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A GENERAL FRAMEWORK for the analysis of heterogeneous media that assesses a
strong coupling between viscoplasticity and anisotropic viscodamage evolution is for-
mulated for-impact related problems within the framework of thermodynamic laws
and nonlinear continuum mechanics. The proposed formulations include thermo-
elasto-viscoplasticity with anisotropic thermo-elasto-viscodamage, a dynamic yield
criterion of a von Mises type and a dynamic viscodamage criterion, the associated
flow rules, non-linear strain hardening, strain-rate hardening, and temperature soft-
ening. The constitutive equations for the damaged material are written according to
the principle of strain energy equivalence between the virgin material and the dam-
aged material. That is, the damaged material is modeled using the constitutive laws
of the effective undamaged material in which the nominal stresses are replaced by the
effective stresses. The evolution laws are impeded in a finite deformation framework
based on the multiplicative decomposition of the deformation gradient into elastic,
viscoplastic, and viscodamage parts. Since the material macroscopic thermomechani-
cal response under high-impact loading is governed by different physical mechanisms
on the macroscale level, the proposed three-dimensional kinematical model is intro-
duced with manifold structure accounting for discontinuous fields of dislocation inter-
actions (plastic hardening), and crack and void interactions (damage hardening). The
non-local theory of viscoplasticity and viscodamage that incorporates macroscale in-
terstate variables and their higher-order gradients is used here to describe the change
in the internal structure and in order to investigate the size effect of statistical inhomo-
geneity of the evolution-related viscoplasticity and viscodamage hardening variables.
The gradients are introduced here in the hardening internal state variables and are
considered to be independent of their local counterparts. It also incorporates the ther-
momechanical coupling effects as well as the internal dissipative effects through the
rate-type covariance constitutive structure with a finite set of internal state variables.
The model presented in this paper can be considered as a framework, which enables
one to derive various non-local and gradient viscoplasticity and viscodamage theories
by introducing simplifying assumptions.

Key words: non-local theory; anisotropic viscodamage; viscoplasticity; gradient the-
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1. Introduction

THE INELASTIC MATERIAL behavior of engineering materials may be attributed
to two distinct material mechanical processes: viscoplasticity (i.e. dislocations
along crystal slip planes) and/or damage mechanics (cracks, voids nucleation
and coalescense, decohesions, grain boundary cracks, and cleavage in the regions
of high stress concentration). Plasticity/viscoplasticity theories, by themselves,
are insufficient for modeling the material behavior since both damage defects
(cracks and voids) and dislocation densities (viscoplastic flow) are present in
their inelastic response. A constitutive model should address equally the two
distinct physical modes of irreversible changes and should satisfy the basic pos-
tulates of mechanics and thermodynamics. A multi-dissipative model that ac-
counts for both the material decohesions (discontinuities within a material) and
the dislocations along slip planes is necessary. This is accomplished by adopting
two loading surfaces and two potential functions, one for the viscoplasticity and
another for the damage.

Experimental observations show that in general the processes of cold-working,
forming, machining of mechanical parts, etc. can cause an initial evolution of de-
fects in the virgin material state at localized zones, such as the nucleation of cer-
tain amount of cracks, voids, dislocation densities, and shear bands. Those local-
ized defects of viscoplasticity (rate-dependent plasticity) and viscodamage (rate-
dependent damage) induced in the material structure along with the subsequent
defects that occur during deformation process lead to a heterogeneous (non-
uniform) material behavior. Further loading of materials of this type will cause
failure mechanisms to occur at localized zones of viscoplasticity and viscodam-
age. In those localized zones, a lot of defects may undergo irreversible growth; co-
alescence of pre-existing cracks and voids may occur; propagation of dislocations
may proceed; and new defects may nucleate and their ultimate coalescence results
in failure. Moreover, intensive interaction mechanisms of the evolved defects may
take place at those localized zones; such as dislocation-dislocation interaction,
microdamages-microdamages interaction, crack dominated-dislocation interac-
tion, dislocation-dominated crack interaction, dislocation-crack grain boundary
interaction, etc.

As the viscoplasticity and viscodamage defects localize over narrow regions of
the continuum, the characteristic length-scale governing the variations of those
defects and their average interactions over multiple length-scales falls far below
the scale of the local state variables of viscoplasticity and viscodamage used to
describe the response of the continuum. This leads to the loss of the statistical
homogeneity in the representative volume element (RVE), in such a way that all
the macroscopic response functions of interest (e.g. the Helmholtz free energy, ¥:
the dissipation potential, IT; the Cauchy stress tensor, o; the small strain tensor,
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g; the stiffness tensor; C; etc.) are sensitive to the distribution, size, and orien-
tation of the mesostructural and macrostructural defects within the RVE. The
viscoplasticity and viscodamage evolution processes are, therefore, statistically
inhomogeneous at the macroscale level (at the RVE scale). This suggests that
the macroscopic inelastic deformations and failure are governed by mechanisms
at different scale levels (nonlocality). For example, dislocation interactions are
observed on a mesolevel with length-scale 0.1 — 10pm GAO et al [36] affecting
strongly the material behavior on the macrolevel with length-scale > 100pum.
Thus, different methodologies rather than the local theories are necessary to
adequately capture the decrease in the length-scale from the macroscale to the
mesoscale level. The non-local theories are expanding steadily in order to ap-
propriately overcome this problem, which take into account the influence of the
nth nearest neighbor of the material points or the long-range microstructural
interaction.

Moreover, it is a well-known fact that the use of classical rate-independent
plasticity theory or local theory do not possess an intrinsic length-scale, which
leads to numerical stability problems, such as mesh size and mesh alignment
sensitivities, particularly, in problems exhibiting strain localization phenomena.
However, several regularization approaches have been proposed in the consti-
tutive modeling to accommodate this problem. They include: viscoplastic mod-
els (e.g. PERZYNA (73], NEEDLEMAN [70], WANG et al. [106] DORNOWSKI and
PERZYNA [30], GLEMA et al., [43]), thermal dissipation models (e.g. LE MONDs
and NEEDLEMAN [57], non-local models (e.g. AIFANTIS [2], PIJAUDIER-CABOT
and BAZANT [85], BAZANT and P1JAUDIER-CABOT [14], VOYIADJIS and DE-
LIKTAS [94], VoY1ADJIS and DORGAN [97], and gradient models (AIFANTIS (3],
ZBIB and AIFANTIS [107], DE BORST and SLUYS [27], FLECK and HUTCHINSON
[35], BAMMANN et al., [10], BUusso et al. [19], VOYIADJIS et al. [96], BASSANI
[11], GURTIN [44], VOY1ADJIS and ABU AL-RUB [93]).

In the literature, many non-local plasticity/visco plasticity and damage/visco-
damage models were proposed to introduce intrinsic length-scale measures in the
constitutive equations, which can be grouped into two classes: integral models
and gradient models.

KRONER [53] and ERINGEN and EDELEN [33] incorporated nonlocal terms
through integral equations of elasticity. PIJAUDIER-CABOT and BAZANT [85],
extended this concept to continuum damage mechanics. BAZANT and OZBOLT
[13] also proposed a nonlocal anisotropic damage formulation, which is based on
nonlocal tensorial variable. However, integration in the nonlocal integral models
requires a global averaging procedure with resulting equations that can not be
easily linearized (DE BORST and PAMIN [26]). This makes the nonlocal integral
models computationally inefficient.
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However, the integral approach generally involves an infinitely extended zone
of nonlocal action and may be approxiamated by truncated Taylor series expan-
sion, giving rise to the so-called gradient theories. Gradient approaches typically
retain terms in the constitutive equations of higher-order gradients with coeffi-
cients representing length-scale measures of the deformation microstructure as-
sociated with the nonlocal continuum. AIFANTIS [2] was one of the first to study
the gradient regularization in solid mechanics. The gradient methods suggested
by LASRY and BELYTSCHKO [56] and MUHLHAUS and AIFANTIS [69] provide an
alternative approach to the nonlocal integral equations. The gradient terms in
plasticity models are introduced through the yield function (e.g. MUHLHAUS and
AIFANTIS [69] DE BORST and MUHLHAUS [25], DE BORST et al. 28], DE BORST
and PAMIN [26], AIFANTIS et al. [4], GAO et al. [40], FLECK and HUTCHINSON
[36], VOYIADJIS et al. [96]). The gradient damage theory has been developed for
isotropic damage (e.g. PIJAUDIER-CABOT and BAZANT [85], PEERLINGS et al.
[84], LACY et al. [55], GEERS et al. [42], SVEDBERG and RUNESSON [90], ZHOU
et al. [111], AskES and SLUYS [7]) and for anisotropic damage (e.g. KUHL et al.
[54], Vov1aDJIs and DELIKTAS [94], VOYIADJIS and DORGAN [97], VOYIADJIS
and ABU AL-RuUB [93]).

The motivation of this work comes from the experimental tests of specimens
made of ductile materials and heterogeneous materials loaded at low- and high-
speed impacts (BELINGARDI and VADORI [15], BORVIK et al. [18], LUO et al.,
[64] ESPINOSA et al. [34], SIERAKOWSKI [87], ZHOU et al. [110], MONTAGNANI et
al. [68], JOHNSON and COOK [47], ALBERTINI and MONTAGNANI [5] etc). Gener-
ally, these kinds of laboratory tests serve to verify the constitutive concepts and
material parameters. In many of those tests, the intensive nonlinearity induced
in the material is attributed to the viscoplasticity and viscodamage morpholo-
gies. Furthermore, the softening behavior in those experiments mostly appears
as the result of temperature rise and damage growth. Those experiments indicate
that the failure mechanisms occur at localized zones of viscoplasticity and vis-
codamage where a lot of interactions of defects take place. In order to be able to
capture such localized deformation zones and strain-softening material behavior,
we aim here to introduce explicit and implicit length-scale measures in plasticity
and damage governing equations through the use of the gradient-dependent and
viscoplasticity theories coupled to the viscodamage theory.

It is generally assumed that the rate of deformation can be additively decom-
posed into an elastic (reversible) part and an inelastic (irreversible) part (e.g.
NEMAT-NASSER [75], LUBLINER [63], SIMO and HUGHES [89]). “Non-instantane-
ously reversible” deformation is a more general description of the inelastic de-
formation since it is corresponding to the following set of physical phenomena:
instantaneous plasticity, viscoplasticity, instantaneous damage, and viscodam-
age. The first type of inelastic deformation is a time-independent mechanism,
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which is generally considered in the rate-independent plasticity theories. The vis-
coplastic deformation, which is sometimes qualified as creep, is a rate-dependent
mechanism. Both of those two mechanisms or one of them is generally not suf-
ficient to describe the set of experimental observations under high strain rates
(dynamic loadings). Therefore, degradation of the mechanical properties up to
complete failure should be considered in the experimental simulations, in particu-
lar, simulating the heterogeneous material response under high strain-rates. This
progressive physical process is commonly referred to as damage and it can be
time-independent (damage theory) and/or time-dependent process (viscodamage
theory). The evolution, nucleation, and coalescence of microcracks, voids, and
cavities during manufacturing processes and subsequent loading enhance the
material to behave inelastically in the elastic and plastic domains. VOYIADJIS
and PARK [102] tend to sum such defects as an inelastic strain called the dam-
age strain. They tend to decompose this damage strain into an elastic-damage
(recoverable) component attributed to crack closure and void contraction dur-
ing unloading, and an inelastic-damage (unrecoverable) component attributed
to random distribution and orientation of the cracks that make their recovery
impossible. Therefore, the second underlying motivation for this study is given
by the work recently proposed by VoYiADJIS and PARK [102]. They presented
a framework for finite nonlinear continuum damage involving seven different de-
formation configurations. In accordance with their work, two irreversible strains
are considered in this study: the viscoplastic and viscodamage strains. The vis-
codamage strain component tends to be considerable in engineering materials
under impact loading processes as compared to the viscoplastic strain compo-
nent. We will also use a similar approach with a more attractive physical inter-
pretation of the viscodamage deformation mechanisms. The proposed approach
is analogous to the finite elasto-plasticity (e.g. NEMAT-NASSER [76], PERZYNA
[82], LUBLINER [63], SIMO and HUGHES [89]) involving the multiplicative de-
composition of the deformation gradient into elastic and inelastic parts. All con-
figurations induced by the multiplicative decomposition are, as in finite elasto-
plasticity, macroscopic. The damage evolution equations, however, are based on
micromechanical considerations established through the use of gradient theory
(for a detailed demonstration consult LACY et al. [55]).

There are many models with weak coupling between plasticity/viscoplasticity
and damage/viscodamage; hence, no consistent model realizing a strong coupling
has been published yet (HESEBECK [46]), which serves as our third motivation.
In this work, the strong coupling between viscoplasticity and viscodamage will
be implemented by using two independent viscodamage mechanisms. One mech-
anism is coupled with viscoplasticity, while the other one occurs independently
of viscoplastic deformation. To formulate that on the basis of the thermody-
namic principles, the two viscodamage processes are represented by two additive



44 G. Z. VoviabpJis, R. K. ABU AL-RuB, A. N. PALAZOTTO

portions in the dissipation potentials. Because this work focuses on the devel-
opment of coupled viscoplastic-viscodamage governing equations based on ther-
momechanical postulates, the various possibilities to describe the viscoplasticity
and anisotropic viscodamage will be considered here.

To mention some of the important contributions to phenomenological dam-
age modeling, we have to start with effective stress concept of Kachanov (1958),
who was the first to introduce for the isotropic case a one-dimensional vari-
able, which may be interpreted as the effective surface density of microdamages
per unit volume (VOYIADJIS and VENSON [104], VENSON and VOYIADJIS [91],
VOYIADJIS et al. [105]). Following Kachanov’s pioneering work researchers in
different fields applied continuum damage mechanics to their areas in fields like
brittle materials (KrAJCINOVIC and FONESKA [52], KrRAJCINOVIC [51]) and duc-
tile materials (e.g. LEMAITRE and CHABOCHE [59], LEMAITRE [60], KACHANOV
[49], MUrRAKAMI [71]). In the 1990’s coupling of continuum damage mechan-
ics to plasticity have appeared (e.g. VOY1ADJIS and VENSON [104], VOYIADJIS
and KATTAN [98, 99, 100], LuBARDA and KRAJCINOVIC [62], VOYIADJIS and
ABU-LEBDEH [92], VOYIADJIS et al. [105]).

The objective of this paper is to derive a general thermodynamic frame-
work for the modeling of heterogeneous media that assess a strong coupling
between viscoplasticity and viscodamage evolution for impact-related problems
with considering the discontinuities on the macroscale level. The essential as-
pects of interest here can all be examined within the context of: (1) Finite strain
kinematics; (2) Rapid time variations in temperature, strain, strain rate, and
other field variables; (3) Viscodamage effects on moduli and strength (hard-
ening/softening); (4) Strong viscoplasticity and viscodamage coupling; and (5)
Numerical stability through using the regularization approaches (i.e., using vis-
coplasticity and viscodamage gradient-dependent theories). This can be effec-
tively characterized through a thermodynamic framework for the development
of a continuum thermo-elasto-viscodamage and thermo-elasto-viscoplastic based
failure model. The constitutive equations are derived from the first and second
laws of thermodynamics, the expression of Helmholtz free energy, the Clausius-
Duhem inequality, the maximum dissipation principle, generalized normality,
and the thermomechanical heat equation. All the thermodynamic equations are
expressed in the spatial configuration. The evolution laws are impeded in a finite
deformation framework based on the multiplicative decomposition of the defor-
mation gradient and the additive decomposition of the spatial rate of deformation
tensor into elastic, viscoplastic, and damage parts. The nonlocality is introduced
here through the viscoplasticity and viscodamage hardening variables. The first-
order gradients in the gradient-dependent theory are disregarded and the second-
order gradients are mainly considered in this work. The local viscoplasticity and
viscodamage hardening variables and their corresponding second-order gradients



NON-LOCAL COUPLING OF VISCOPLASTICITY. .. 45

are considered to be independent of each other, allowing one to computationally
introduce independently the macroscale and mesoscale levels influence.

The outline of this paper is as follows: in Sec. 2, we outline a summary of
the finite deformation kinematics and some of the fundamental definitions of
nonlinear continuum mechanics. In Sec. 3, we outline a general thermodynamic
framework for the elasto-viscoplastic and elasto-viscodamage material behavior
with thermal effects for impact-related problems using the gradient-dependent
theory. In Sec.4 the rate-type constitutive relation is derived. Finally, in Sec. 5
the thermomechanical couplings equation is formulated.

2. Finite deformation kinematics and fundamental definitions
2.1. Fundamental measure of total deformation

Here we summarize some of the fundamental definitions of nonlinear contin-
uum mechanics (SIMO and HUGHES [80], BELYTSCHKO et al. [16], DOGHRI [29])
relevant to our subsequent developments. Our notation throughout is as follows:
C° and C" are the manifolds, where we refer to a point X € Cs a point in the
reference configuration of a continuum body and a point x € C* as a point in
the current configuration (at time ¢). Assuming that the deformation is smooth
regardless of damage, one can assume a one-to-one mapping such that:

(2.1) z; =z; (X,t) or X;=X;(z,t)(1)

which maps the reference configuration C° onto the spatial configuration C* at
time ¢. The corresponding deformation gradient is expressed as follows:

oz;
0X;

(2.2) Fy =

which is a linear transformation for each X € C° at time ¢.

Note that in this work the subscripts indicate the tensorial nature of the
variables unless specifically stated otherwise.

For each X € C° there exists an orthogonal transformation R(X)called ro-
tation such that (polar decomposition):

(2.3) Fij = RyyUr; = Vi Ry

where U and V are the right and left stretch tensors, respectively.
The change in the squared length of a material filament dX is used as a
measure of deformation such that for a Cartesian coordinate system:

(dl)? — (dL)? = dz; dz; — dX; dX;,

(2.4)
= 2E;;dX; dX;,
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or

(2.5) (dl)? — (dL)? = 2e;;dz; dz;,

where (dL)? and (dl)? are the material filaments in the reference configuration
C° and the spatial configuration C?, respectively. E and e are the material (or
Lagrangian) and the spatial (or Eulerian) strain tensors, respectively, and are
given by:

1 1
(2.6) Eij = 5 (FiaFyj = 8ij) = 5 (Cij — bi)
and
1 i 1
(2.7) €ij = 5 <5ij - Fkilejl) = 5 (6ij - Ci]')a

where C = U? and b = ¢! = V? are the right and left Cauchy-Green tensors,
respectively, and ¢;; is the Kronecker delta. C is defined with respect to the
reference configuration while b is with respect to the current configuration.
For the spatial strain tensor e and the material strain tensor E we have:
_ -1 -1
(2.8) €ij = Fki Elelj .
The spatial velocity, denoted by v(x,t), is the time derivative of the motion:

3:1,‘i

The spatial velocity gradient 1 is defined as:

8’U, L] =1
where the dot denotes the time derivative. The symmetric part of 1, denoted
by d, is called the spatial rate of deformation tensor, and its skew-symmetric
part is called the spin (or vorticity) tensor, w. Thus one obtains:

(2.11) dij = 5 (lij + 151)

N =

and

1
(2.12) wij =5 (Lij = Lii) .
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Let us define the Lagrangian rate of deformation tensor D and the Eulerian rate
of deformation tensor d as follows:

. 1.

(2_3) Dij = Eij = ECZ'J',
: | .

(2.14) dy; = §Fki10lelj1.

Utlizing Eq. (2.13) into Eq. (2.14), d is then related to D by:
(2.15) dij = Fi;' Dy ;.

while the spatial deformation rate tensor d is equal to the Cotter-Rivin convected
rate of the Eulerian (Almansi) strain tensor as follows:

(2.16) dij = Ly(eij) = éij + eirlej + exjlpi
where the symbol L, denotes the well-known Lie derivative with respect to v
(MARSDEN and HUGHES, [67]).

2.2 Rates of the stress tensors

The first Piola-Kirchhoff stress tensor P is a nonsymmetric nominal stress
tersor obtained by performing a Piola transformation on the Cauchy stress ten-
sor g, 1.e.

(2.'.7) Pij = JFZ;IO'k]'

where J denotes the Jacobian of the deformation and represents the ratio of the
mass densities at the reference configuration and the current configuration:
p°  dv

2.18 J=—=— =det(F
218) = = et (),
where p? and p are the mass densities of the reference and current configurations,
resoectively. dV and dv are the initial volume and the volume after deformation,
resyectively.

The symmetric (or second) Piola-Kirchhoff stress tensor S is defined as fol-
lows:

(2.19) By FiZIij == JFZ.;lolej‘l1 . Fi;lTkzFﬁl

where T = Jo is called the Kirchhoff stress tensor.
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The rate of the Kirchhoff stress tensor (the Lie derivative) is given as follows:
(2.20) Ly(7ij) = FixSuFji = 75 — likThj — LikTik

where T defines the material time derivative of the Kirchhoff stress tensor which
is given by the following relation:

. 0Ti; Tii
2.21 = L+ o
(2.21) (A TR

The Jaumann-Zaremba stress rate of the Kirchhoff stress is defined as follows:
(2.22) Ty = Tij — WikTkj + WkjTik

Using Egs. (2.11) and (2.12) along with Eq. (2.22), we can express the Jaumann-
Zaremba, stress rate, T° in terms of the Lie derivative of the Kirchhoff stress
tensor (L,T) and the spatial rate of deformation (d) as follows:

(2.23) 75 = Ly(7ig) + dikTej + dijTik-

Note that both the first and second Piola-Kirchhoff stress tensors, P and S,
are relevant to the reference configuration C°, while the Kirchhoff and Cauchy
stress tensors, T and o, are relevant to the current configuration C*. Also note
that the elastic components of the rate of deformation (d) and the spin tensor
(w) should be substituted in the stress rate tensors L,T and T°.

2.3. The deformation rate additive decomposition

Imagine an elastically loaded representative volume element (RVE) contain-
ing uniformly distributed (micro)-cracks of Mode I, which are triggered by the
process of cold working, is deformed by a total strain €;. A certain part of this
strain will be elastically recoverable (e§) and another part can be induced by
damage (¢§¢). When the loads are released before yield limit, the body will have
no permanent strains left. However, the elastic stiffness of the RVE could have
been reduced by the growth of microcracks. This is clearly demonstrated in Fig-
ure 1 which shows the foregoing micromechanics of a continuum point in the
RVE and the corresponding macro-stresses and strains.

Imagine now the elastically loaded RVE containing an arbitrary distribution
of (micro)-voids and (micro)-cracks of mixed modes (Mode I, II, and III), which
are triggered by the process of cold working, and subjected to 3-D state of stress.
Generally, this situation is more likely to happen in materials than the above one.
This RVE is deformed by a total strain of € a certain part of it will be elastically
recoverable (€°) and another part is induced by damage (¢4). When the loads
are released before the yield limit, the body will have, similarly to plasticity and
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Fic. 1. Fictitious uniaxial stress-strain elastic response resulting from a growing micro-crack.
All damage strain is recoverable (the crack is closed but not healed).
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Fi1G. 2. Fictitious stress-strain elastic response of an RVE subjected to 3-D state of stress
o2 > 01 = 03 > T2 resulting from a growing microcrack and microvoid. Part of the damage
strain is recoverable (not healed) and the other part is unrecoverable.

in contrast to the above fictitious situation, permanent deformations left (&?).
Fig. 2 shows the underlying micromechanics of a continuum point in the RVE
and the corresponding macro-stresses and strains in one of the directions.
Motivated by the above discussion and assuming small elastic and finite vis-
coplastic and viscodamage deformations under high-impact loading, we can pos-
tulate the additive decomposition of the total spatial deformation rate tensor (d)
into elastic (d®), viscoplastic (d”?), and viscodamage components (d¢). Although
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the damage process is an irreversible deformation thermodynamically; however,
the deformation due to damage itself can be partially or completely recovered
upon unloading. Thus, the damage deformation component is also decomposed
into elastic-damage (reversible) and viscoinelastic-damage (irreversible) parts.
The recoverable part is attributed to crack closure upon unloading (but not
healing), while the unrecoverable part is attributed to the lack of crack closure
and void contraction that cause permanent deformation. Both cause degrada-
tion in the material stiffness (ABU AL-RUB and VovIADJIS [1]). Hence, the
total deformation rate tensor can be written as:

(2.24) dij = df; + ;T + df;
and
280 df = dif +

where d°¢ and d*¢ are the elastic-damage and viscoinelastic-damage parts of the
damage strain, respectively. The superscripts here do not imply tensorial indices
but merely indicate the corresponding deformation configuration such as “e” for
elastic, “vp” for viscoplastic, “d” for damage, “ed” for elastic-damage, and “id”
for inelastic-damage.

During the unloading process, two types of deformation rates are purely
reversible: the ordinary elastic deformation rate d® and the elastic-damage de-
formation rate d¢. Thus, the total reversible elastic deformation rate d¥ upon
unloading can be obtained by:

(2.26) df = dg; + dif.

On the other hand, the total viscoinelastic rate of deformation d! arises from
the two irreversible sources: viscoinelastic damage and viscoplastic flow, such
that:

(2.27) d; = dif + d&,
hence Eq. (2.24) can be rewritten as:

(2.28) dij = df; + di.

The viscoinelastic damage may occur during only elastic deformations (in
the absence of plastic deformations) under the condition that micro-cracks occur
without the presence of a plastic process zone ahead of the crack tip.

Many researchers tend to adopt the traditional simple isotropic scalar dam-
age variable, “(1—¢)”, to model the material micro-damage mechanism, in which
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all components of the material stiffness are degraded by the same scalar damage
parameter, ¢. However, to ensure a more realistic application of the principles
of the damage mechanics, anisotropic damage will be assumed. In this case dif-
ferent levels of damage are related to the principal directions, and thus a simple
scalar damage parameter is no longer sufficient to quantify damage in all direc-
tions. Instead, the anisotropic phenomenon of the microcracks distribution in
the material is interpreted using a symmetric second-order damage tensor, ¢;;.

The linear elastic constitutive equations for the damaged material are writ-
ten according to the principle of elastic strain energy equivalence between the
virgin material and the damaged material (SIDOROFF, [86]). That is, the dam-
aged material is modeled using the constitutive laws of the effective undamaged
material in which the Kirchhoff stress tensor 7 is replaced by the effective stress
tensor T (MURAKAMI and OHNO, [70]):

(2.29) Tij = Mikj1 Tkl

where M is the fourth order damage-effect tensor. Many different expressions
for M exist in the literature. A comprehensive review of the most widely used
expressions are presented by VOYIADJIS and PARK [101]. The following expres-
sion for M, which have been proposed by CORDEBOIS and SIDOROFF [24], is
used here due to its attractiveness in the mathematical formulations and its
symmetrization ability of the effective stress tensor T, such that:

(2.30) Mgt = 2 [(6ik — bik) 81+ Sik (550 — 1))~

where d;; is the Kronecker delta.
The elastic-damage stiffness C in the case of finite deformation is given by
VoviADJIs and PARK [102] as follows:

(2.31) Ciirt = NiritCripgNpras
where
a1
(2.32) Mgt = Migjy
= aijpaj = 5 [(0ik — dik) 651 + 6ix (51 — b51)]

and C is the fourth-order elastic moduli tensor given by:
= 1
(2.33) Cijkl = K&ijékl +2G (Jikdﬂ — géijdkl> ,

where K is the bulk modulus and G is the shear-modulus in the effective con-
figuration.
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The rate of the Kirchhoff stress tensor is defined in terms of the elastic
deformation tensor as follows:

(2.34) Ly(7ij) = Sijudyy

where G is the effective spatial elasticity tensor related to the effective fourth-
order tensor of elastic constants C by the (push-forward) transformation as fol-
lows:

(2.35) §ijlcl = FierstmEnC_'rsmn-

Similarly, Egs. (2.34) and (2.35) can be defined using the Jaumann-Zaremba
stress rate tensor as follows:

(2.36) T = Qijridy -
where
(2.37) Gijkl = c\_\fijkl + daTik + 0Tk -

2.4. Finite elasto-viscoplastic and elasto-viscodamage deformations

The processes of cold-working, forming, machining of mechanical parts, etc.
can leave an initial damage. The initial damage induced in the material mi-
crostructure along with the subsequent damage that occurs during elastic load-
ing, enhance the material to behave inelastically before viscoplasticity occurs.
Therefore, if the material is elastically unloaded before forming dislocations along
slip planes (viscoplasticity), permanent strains consist observed. Those strains
are irreversible damage strains, while the reversible damage strains consist of
two parts: elastic part and damage part. Then, if viscoplasticity occurs, both
viscodamage and viscoplastic permanent deformations are anticipated.

First we motivated this basic behavior in one dimension. Consider the uni-
axial tension test shown in Fig. 3. In this test, a bar of uniform cross-section is
subjected to the uniaxial loading history: O — B — C, during which the length
of the bar takes the following values: L — [P — [P — P4 | Stage O — B
corresponds to a monotonic loading beyond the elasticity domain, and B — C
to elastic-damage unloading (C' — B corresponds to elastic-damage loading pro-
cess). State C corresponds to a stress-free, unloaded configuration. We can write
the following trivial identity:

vpd
o IRy
L vwd Jw [
or

(2.39) A= ANz,
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where A = /L is the axial stretch at the end of O — B, \* = l/l“pd can be
viewed as the elastic stretch at the end of the elastic transformation B — F,
A = [vpd / I[P corresponds to the viscodamage stretch between D state and
a viscodamage-free state between C' and O, and A" = ["P/L corresponds to
viscoplastic stretch between O state and a viscoplastic-free state between C' and

O. Additionally, A¢ can be written as:

lvpd lvpd lvpid

240} T = i T
or
(2.41) Xo = yedyu

where \¢¢ = [vPd / [Pid is the elastic-damage stretch (recoverable viscodamage
stretch) between states D — C, and \¥¢ = [*Pid / I[P is the unrecoverable visco-
damage stretch between C state and a viscodamage-free state between C and O.
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Fic. 3. Uniaxial stress-strain response of a metallic specimen.

The illustration of Fig. 4 in three dimensions is similar to that of the one-
dimensional case (Fig. 3). If O designates the initial state (C°), B the current
state (C?), and D — O (C%®P, CPi¢ and C"P) the local intermediate, stress-
free, unloaded states, then the deformation gradients are: F for O — B, F€ for
D — B, F¢ between D state and a viscodamage-free state D — O, and FP
between state O and a viscoplastic-free state between O and C. Additionally, F¢
can be decomposed into F¢4 for C — B, F* between C state and a viscodamage-
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free state between C' — O. Thus, the deformation gradient F (X, t) is split into
elastic, viscoplastic, and viscodamage parts as follows:

oz 0z 0zvPe ozvP
242 0X — 9zvpd dzvr X
or
(2.43) F=F¢ F”. F¢,

introducing tacitly the local intermediate natural state configurations. In the
sequel we suppose that elastic strains are small compared to viscoplastic and
viscodamage strains. Also F¢ is split into elastic-damage (reversible) part and
inelastic-viscodamage (irreversible) part as:

axvpd axvpd amupid

(2.44) 9z Ozvpid §gvp
or
(2.45) Fl=ped. i

Therefore, the total deformation gradient can be decomposed into total elastic
part (FE = F¢. F¢) and inelastic part (F! = F*¢ F) such that:

(2.46) F=FF Fl.

Fd

Fic. 4. Illustration of the multiplication decomposition of the deformation gradient.

The determinate of the total deformation tensor J (or the Jacobian of defor-
mation, Eq. (2.18)) that characterizes the volumetric deformation can then be
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multiplicatively decomposed into elastic, viscoplastic, and viscodamage parts as
follows:

(2.47) J = JeJUr e
where
(2.48) J€ = det (F¢); JY =det (FP); J%= det (Fl)

3. Constitutive modeling for dynamic impact loading
3.1. Thermodynamic formulation

In this section, the thermo-elasto-viscoplastic and thermo-elasto-viscodamage
material behavior is considered. This means that the strain, strain rate, tem-
perature material dependence, and the nonlinear material response are consid-
ered. The dependent constitutive variables are functions of the Eulerian to-
tal elastic strain tensor (e”), temperature (T'), temperature gradient (VT),
the deformation gradient tensor (F), the measure of volumetric deformation
(J = det (F)), and n;n:- of phenomenological internal state variables (Ng, k =
1, ..., Nint; Nine > 1). Hence, within the thermodynamic framework the thermoe-
lastic Helmholtz free energy density at the current state of deformation can be
written as (DUSZEK-PERZYNA and PERZYNA, [32]):

(3.1) U = (eff, T, ViT, Fyj, J; Ry) .

However, by considering the assumption of small elastic strains (usually ac-
cepted for metals and other materials subjected to high strain-rate loading), the
specific free energy function ¥ may be written as follows (MURNAGAHAM (37|,
GARCIA GARINO and OLIVER [41] CELENTANO [21]):

(3.2) U= (e, T, ViT, J; Rg)

Moreover, under severe loading conditions the elastic strains are comparably
smaller. Thus, the elastic part of the deformation gradient can be assumed to
be unity (i.e., J¢ = I). By adopting, also, the incompressibility assumption (i.e.,
JP = I), which is an acceptable postulate for metals, we can rewrite the specific
free energy function ¥ as follows:

(3.3) =10 (eg,T, V.T, J¢, Nk>

where J¢ = det(F%). This last simplified form of ¥ is used in the formulation
described below.
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Analogous to the additive decomposition of the deformation rate d into
elastic and elastic-damage components (Eq. (2.26)), the Eulerian total elastic
strain tensor e® can be also decomposed as follows:

(3.4) eg =e;; + efjd.

This additive decomposition of the Almansi total elastic strain can also be de-
duced from the multiplicative decomposition of the deformation gradient into
elastic and elastic-damage parts, FF = Fe, Fed,

Since the main objective is to develop the rate-type constitutive equations for
a viscoplastic and viscodamage material, the effects of viscoplastic strain hard-
ening/softening, viscodamage strain hardening/softening, micro-damage mecha-
nism, and thermomechanical coupling have to be considered. In order to compen-
sate for such mechanisms, a finite set of internal state variables Ny (k = 1,..., i)
representing either scalars or tensorial variables are assumed, such that:

(3.5) Ry, = R (¢35, En, V2E,)

where ¢ is the average damage density, =, (n = 1 —4) are the viscoplasticity and
viscodamage hardening variables, and V2Z,, are the corresponding higher-order
gradients (Laplacian) of =,.

We make use here of the postulate of the isotropic influence of averaging of
the evolution equations of the assumed internal state variables Z,, over a repre-
sentative volume element (RVE). The first-order gradients are disregarded and
the second-order gradients are mainly considered in this work. Moreover, setting
Z, and V2Z, as independent internal state variables allows one to computa-
tionally introduce independently the macro and meso-scales. It also allows these
two different physical phenomena to be identified separately with different evo-
lution equations. This approach is considered in this paper. The set of the macro
internal variables Z,, is postulated as follows:

(36) En = én (pa 5, T, Fl])

where p denotes the accumulative or equivalent viscoplastic strain and a denotes
the flux of the residual stress (backstress). p is associated with the isotropic hard-
ening and o with the kinematic hardening in the viscoplastic flow process. Simi-
larly, r denotes the accumulative viscodamage and I" denotes the flux of the resid-
ual stress (kinematic hardening) in the damage flow process. Those viscoplastic-
ity and viscodamage hardening variables are introduced in the Helmholtz free
energy density in order to provide sufficient details of the deformation defects
(cracks, voids, mobile and immobile dislocation densities) and their interactions
in order to properly (i.e. physically) characterize the material microstructure be-
havior. These variables will provide an adequate characterization of these defects
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in terms of size, orientation, distribution, spacing, interaction among defects, and
so forth. In addition, in order to be able to achieve this, macroscale discontinu-
ities influence should to be addressed and implemented properly.

For the strain-softening regime of the material behavior, the non-homogenous
states of deformation can appear as localized regions with large deformations. A
suitable description of the evolution of such zones can be obtained with the use
of a non-local or gradient theory, examples of which are given by AIFANTIS [2],
MUHLHAUS and AIFANTIS [69], BAZANT et al. [12], and VOYIADJIS et al [96].
The gradient theory introduces in the material constitutive equations higher-
order deformation gradients with coefficients that represent length-scale mea-
sures that characterize microstructural links with the non-local continuum. An
attempt is made here to account for the non-uniform macroscale viscodamage
and viscoplastic distribution on the overall macroscale response by assuming
the thermoelastic Helmholtz free energy density ¥ to depend not only on the
macroscopic response associated with the internal variables =, but also on its
macroscopic spatial higher-order gradients V2Z,. Both Z, and V?Z, are con-
sidered to be independent of each other. This postulate is motivated through the
fact that certain internal state variables such as the mobile and immobile disloca-
tion densities do not necessarily have the same evolution equations (BAMMANN
and AIFANTIS, [8,9]). They have different physical interpretations that guide one
to different evolution equations for =, and V2Z,. Thus, the set of internal state
variables V?Z, are postulated as follows:

(37) vZEn = v?én (VQPa vzaija V2T7 VQFIJ)

where V?(0) denotes the corresponding higher-order gradient Laplacian of (O).
The assumed dependence of the Helmholtz free energy on the distinct variables
V?Z, is also motivated by the necessity to include length-scale measures into
the equations of state that link the mesoscale interactions to the macroscale
viscoplasticity and viscodamage, which can not be captured by X3, variables
only.

The viscoplastic hardening presented by the internal state variables p and «
accounts for the dislocation interactions. The isotropic hardening internal state
variables p and V?p are associated with the density of dislocations in the current
state and characterized by statistically stored dislocations and geometrically nec-
essary dislocations, respectively (GAO et al., [40] FLECK and HUTCHINSON, [36]).
The kinematic hardening variables @ and V2« correspond to the incompatibility
of viscoplastic deformation between various parts of the material (LEMAITRE
and CHABOCHE,[59]). Hence, the viscoplasticity hardening variables depend on
the interaction of the statistically stored or mobile dislocations and geometrical
necessary or immobile dislocation densities. On the other hand, the viscodamage
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hardening presented by the internal state variables r and I' accounts for retar-
dation of the (micro)-crack growth at higher strain rates resulting from (micro)-
crack growth arrested by other (micro)-defects (VOYIADJIS and DELIKTAS, [95],
ABU AL-RUB and VoYIADJIS, [1]). The gradient of the assumed internal state
variable is used to describe the corresponding non-local material behavior, i.e.
it is used to overcome the deficiency of the classical continua to capture the
length-scale effects due to localization of viscoplasticity and viscodamage. The
damage variable ¢ reflects the material degradation at a micromechanical scale
due to nucleation and coalescence of voids, cavities, and microcracks in an av-
eraged sense. The determination of the assumed internal state variables is the
main challenge of the constitutive modeling.

The proposed viscoplastic and viscodamage constitutive modeling is formu-
lated within the framework of thermodynamic principles; that is, the use of bal-
ancing laws, the conservation of mass, linear and angular momenta, and the first
and second laws of thermodynamics. Those fundamental laws of continuum me-
chanics in the spatial representation can be written as follows (COLEMAN and
GURTIN [23], LUBLINER (63|, LEMAITRE and CHABOCHE [59], BELYTSCHKO
et al. [16], DOGHRI [29]):

(i) Conservation of mass
(3.8) p+ pdiv(v;)) =0 or pJ=p°.

(ii) Balance of linear momentum

(3.9) div (:177'1‘]) + pb; = pvy;.
(iii) Balance of moment of momentum

(3.10) Tij = Tji-

(iv) Conservation of energy (first law of the thermodynamics)

. 1 1
(3.11) U= E'rijdij +h— o desk:

(v) Law of entropy (second law of the thermodynamics)

i@\ h
(3.12) pr) + div (q?) - pz 20,
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and the Clausius-Duhem inequality, which can be derived from the previous laws
of thermodynamics, such that:

e 1 qi
(3.13) —u+nT + -/;;Tijdij — p—}ViT >0

where p° is the reference mass density, p is the current mass density, v is the
spatial velocity vector, b is the specific body force vector, u is the internal energy
density, h is the external specific heat source, n is the specific (per unit mass)
entropy, q is the heat flux vector, and J > 0 is the determinate of the deformation
gradient tensor F. V denotes the first order gradient (V; = d/0z;). Meanwhile,
u, ¥, T, and 7 are related by:

(3.14) U=uy—-Tn
Using the above equation in Eq. (3.13), one can rewrite the Clausius-Duhem
inequality as follows:

(3.15) Tijdij —p° (‘I’ + T]T) - J%ViT > 0.

Note that the time rate of a spatial field (f) is defined as the material-time
derivative (D f/Dt) and given as follows:
Df _of of
Dt ot "B,
The Lie derivative of Eq. (3.3) with respect to its internal state variables in the
updated configuration is given by:

(3.16) f=

0 g O Y o g O
(3.17) Y== Ed,J+ 51t aVzTVT+3Jd + In Ly(Rg)
where
ov ov 8\11 ov
. oLy (R ; (2 2z,).
318 g L) = o L(f) + g5 LulEn) + g u(VER)
The last two terms of Eq. (3.18) are given by:
ov ov B\Il ov ov
3.1 —L,(E,) = — ii) + —7 + ——L,(T;5).
and
ov oV —— ov
3.20) ———L,(V?%E,) = pt——  L.(Va;
1\
+ P 5 + 2 L,(V?Ty))
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Note that in Eq. (3.17) the Lie derivative of the Almansi total elastic strain
(L,eF) defines the total elastic spatial rate of deformation tensor (dF). The
material-time derivative of the Jacobian of the damage deformation (J%) is ex-
pressed as follows:

aJ¢

rd __
(3.21) J = 578

—F3 = J4d%6;.
Substituting the rate of the Helmholtz free energy density (Eq. (3.17)) into the
Clausius-Duhem inequality (Eq. (3.15)), one obtains:

(3.22) (m a&/;)(i

O L0 ed o 4
+<Tij—'pacﬁ aJdJ(S”)d”+ paJdJ(SU d’l

1j

44

' LR —JEg. T >0
5 T

+ Tijdiy — p° <% +n)T——p°

9y
VT

Assume that the axiom of entropy production holds, then the above inequality
equation results in the following thermodynamic state laws:

R o0y _ 09 ﬂ:po 9
WP ReE T Tar TP v

00 00
s 7D Dl

(3.23)
P =

The above equations describe the relation between the state variables (observable
and internal) and their associated thermodynamic conjugate forces. These ther-
modynamic forces conjugate to their state variables are listed in Table 1, where
Yy ={Y,R,X,K,H,R9,X,9,K9, HY} are the conjugate forces corresponding to
the viscoplastic and viscodamage internal variables ¢ = {d,p, &, 7, T, V2p, Via,
V?2r, V2T '} respectively. The stress 7 is a measure of the elastic changes in the
internal structure, while Y is a measure of the elastic-damage changes in the in-
ternal structure resulting from crack closure and void contraction during the
unloading process. The conjugate forces R and X are measures of the vis-
coplastic changes in the internal structure, while K and H are measures of the
viscoinelastic-damage changes in the internal structure. P is the thermodynamic
pressure, where Eq. (3.23)4 is consistent with the definition of thermodynamic
tension (which is opposite in sign to that of pressure) of Gibbsian thermody-
namics (NARASIMHAN [73]).
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Table 1. Thermodynamic state variables and their corresponding conjugate

forces.
State Variables . .
Observable Tnternal Associated Conjugates
e T
T n

®
<

o
|
3

J° P
vT q
p, V°p R, RS
a, Via X, X’
r, Vr K, K¢Y
T, VT H, HY
% Y

The additive decomposition of the rate of deformation tensor (Eq. (2.24))
implies that the Helmholtz free energy function ¥ can be written as a sum of
elastic, viscoplastic, and viscodamage portions, such that:

(3:24) W (ef, T, ViT, J% s )
=y (65, T) ViT> ¢1,_7) + g (Ta ViT,Pa V2pa Qij, V2al_’])
+ \Ifd (T, ViT, Jd, r, V2r, Fij, VQFij, (ﬁij)

where W€ is the thermoelastic stored energy, while U*Pand ¥¢ are the energy
stored due to material hardening.

The complexity of a model is directly determined by the form of the Helmholtz
free energy ¥ and by the number of conjugate pairs of variables. It is possible
to decouple the Helmholtz free energy into a potential function of each internal
state variable in such a way that an analytical expression for the thermodynamic
potential is given as a quadratic form of its internal state variables. However, cou-
pling is possible in the viscoplastic potential or the viscodamage potential if they
depend on more than one variable (HENRY and HASLACH [45]), which makes the
evolution equations more complex. CHABOCHE [22] said that an energy ¥ with
non-quadratic kinematic hardening variables leads to abnormal results, but cou-
pling with temperature was not discussed there. In high velocity impact-related
problems, very high-strain rates combined with large deformations can produce
a significant temperature rise due to adiabatic heating, where most of the work
done on solids is usually dissipated in the form of heat resulting in local increase
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in temperature, which affects the behavior of the material during deformation.
This necessitates the inclusion of the temperature in the constitutive modeling
of the material. KAPOOR and NEMAT-NASSER [50] measured the energy con-
verted to heat during inelastic flow using infra-red method for some metal alloys.
The infra-red measurements showed that 70% of the work done is converted to
heat. BJERKE et al. [17] examined experimentally the role of plastic deformation
in generating heat during dynamic compression and fracture of polycarbonate,
where Split Hopkinson pressure bar (SHPB) experiments and opening mode
dynamic mode fracture experiments were performed to measure the thermome-
chanical response of polycarbonate at various loading conditions. The results
indicate that plastic deformation is not the main source of heat generation dur-
ing the dynamic fracture, but it only accounts for about 8% of the measured
heating and the other portion is due to thermofracture coupling providing that
the deformation is the only source of material heating. Hence, the thermome-
chanical coupling in both viscoplasticity and viscodamage mechanisms needs to
be considered in the material behavior modeling for more accurate comparisons
with the experiments. A necessary explicit multiplicative temperature coupling
term can be introduced in the hardening state variables for more realistic de-
scription of their evolution equations and good conformity with the experimental
observations that show strong dependence of such states on temperature.
The thermoelastic energy (¥€) is postulated as follows:

1
(3.25) V¢ = ﬁeggzjkl (¢) e
1, & P |
= -p—Oﬁl]e”AT - 'I]TAT = ‘2'CAT — mk”vlTvJT

and the viscoplastic and viscodamage energies, ¥'? and ¥¢ on the long term
manifolds (neglecting the short term manifolds) are respectively assumed to have
the following analytical forms, such that:

(3.26) TP =

2
'2—p; [a1p2 + a2 (V2p) + azayjoy; + a4V2aijV2aij]

9
(3.27) vl = 2— [a57‘2 + ag (VZT‘)z + a7Pi]~I‘i]~ + agszijV2I‘ij]

o
+¢ (TY-T,)

where (@) is the fourth-order damage elastic tensor and is a function of ¢, B
are the thermo-mechanical coefficients, c is the coefficient of thermal expansion,
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7, is the reference entropy, ax(k = 1 — 8) are the material-dependent constants,
k is the heat conductivity coeflicients tensors, AT = T — T, is the temperature
difference, ¥ is the homologous temperature defined as ¥ = 1 — (T'/T,)", where
n is the temperature softening component, T, is the reference temperature, and
Ty, is the melting temperature. ¢, is the specific heat at constant volume (or the
constant volume heat capacity), and T% is chosen to have the form of ideal gas
temperature that can be expressed as follows:

(3.28) T
=Trexp[(n —n)/cy) [1 + sd] oy exp [(’y -1) (1/(1 + £d> — 1)] .

7y = ¢p/cy is the ratio of the specific heats, where ¢, is the specific heat at constant
pressure. Both ¢, and ¢, are related to the gas constant ® by ® = ¢, — ¢,. The
above expression is postulated in order to derive an expression for the equation
of state, which relates pressure to specific density. ¢ is the nominal volumetric
damage strain, which can be expressed in terms of J¢ as:

1
(3.29) == -1

Note that in this paper the foregoing material properties are taken as inde-
pendent of temperature unless specifically stated otherwise.

The proposed definition of ¥ allows the derivation of the constitutive equa-
tions and the internal dissipation described next. Moreover, the definition of the
different contributions of ¥ given by Egs. (3.25), (3.26), and (3.27) consider the
density at the initial configuration p° instead of its current value p. This simpli-
fication is consistent with most of the large strain models exists in the literature
(see DOYLE and ERICKSEN [31], DUSZEK-PERZYNA and PERZYNA [32], CELEN-
TANO [21] etc). However, any density change in the evolution equations is given
by the conservation of mass law (Eq. (56)). The constitutive equations for stress
and entropy, Egs. (3.23); and (3.23)3, can be written from the thermodynamic
potential equations, Egs. (3.25), (3.26), and (3.27), by neglecting higher-order
derivatives, such that:

(3.30) 7ij = Sijniek — By AT,
where
82 0?v
(3.31) S =P 5575 » Bis=-p° ’
8eij66kEI 3653T
and

(3.32) 1N = Te + Nup + Na,
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where
1

(3.33) Ne = nr + cAT + EﬁijeiEja

09
(3.34) p = 5 [a1p2 + az (V2p)2 + azag o5 + a4V2aijV2aij] T
(3.35) ng = o0 [b1r2 + by (V%«)Q + 03015 + b4V2FijV2I‘z’j] T
with

9 _n (T \"

(3:36) ar ~ Tn (ﬂ) |

In Eq. (3.30) the instantaneous elasticity tensor & could be considered con-
stant either on the spatial (updated) or in the material (reference) configuration.
If it is considered constant in the material configuration, < is obtained by “push
forward” operation, while if it is considered constant on the spatial configura-
tion, the elasticity tensor in the material configuration comes out by performing
a “pull back” operation (CAR et. al. [20]).

The constitutive equations for the heat flux vector q and the pressure stress
P can be obtained from Eqs. (3.23)3 and (3.23)4, respectively, as follows:

(3.37) q; = —ki;V;T

which is the Fourier heat conduction equation. The negative sign indicates that
the heat flow is opposite to the direction of temperature increase.
The thermodynamic pressure stress P is given as follows:

(3.38) P=(1-7)c,T9"

which gives the equation of state necessary for high-impact loading. The equation
of state accounts for compressibility effects (changes in density) and irreversible
thermodynamic processes.

Coupling between elasticity and damage does exist indirectly since the elas-
tic modulus is a function of the damage variable ¢. Furthermore, coupling be-
tween viscoplasticity and viscodamage exists since the viscoplastic thermody-
namic states are expressed in the current damaged configuration. The state laws
of the assumed internal state variables, Eq. (3.23)5, are obtained from Table 1
and the thermodynamic potential equations Egs. (3.25), (3.26), and (3.27) are
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expressed in Table 2 in terms of their associated internal state variables. The
superscript ‘g’ in Table 2 indicates the thermodynamic conjugate force corre-
sponding to the gradient internal variable. Other choices of the Helmholtz free
energy function ¥ lead to conjugate forces which differ in algebraic form but not
in the fundamental concept from the specific case considered here.

Table 2. The thermodynamic conjugate forces.

Isotropic Hardening R = p° 55— ‘9‘1’ = a1p?,
— 50 B\Il 2
Plasticity R = p°gom; = a2 (V'p) ¥
Kinematic Hardening | Xi; = p° a\p, = a3ai;v,
— 0 B\Il e 2
X =P aoay; = a4 (Vi) 9
Isotropic Hardening K= °a‘p = birv,
Damage K= B8 = by (7r) 9
Kinematic Hardening | Hi; = pog—l‘f'i‘jf = b9, H} = p°ﬁ\pg—-[i]—, =
bs (V°Ty;) 9
Damage Force -Yij =p° g:": = af_,»,- [3elSijki (¢) eqi]

Substituting of Egs. (3.23) into Eq. (3.22) modifies the Clausius-Duhem in-
equality to express the fact that dissipation energy II is necessarily positive, such
that:

T T
(3.39) II = 7y;d]; + PJ%d%6i; — Tint — s T v

>0

where the rate of internal dissipation II;,; is given by the relation:

(340) Mins =Y LyRe = —Rp — RY V2p —Xy5 Ly (045) — X§Ly(V2ex;j)
k

— K# — K9 V2r —Hy;L,(T5) — HL, (VL) + YijLy($35) 2 0

Based on the previous assumption of Helmholtz free energy additive decom-
position (Eq. (3.24)), the dissipation energy (Eq. (3.39)) can be rewritten as the
summation of dissipation energies due to mechanical dissipation (viscoplasticity
and viscodamage) and thermal dissipation, such that:

(3.41) I1 = P + I1¢ + It > 0,
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where

(342)  I"P = 7;5di? — Rp — RO V?p—XijLy(euig) — X5 L, (V2i5) > 0,

(3.43) ¢ = Tijdég + PJddfjéij - Kr— Kgﬁ—Hiij(Fij)

= H{-quv(VQFij) + Yiij(qﬁij) >0,

(3.44) It = —¢ V}T iy i)

> 0.
T | =

This result requires that all inelastic work should dissipate away as heat, ex-
cept for that energy which is stored because of the rearrangement of the material
internal structure. Note that not dissipation occurs not only due to deviatoric
stresses associated with d”P and d* but also due to the pressure stress associated
with d?. This result suggests that viscoinelastic-damage deformation is controlled
by deviatoric as well as volumetric stresses, while the elastic-damage deformation
is mainly controlled by volumetric stresses. Moreover, writing the dissipation po-
tential function IT as in the decoupled form shown in Eq. (3.41) does not mean
that the corresponding physical mechanisms are decoupled. Coupling does oc-
cur in the viscoplastic potential given by Eq. (3.42) between viscoplasticity and
viscodamage since the conjugate forces are expressed in the current deformed
and damaged configuration of the material. Hence, two additive damage mecha-
nisms are introduced in the dissipation function (Eq. (3.41)); one mechanism is
coupled with viscoplasticity and the other occurs independently of viscoplastic
deformation. Complementary laws can be related to the dissipation processes
given by Eqgs. (3.42) and (3.43). This implies the existence of the dissipation po-
tential expressed as a continuous and convex scalar-valued function of the flux
variables.

It is obvious that the definition of ¥ and consequently of L,Xx (k =1 —09)
are essential features of the thermodynamic formulation in order to describe the
thermomechanical /microstructural behavior of the material involved in the de-
formation process. The evolution laws of d/ and ¢ can be obtained by utilizing
the calculus of several variables with Lagrange multipliers A*? and A¢. The dis-
sipation function IT = IT%? 4 I1¢ (Eq. (3.41)) is subjected to the two constraints,
namely f =0 and g =0 (VOYIADJIS and KATTAN [98]), such that:

(3.45) Q= VP4 T — AP — ¥,



NON-LOCAL COUPLING OF VISCOPLASTICITY. .. 67

For generality purposes, we will assume here that the time-dependent be-
havior of both viscoplasticity and viscodamage mechanisms are controlled by
different relaxation times associated with A¥? and A%, which may not generally
be the case. This congruous is suggested to occur only for material impact be-
havior above a certain material threshold of impact speed. This is not the subject
of the present work, but it will be discussed thoroughly in a forthcoming paper.

Now we make use of the maximum viscoinelastic dissipation principle (SIMO
and HONEIN [88], SiMO and HUGHES [89]), which states that the actual state
of the thermodynamic forces (7, Y) is that which maximizes the viscoinelastic
dissipation function over all other possible admissible states. Thus, we maximize
the objective function £ by using the necessary conditions as follows:

N o0

o, =0 and oY, =

(3.46) 0.

Substitution of Eq. (3.45) into Eq. (94) along with Eq. (3.41) yields the thermo-
dynamic laws corresponding to the evolution of the total inelastic deformation
rate (d’) and the viscodamage variable (¢), where Eq. (4.46); gives the inelastic
deformation rate tensor as follows:

of

. « 5 8y
. dl. = A = 4+ Ad
(3.47) i B 4 B

Considering the earlier postulate of the additive decomposition of the inelas-
tic deformation rate into viscoplastic and viscodamage parts (Eq. (2.27)), the
following assumption is made:

s B . v 0g
48 AP = AP 2 id _ Ad
( 3 ) i ) Tii and d:] aTij

while Eq. (4.46) gives the viscodamage rate evolution law as follows:

vop Of id Jg
) — AP
(3.49) Ly(¢ij) = A oY; + A Y,

where f and g are respectively the dynamic viscoplastic and viscodamage loading
surfaces outlined in the following section. Eqs. (3.47) and (3.49) show that a
strong coupling exists between viscoplasticity and viscodamage in such a way
that d’ is decomposed into viscoplastic (d“?) and viscoinelastic-damage (d*®)
components and both d’ and ¢ are expressed in terms of the viscoplastic and
viscodamage potentials.

Now, in order to obtain non-associative rules for the viscoplasticity and vis-
codamage hardening variables, one can assume the existence of a viscoplastic
potential F' and a viscodamage potential G such that they are respectively not
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equal to f and g. This postulate is essential in order to obtain nonlinear vistwoplas-
tic and viscodamage hardening rules, which give a more realistic characterzation
of the material response in the deformation process. The complementary liws for
the evolution of the other internal state variables can then be obtained drectly
from the generalized normality rule, which are summarized in Table 3. Those evo-
lution laws show strong viscoplasticity and viscodamage coupling. This strong
coupling results, on the one hand, from the fact that the viscoplasticity evolu-
tion equations are obtained in the current, deformed, and damaged stat and,
on the other hand, the damage evolution equations are expressed in termsof the
viscoplastic and viscodamage potentials.

It is noteworthy to mention that the Lagrangian parameters A¥P and \4 re-
spectively, characterize the effective or equivalent viscoplastic and viscodamage
deformations. Therefore, the evolution of the assumed gradient variables i asso-
ciated with the gradients of A¥P and A?. This is clearly shown by the evdution
equations of V?p, Lya, V27, and L,T in Table 3.

Table 3. The thermodynamic laws for the evolution of the internal stite

variables.
- Isotropic Hardening p=—-A"w2E
Plasticity . ) oR’
Evolution Laws e 2ivp OF
\Y pP= -V*A BRe
Kinemgtic Hardening Ly(a;5) = —A”"E%I:—]_,
Evolution Laws Ly(V2ayj) = —V2A"P 66;;
Dauiags Isotrop.ic Hardening T = —Ad%,
Evolution Laws =5 9% d 8G
V2r = —V*A K9
Kinem.atic Hardening L,(Ti;) = —A4 63-IG,-,- ;
Evolution Laws L, (V) = —V2Ad 653167'

The non-local evolution of each of the assumed internal state variables Lvén,
(n =1-4)) at position z in the current configuration, can be expressedas the
weighted average of its local counterpart L,=, over a surrounding volune v at
a small distance |(| < L¢ from the considered point, such that:

(3.50) L= [ BOLE -+ db,

v
where L, is an internal characteristic length and h ({) is a weight functia that

decays smoothly with distance and in this work is given by h (¢) = Ih({) vhere I
is an identity tensor. However, the identity tensor I may be suitably subsituted
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by another tensor in order to induce further anisotropic behavior of the material
(VoviapJis and DORGAN [97]).The local variable L,Z, in Eq. (3.50) can be
approximated by a Taylor expansion at ¢ = 0 such that:

(3.51) LB, (z+¢) = LyE, (z) + VL,E, (z) ¢ + %V2Lv5n (z) ¢

+ VLB (@) CCC

where V* denotes the i-th order gradient operator. Assuming only an isotropic
influence of the averaging equation, as we stated previously, the integrals of the
odd terms in Eq. (3.51) vanish. Furthermore, making use of Egs. (3.50) and (3.51)
and truncating the Taylor series after the quadratic term lead to the following

expression for the nonlocal variable Lvén:
- 1 1
(3.52) Ly =~ /h({) LyZp (z) dv + o /h(g) V2L,En (z) (C dv.
v v

This relation can be expressed as a partial differential equation such that:

= - 1 -
(3.53) LyEn = Ly, + = / [h(O)]¢Cdv | V2L,E,.

1
However, setting — / [h(2)]dv =1, Eq. (3.53) can be re-written at constant x
v
v

as follows:

(3.54) LyZn = LyZn + caLy V25,
such that:

(3.55) P=p+c Vip,

(3.56) Ly(@s5) = Ly(cij) + coLy(VZai5),
(3.57) F=¢+eVor,

(3.58) Ly(Tyj) = Ly(Ts;) + caLy (V2Ty5).
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In Egs. (3.54)-(3.59), (n = 1—4) are constants proportional to length squared
and weight each component of the gradient term identically, which give a rise for
explicit length-scale measures. If one assumes a more general tensorial character
for h not necessarily confined to the expression in terms of an identity tensor,
then one obtains a different weighting of the individual coefficients. This will
give a weighting function with a tensorial nature ¢, containing several different
integration constants.

Following Eq. (3.54), one can write the evolution equations of the correspond-
ing non-local state laws as follows:

(3.59) LyEn = LTy + LT
such that:

(3.60) R=R+ I,

(3.61) Lo(Xi5) = Lo(Xij) + Lo(XE),
(3.62) K =K1K,

(3.63) Ly(Hij) = Ly(Hij) + Ly(HY).

The next important step is the selection of the appropriate form of the vis-
coplastic potential function F' > 0 and the viscodamage potential function G > 0
in order to establish the desired constitutive equations that describe the mechan-
ical behavior of the material. It is clearly seen in the previous part of this work
that the viscodamage evolution laws are strongly coupled with viscoplasticity.
To maintain this strong coupling, two independent viscodamage mechanisms are
distinguished. One mechanism is coupled with viscoplasticity, while the other one
occurs independent of viscoplastic deformation. Similar argument was presented
by HESEBECK [46], where he showed that the first mechanism is dominated in
the case of shear stress and the second one for hydrostatic stress. In order to
be consistent and satisfy the generalized normality rule of thermodynamics, a
proper analytical form for the viscoplastic and the viscodamage potentials need
to be postulated to obtain consistent evolution equations for the flux variables,
such that:

e 2 sy * 255 , S L
(3.64) F = f + 5k X Xmn + 5k X X + §k3R2 + §k4R92,
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mn=-mn

1 1 1 1
(3.65) G =g+ hsHmnHpn + JkeHY B,y + 2k K + iksKg"’,

where k; (2 =1 — 8) are material constants used to adjust the units of the equa-
tion, which are again independent of temperature. X and X9 are the effective
backstress tensors associated with the kinematic hardening and are expressed
similarly to Eq. (2.29) as:

(3.66) Xij = MyjXp and X[ = My XJ,.

The isotropic hardening represents a global expansion in the size of the yield
surface with no change in shape. Thus for a given yield criterion and flow rule,
isotropic hardening in any process can be predicted from the knowledge of the
functions R and RY, and those functions may in principle, be determined from
a single test (e.g. the tension test). Therefore, the effective isotropic hardening
functions R and RY are related to the nominal isotropic hardening function R
and RY similar to Eq. (2.29) as follows:

R

1—7r

(3.67) R=

b

RY
1-7’
where r is defined as the accumulative or equivalent damage and can be expressed
as follows:

(3.69) T =/ $ijdij -

The assumed potential functions indicate the need for two loading surfaces f
and g, one for viscoplasticity and another for viscodamage, respectively. Thus,
the coupled anisotropic viscoplastic and viscodamage formulation is a two-surface
model whereby anisotropic viscodamage is formulated in the spirit of viscoplas-
ticity, complete with a viscodamage criterion and flow rules.

(3.68) RY =

4. Viscoplasticity yield criterion and its corresponding flow rules
4.1. Viscoplasticity yield criterion

Once a material is damaged, further loading can only affect the undamaged
material. Thus, the viscoplastic function f is defined in terms of the effective
stresses. For the classical J; rate-independent plasticity, the static yield surface
fs (at negligible viscoplastic strain rate) is assumed to be of a von Mises type
with isotropic and kinematic hardening, and defined as follows:

(B fs = \/3J2 (f;j - X — X;»’j) — ;yp'(T) ~R(5,T) - RY (V?p,T) <0
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where J, = 1/2(7 — X — X9) : (f — X — X9) is the second invariant of the
deviatoric stress tensor (7 — X — X9), 7,»(T) is the initial yield strength as a
function of temperature, R and RY are the isotropic hardening functions, 7" is
the absolute temperature, and p is the equivalent viscoplastic strain. 7 is the
effective deviatoric Kirchhoff stress tensor, X and X9 are the effective backstress
tensors associated with the kinematic hardening. T is expressed in terms of the
viscodamage tensor M (given by Eq. (2.30)) and the corresponding damage states
as follows (VoyI1aDpJIs and KATTAN [100]):

(4.2) Ty = Mt with M = Mije — %Mrrkléij-

The accumulative or equivalent rate of the effective viscoplastic deformation (p)
is defined by:

.2
(4.3) B=/ a0y

where dP is the viscoplastic deformation rate tensor in the effective configura-
tion.

The extension of Eq. (4.1) to include the rate-dependent plasticity (viscoplas-
ticity) implies that the stress state is no longer constrained to remain on the yield
surface but one can havefs; > 0. Therefore, we define the dynamic yield surface
f as follows:

(4.4) ;= \/3J2 (7~ Ry = XE) = 7yp— R— B9~ 7y =0

where 7,, = (fs) is the viscous effective stress (or the overstress, i.e. the dif-
ference between the dynamic stress and its static counterpart) and (z) denotes
the MacAuley brackets defined by (z) = (z + |z|)/2. Clearly, 7, is the common
notion of viscoplasticity (PERZYNA [78]), which implies that an inelastic process
can only take place if, and only if, the overstress 7,p is positive. From the as-
sumed yield function f the current effective yield stress can be defined as follows
to account for high-strain rate and temperature effects:

(4.5) Y =7, (T) + R(B,T) + R® (V*5,T) + 7p (5, V?D,5, VP, T)
where one can define the initial yield strength 7, as follows:
(4.6) Typ (T') = 609

where Y, is the initial yield stress in the undamaged state, which is obtained at
zero absolute temperature, zero viscoplastic strain, and static strain rate, and
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® =1—(T/T,»)". The evolution equations of the hardening functions R, R, X
and X9 will be derived in the subsequent sections.

The proposed dynamic yield criterion f = 0 (Eq. (4.4)) is a generalization of
the classical von Mises yield criterion fs < 0 (Eq. (4.1)) for rate-dependent mate-
rials. The latter can be simply recovered by imposing p = p, (rate-independent),
so that one has the plasticity case f < 0, where pg is the static strain rate
(i.e. the smallest strain rate of the strain-rate range considered), and is called
the control strain rate according to the notation of PERZYNA [81]. In the elas-
tic domain, both f; and f are equivalent since, in that case, p = 0. Therefore,
the admissible stress states are constrained to remain on or within the elastic
domain (f < 0). The viscoplastic parameter A"’ > 0, which is known as the
plastic consistency parameter, is assumed to obey the following Kuhn-Tucker
loading/unloading conditions (S1MO and HUGHES, 1998):

<0 = A" =0 elastic unloading
(4.7) f<0 and f{ =0 = A =0 \ o ! neutral loading
=0 =A">0 plastic loading

Thus, f still satisfies the constraint equation Eq. (3.45) and the maximum
dissipation principle Eq. (94);.

4.2. Viscoplastic flow rule d'?

One can substitute in Eq. (4.48); different admissible forms for the La-
grange multiplier AP without violating the constrained maximization problem
presented by Eq. (4.46);. However, the evolution equation for A%? is now defined
in a quiet similar way as in the classical viscoplasticity. Several evolution equa-
tions have been proposed in the literature to calculate the viscoplastic strain
rate. Some of them are physically-based and others are phenomenological. The
most widely used in rate-dependent plasticity (viscoplasticity) are those based
on the overstress concept (ZENER and HOLLOMON [108], [109], MALVERN [65],
[66], PERZYNA [77], [78], [80], [83]). One of the first and most widely used phe-
nomenological models for rate-sensitive plastic flow is due to PERZYNA ([77],
[78], [79], [80], [81]), which has been often considered in computational applica-
tions. On the other hand, ZENER and HoLLOMON ([108], [109]) proposed that
the functional dependence of the magnitude of the inelastic strain rate of metals
could be multiplicatively decomposed into two functions: thermal (static) and
stress (dynamic). FREED and WALKER ([37], [39]) and FREED et al. [38] showed
that the Zener parameter is very general and includes many viscoplastic theories
as special cases. In the spirit of the Perzyna-type and Zener-type evolution equa-
tions for the viscoplastic strain rate, one can postulate the following admissible
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form for the Lagrangian multiplier AP such that:

(48) Aw = L [____<sz> _ ]ml
Tup [ Typ + R+ RY

where mq is the viscoplastic rate sensitivity parameter and 7, is the viscosity
or fluidity parameter, sometimes referred to as the relaxation time according to
notation of PERZYNA [81]. Note that the script “vp” used as a superscript or
subscript does not designate tensor indices but hardly denotes the corresponding
viscoplasticity.

One can now utilize the hypothesis of viscoplastic dissipation equivalence Lee
et al. [58], VOYIADJIS and THIAGARAJAN [103], VOYIADJIS and DELIKTAS [95].
This hypothesis assumes that the viscoplastic energy in terms of the effective
and nominal stress and strain quantities must be equal. Thus, one can write the
following relation, such that:

(4.9) d;} = Nigjudyp

where N is the inverse of the fourth-order damage tensor which is given by Eq.
(2.32).

By making use of the effective stress equation (Eq. (2.29)) and the effective
viscoplastic deformation rate equation (Eq. (4.9)), we can write the viscoplastic
deformation rate equation (Eq. (96);) as follows:

; af
4.10 P = A 2L
( ) 1] 87—.1] ’
Since 9f /07 : f /0T = 1.5, it can be easily shown that the effective rate of the
accumulative viscoplastic deformation rate (p) defined by Eq. (4.3) is related to
VP by:

(4.11) p= A",

By making use of Eqgs. (4.8) and (4.11), one can write an expression for the
overstress function 7,, as follows:

(412) 7_—vp = ('flupﬁ)l/ml (7—'yp + R + Rg) .

Note that from Eq. (4.12) the classical von Mises criterion fs = 0 (Eq. (4.1))
for rate-independent materials can be simply recovered by imposing 7,, = 0
(no viscosity effect) on f (Eq. (4.4)). Moreover, the well-known fact tha:, from
the relation in Eq. (4.8), it can be noted that as the viscosity parameter 7y
goes to zero, the consistency parameter V' remains finite and positive (though
indeterminate) since 7, also goes to zero.
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Setting the dynamic yield function f in the proposed form allows one to
use effectively the well-known rate-independent radial-return algorithm to inte-
grate the viscoplasticity governing equations. Applying the consistency condi-
tion, f = 0, also gives AP as proposed in Eq. (4.8).

4.3. Viscoplastic hardening rules

Now, in order to derive the evolution of the viscoplasticity isotropic hardening
functions R and RY in the effective state to be used in the dynamic yield function
f, we makes use of Egs. (3.64), (3.67), (3.68), (4.4), and (4.11) in p and V2p
equations in Table 3 along with the chain rule, such that the following expressions
can be written :

. P s
(4.13) P (1 —ksR),
e 25 _
(4.14) Vip = lv_’; (1 - ksRY).

By operating on R and RY relations in Table 2, and R and RY relations (Egs.
(3.67) and (3.68)) with the Lie derivative for a given temperature and keeping
the damage history constant (i.e. the damage internal state tensor ¢ and tem-
perature T' are kept constant), one can write the following evolution equations
for R and RY, respectively, as follows:

(4.15) R= (1?11)2 (1 - ksR) 9
(4.16) R = (‘132-;7%32 (1—ksR9) 0

Now in order to derive the kinematic hardening evolution equations associated
with viscoplasticity, one makes use of L, equation in Table 3 along with the
chain rule and Eq. (114),, such that one can write the following:

OF

(417) Lv(aij) = _AUpMminjmv

Substitution of Eq. (3.64) into the above equation yields:

(4'18) Lv(aij) = _AUpMminj (a)a-(—f + lemn) )
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Since af/('?X = —0f /07 as it is clear from Eq. (4.1), it can be easily shown by
using Egs. (4.10) and (4.11) that Eq. (4.18) can be rewritten as follows:

(4.19) Ly(aij) = Miminj (422, — k15 Xmn) -

However, operating on the X relation in Table 2, and X relation Eq. (114)
with the Lie derivative for a given temperature and keeping the damage history
constant (i.e. the viscodamage effective tensor M and temperature T are kept
constant), one can write the following evolution equation for X as follows:

(4.20) Ly(Xij) = MigjiMumgni (a3di?, — k1039 Xmn) 0.

When the infinitesimal deformations and rate and temperature-independent
response of a material are assumed and the micro-damage effects are neglected
then the kinematic hardening law (Eq. (4.20)) reduces to that proposed by ARM-
STRONG and FREDERICK [6)].

Similarly, by utilizing L, V2« equation in Table 3 and the Lie derivative of
XY relation in Table 2, one can write the gradient-dependent evolution equation
of viscoplasticity kinematic hardening (L,X9) as:

(4.21) Ly(X})) = MikjiMmkni <a4 a?f - k2a4Xﬂln) V2p9
Tmn

It is noteworthy to point out here that the derived evolution equations of vis-
coplasticity hardening (R, R9, L, X, and L, X9) containing hardening terms that
represent the strengthening mechanism as well as recovery terms that represent
the softening mechanism. Both the hardening and recovery terms are affected by
the static (thermal) recovery term 9 in such a way that the functional depen-
dence of the hardening of materials could be multiplicatively decomposed into
two functions: thermal (static) and stress (dynamic). Therefore, those evolution
equations characterize the time and thermal effects due to the rate and tem-
perature dependence. FREED et. al. [38] pointed out that in viscoplasticity at
elevated temperatures, thermal recovery of materials usually plays an important
rule in the deformation process. In impact-related problems, the thermomechan-
ical response of the assumed internal state variables is strongly dependent on
the temperature history. This requires existence of thermal recovery (softening)
terms in the evolution equations of the internal state variables.

4.4. Damage evolution criterion and its corresponding flow rules

4.4.1. Damage evolution criterion. By combining viscoplasticity with viscodam-
age, it seems natural that damage can only affect the undamaged material skele-
ton. Thus the viscodamage function g is also defined in terms of the effective
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stresses. The anisotropic viscodamage calculation is formulated in spirit of vis-
coplasticity; therefore, analogous to the dynamic viscoplastic yield surface pre-
sented in the previous section, the dynamic viscodamage surface g which evolves
from a static damage surface g; can be postulated as follows:

(4.22) g=gs—L(T,r, 7, V2r)=0

(4.23) g= \/JQ(Y;J- — Hi;— HY) —1(T) - K (r,T) - K* (V?r,T)

— L(T,r, V%, 7, V2r) =0

where Jo(Y — H — HY) denotes the second invariant of the damage force (Y —
H — HY), |(T) is the initial damage threshold as a function of temperature, and
L is the threshold damage force increment for microdamge nucleation, growth,
and coalescence, which is dependent on the temperature, damage accumulation,
and rate of damage accumulation.

Similar expressions for [(T') and A% can be postulated as presented by Egs.
(4.6) and (4.8), respectively, such that:

(4.24) L(T) = 1,9,
ad _ L (L) i
(4.25) Ad = e [l 3N Kg} ;

where [, is the initial damage threshold at zero absolute temperature, zero dam-
age strain, and static damage strain rate, and 9 = 1—(T'/T,,)". my is the damage
rate sensitivity parameter and 7,4 is the viscosity parameter or the damage re-
laxation time, which can be different than 7,,.

By making use of Eq. (4.25), one can write an expression for the overforce
damage function L as follows:

(4.26) L = (nyg#)™ (1 + K + K9).

The postulated dynamic viscodamage function g = 0 (Eq. (4.23)) is a gen-
eralization of the static damage surface as proposed by Voyiadjis and Deliktas
(2000Db) for rate-dependent materials. Similar to the yield surface, the static dam-
age surface can be simply recovered by imposing 1,4 = 0 (rate-independent), so
that one has the instantaneous damage case g < 0. In the undamaged domain,
both the static and dynamic damage growth conditions are equivalent since, in
that case, 7 = 0. Therefore, the admissible damage forces are constrained to
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remain on or within the undamaged domain (g < 0). The model response in the
viscodamage domain is then characterized as follows:

(4.27) g = g5 < 0 < undamaged state = V¢ = 0,
<0 =Ad=0 undamaged state
(4.28) ¢<0 and §g{ =0 =>A?=0 \ o ! damage initiation
>0 =AY>0 damage growth

4.4.2. Damage hardening rules. Now, in order to derive the hardening evolution
equations associated with viscodamage process, we follow the same procedure
presented in the previous section for viscoplasticity. The evolution equations for
the viscodamage isotropic hardening functions K and K9 are obtained by making

use of Egs. (3.65) and (4.23) in 7 and V2r relations in Table 3 along with the
Lie derivative of K and K9 equations in Table 2 for a given temperature, such
that the following expressions are obtained:

(4.29) K =b; (1 — k1K) 79

(4.30) K9 = by (1 — ks K9) V%0

Moreover, the viscodamage kinematic hardening evolutions equations can be
obtained by using L,I" and L, VT relations in Table 3 and Eq. (3.65), such that
one obtains the following:

. ag
(431) Ly(Ty) = —A° (aHij ' k"’H”) |
(4.32) L,(V?Ty;) = =V2A¢ < ailgg +k6Hg>,

Since 0g/0H = 0g/0HY = —0g/dY as it is clear from Eq. (4.23) it can be easily
shown by taking the Lie derivative of H and HY equations in Table 2 for a given
temperature that Eqs. (4.31) and (4.32) can be rewritten as follows:

Jg .
(4.33) L (H”) <b3 BYU k5b3Hij> 71
g 8 ) 2,
(4.34) Ly(HY) = b4-—- — kebya HY; | V279,
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Similar to the viscoplastic hardening evolution equations, the derived visco-
damage evolution equations consider the dynamic recovery as well as the static
recovery (thermal recovery). Besides, the static recovery occurs in both the hard-
ening and the dynamic recovery terms. The hardening term of each assumed in-
ternal state variable accounts for strengthening mechanisms, while the recovery
terms account for softening mechanisms.

For the sake of completeness, we outline in the Appendix the derivatives that
are necessary to calculate the above derived evolution equations.

5. Rate-type constitutive relation

As previously mentioned, the elasticity tensor & can be considered constant
either in the material or current configuration. This leads to the definition of
different materials. We are going to consider here that the elasticity tensor <&
is constant in the reference configuration C°. Therefore, operating on the stress
relation Eq. (3.30) with the Lie derivative and keeping the damage history con-
stant (i.e. the internal state variables ¢ constant), one can obtain for a general
thermo-elasto-viscoplastic and viscodamage flow processes the following relation:

(5.1) Ly(7i5) = Sijki (dkt —dyp — d%) - BT

where S is the spatial elasticity-damage tensor related to the fourth-order tensor
of elastic-damaged constants C' (Eq. (2.31)) by the (push-forward) transforma-
tion as follows:

(52) (\\yijlcl = EerstmEnCrsmn-

Similarly, Egs. (5.1) and (5.2) can be defined, respectively, using the Jaumann-
Zaremba stress rate tensor as follows:

(5.3) Ty = Qijkl (dkl —-d7 - d}g) — BT
where
(5.4) aijkl = Sijr + 0uTjk + 61Tk

Substitution of Eqgs. (4.48), (4.8) and (4.25) into Eq. (5.3), yields:

(55) Tioj = Q45K

1 Ty m of 1 L 1 dg .
dg — — { = — = - — — ﬂijT.
Ny Typ+R+Rg 0Tk Nd \l+ K + K9 0Tk
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6. Thermomechanical couplings

Substituting ¥ from Eq. (3.14) into Eq. (3.11) yields the following energy
balance equation:

(6.1) p(\i!+nT+1'7T) - %Tijdij —ph+4qi; =0

Substituting ¥ (Eq. (3.17)) into the above equality and taking into account the
results presented by Eqgs. (3.23) and (3.40) we obtain the following:

(6.2) p°nT = 7y (dff + dﬁf) —ILint + p°h + Jgii = 0

Operating on the entropy relation Eq. (3.23)2 with the Lie derivative and sub-
stituting the result into Eq. (6.2), we obtain:

| / _ | o5
B %ﬂidejT + po"'ezt + kVZT

where ¢, = T'0n/0T is the specific heat at constant pressure.

The rate type-equations (Egs. (5.5) and (6.3)) take into account effects of the
viscoplastic and viscodamage strain-induced anisotropy (i.e. kinematic harden-
ing), flow stress temperature and strain-rate sensitivity (i.e. isotropic hardening),
anisotropic damage (i.e. softening generated by damage defects nucleation and
growth mechanisms), thermomechanical couplings (i.e. thermal viscoplastic and
viscodamage softening), strong viscoplasticity and viscodamage coupling, and
heterogeneity in the material behavior (i.e. the non-local influence).

7. Conclusions

A thermodynamically consistent nonlocal gradient-enhanced framework is
presented here with strong viscoplasticity and anisotropic viscodamage coupling
for impact-related problems. Thermodynamically consistent constitutive equa-
tions are derived in order to introduce issues such as the statistical inhomogene-
ity in the evolution-related viscoplasticity and viscodamage variables associated
with the RVE, localization and size effects of deformation defects on the macro-
scopic response of heterogeneous materials, and temperature and strain-rate sen-
sitivity.

This model is general enough to describe the evolution of visco-inelasticity
in a material body accounting for physical discontinuities through the use of
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a nonlocal approach based on the gradient-dependent theory of viscoplasticity
and viscodamage. The interaction of the length-scales is a crucial factor in un-
derstanding and controlling the material defects such as mobile and immobile
dislocation densities, voids, and cracks influence on the macroscopic response.
The behavior of these defects is captured not only individually, but also the en-
hanced strong coupling between the two dissipative processes takes into account
the interaction between these defects and their ability to create spatio-temporal
patterns under different loading conditions. An equation of state is presented
in this work for high impact loading that accounts for compressibility effects
(change in density) in terms of the nominal volumetric damage strain.

Length-scale parameters are implicitly and explicitly introduced into the
present dynamical formulation. Implicit length-scale measure is introduced through
the use of the rate-dependent theory, while explicit length-scale measures are in-
troduced through the use of the gradient-dependent theory.

The computational issue of this theoretical formulation with proper expla-
nation of the proper boundary conditions associated with the gradients and
evaluation of respective material parameters will be presented in a forthcoming
work. Calibration for the different material properties in the proposed approach
may be difficult, or impossible for certain cases. However, the proposed frame-
work is generalized to that of viscoplasticity coupled with viscodamage, and one
needs more studies to be performed in order to effectively assess the potential
applications of this framework.

Appendix
The following relations are necessary for model implementation:
(A1) Y = 2UF MipigJiplqij

where UZ is given by:

0 S TR | ~1
(A.2) v = ETijgijlekl = 'é'Tijgijlekl’

and J is a sixth-order tensor and is given by:

8Mk_p}q 1
(A.3) Jkplgab = — Ty 7 3 (01g0kadpb + Okpdiadgs) ,
a
(A.4) of o Of OTmn - M of

= = e minj A=
A7z OFmp 074 o
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dg 09 0Ymn g 0g
. = = e MipigJ,
(#.5) Oty OYmn 075 € OYom hplg<kplgmm
(A6) 9f _ 8f Ormn _ Of (am)‘l
' ai/l - aTmn a}/‘z B 87'mn aTmn ’
where
aY;;
(A.7) 3—1 = Mkpqukplqijefln’
Tmn
. g
(A.8) (;;9_‘ - Yo By By ,
v \/Jz (Yi — Hi — HY)
=! X.. _ X9
a9 o 3 Ty Kyo Xy
aTij 2 ) — &g
302 (7} — X — X5
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