of crystalline nanostructures. In such a
case the pertinent limit values of elastic energy should be determined from the
first principles with use of quantum mechanical theory of the strength of atomic
bonds.
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