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INVERSE SOLUTIONS of the equations of motion of an incompressible second-grade
fluid are obtained by assuming certain forms of the stream function. Expressions for
streamlines, velocity components and pressure distributions are given in each case
and are compared with the known results.
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Notations
T Cauchy stress tensor,
—pI indeterminate spherical stress,
m viscosity,
ai elasticity,
a2 cross-viscosity,
A, A; Rivlin-Ericksen tensors,
\% velocity,

grad the gradient operator,
d/dt  material time derivative,

T the transpose,

P density,

X the body force,

v? the Laplacian operator,

\L ov/ot,

|Ai|  the usual norm of matrix A,

u,v,w the velocity components,
z,y,z the coordinate axis,
relative velocity of the disk,
modified pressure,

-} Poisson bracket,

vorticity vector,

€ ) o
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v kinematic viscosity,
A second-grade parameter,
v the stream function.

1. Introduction

RHEOLOGICAL PROPERTIES of materials are specified in general by their so called
constitutive equations. The simplest constitutive equation for a fluid is a New-
tonian one and the classical Navier-Stokes theory is based on this equation.
The mechanical behaviour of many real fluids, especially those of low molecular
weight, is well enough described by this theory. However, in many fields, such
as food industry, drilling operations and bio-engineering, the fluids, either syn-
thetic or natural, are mixtures of different stuffs such as water, particle, oils,
red cells and other long chain molecules; this combination imparts strong non-
Newtonian characteristics to the resulting liquids; the viscosity function varies
non-linearly with the shear rate; elasticity is felt through elongational effects and
time-dependent effects. In these cases, the fluids have been treated as viscoelastic
fluids. Because of the difficulty to suggest a single model which exhibits all prop-
erties of viscoelastic fluids, they cannot be described simply as Newtonian fluids.
For this reason, many models or constitutive equations have been proposed and
most of them are empirical or semi-empirical. One of the simplest types of mod-
els to account for the rheological effects of viscoelastic fluid is the second-grade
model. Further, the equations governing the flow of a second-grade fluids are one
order higher than the Navier—Stokes equations. A marked difference between the
case of the Navier-Stokes theory and that for fluids of second-grade is that, ig-
noring the non-linearity in the Navier—Stokes equation does not lower the order
of the equation; however, ignoring the higher order non-linearities in the case
of second-grade fluid reduces the order of the equation. The no-slip boundary
condition is insufficient for a second-grade fluid and therefore, one needs an ad-
ditional boundary condition. A critical review on the boundary condition, the
existence and uniqueness of the solution has been given by RAJAGOPAL [1].
The governing equations that describe the flow of a Newtonian fluid is the
Navier-Stokes equations. These equations are nonlinear partial differential equa-
tions and known exact solutions are few in number. Exact solutions are very im-
portant not only because they are solutions of some fundamental flows but also
because they serve as accuracy checks for experimental, numerical and asymp-
totic methods. Since the equations of motion of non-Newtonian fluids are more
complicated and nonlinear than the Navier—Stokes equations, so the inverse
methods described by NEMENYI [2] have become attractive. In these methods,
solutions are found by assuming certain physical or geometrical properties of the
flow field. KALONI and HuscHILT (3], SIDDIQUI and KALONI [4], SIDDIQUI (5],
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BENHARBIT and SIDDIQUI [6] and LABROPULU [7] used this method to study
the flow problems of a second-grade fluid.

In this paper we discuss the second-grade fluid motion between two parallel
disks/plates, moving towards each other or in opposite directions with a constant
disk velocity. For such a fluid equations are modeled for a grade of fluid two and
are solved by assuming certain form of the stream function. The graphs are
plotted explicitly in the functional form to see the behaviour of the flow field.

The paper is organized as follows. In Sec. 2, basic equations and formula-
tion of the problem is given. Section 3 consists of some special flows called the
Riabounchinsky type flows and finally, in Sec. 4, concluding remarks are given.
Stream function, velocity components and the pressure fields are derived in each
case. Moreover, the streamlines are plotted in each case to see the flow behaviour.

2. Governing equations

The constitutive equation of an incompressible fluid of second-grade is of the
form (8]

(2.1) T=—-pl+pA;+a1As + agAf,

where T is the Cauchy stress tensor, —plI denotes the indeterminate spherical
stress and u, a; and a9 are measurable material constants. They denote, re-
spectively, the viscosity, elasticity and cross-viscosity. These material constants
can be determined from viscometric flows for any real fluid. A; and As are
Rivlin-Ericksen tensors [8] and they denote, respectively, the rate of strain and
acceleration. A; and A are defined by

(2.2) A; = (gradV)+ (gradV)',
dA, T
(2.3) Ay, = = T A, (gradV) + (gradV) A;.

Here V is the velocity, grad the gradient operator, T the transpose, and d/dt
the material time derivative.
The basic equations governing the motion of an incompressible fluid are

(2.4) divvV = 0,
av
(25) pﬁ = px+divT,

where p is the density and x the body force.
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Inserting (2.1) in (2.5) and making use of (2.2) and (2.3) we obtain the
following vector equation

1 1
(2.6) grad §p|V|2 +p—o <V VIV + Z|A1|2)j| +p[Vi =V x (V x V)]

= uV2V + a; [VEV, + V3 (V x V) x V] + (a1 + o) divAT + px,

in which V2 is the Laplacian operator, V; = 9V /8t, and |A1| is the usual norm
of matrix Aj. If this model is required to be compatible with thermodynamics,
then the material constants must meet the restrictions [9, 10]

(2.7) w20, a; >0, a; +az =0.

On the other hand, experimental results of the tested fluids of second-grade
showed that a; < 0 and a; + as # 0 which contradicts the above conditions and
implies that such fluids are unstable. This controversy is discussed in detail in
[1]. However, in this paper we will discuss both cases, @; > 0 and o < 0.

We consider two parallel disks/plates in water and start moving them towards
each other or in opposite directions (considering the size of the disks much larger
than the distance between them). One can observe that when the disks are
approaching each other, the effort required is smaller than that when the disks
are moving apart. It can be discussed and explained by considering the different
nature of the fluid motion. When the disks are approaching each other it is of
potential type and when they are moving away then that is of rotational nature.

For such consideration, various authors [11,13, 14] assumed that the horizon-
tal components of the velocity u, v, do not depend on the vertical coordinate,
z, whereas the vertical velocity w depends linearly on the distance between the
disks. Thus the velocity field is of the following form [15]:

(28) V(:L',y,z, t) = [U((L‘,y, t)’ ’U(IL‘, yvt)’ - 2([)2] )

where ¢ is the relative velocity of the disk, considered here to be constant.
Inserting (2.8) in (2.4) and (2.6) and making use of the assumption (2.7) we
obtain, in the absence of body forces, the following equations:

Bu 311

(2.9) =+

= 2¢,

op du 2\ oo 9
(2.10) e +p [ﬁ vw] (u + a; Bt) Véu — aqvVw,

op ov _ 0\ o2 2
(2.11) By +p [Bt + uw] = (u + a18t> Ve + aquViw,
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where
ov Ou
(2.12b) p=p+ %p (u2 + 02 + 4¢2z2) - [uVQu + oV + % ]A%]] g
ou\ 2 ov\? ou  Ov\?
2.12 AZl=4 (= = 2 o gl S 00
(2.12¢) |AZ| 4(83:) +4(8y) + 16¢ +2<8y+6$>

REMARK 1. On setting a; = 0 in (2.10) and (2.11) we recover the equations
for Newtonian fluid [11].

Equations (2.9)—(2.11) are three partial differential equations for three un-
known functions u, v and p of the variables (z,y). Once the velocity field is
determined, the pressure field (2.12b) can be calculated by integrating (2.10)
and (2.11). Note that the equation for the vertical component w is identically
Z€ro.

Eliminating pressure in (2.10) and (2.11), by applying the integrability con-
dition 8?p/0xdy = 0?p/0ydz, we get the compatibility equation

Ow 0 0
(2.13) p [E + 2¢w + (ua + Ua_y) w]

_ 9 2 0 9 2 2
= <u+a18t)v w+ oy [(uam+vay)Vw+2¢V wl .

Let us consider the potential component from the horizontal components of
the velocity and introduce the flow function of the following form:

0 0
(2.14) u=got 2, w=gy- 2,

oy oz
where 9 (z,y) is the stream function. We see that the continuity equation (2.9)
is satisfied identically and (2.14) in (2.13) yields the following equation:

@15)  p [<2¢ + %) Vi + ¢ (m—(% + yb%) V2 — {y, v2¢}]

0
- (u H ala) Vi +a [2¢v4w ey (‘”a% P y%) gy, V“«/&] :
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in which
Vi=v2. V3 w=-V%
and . )
: or Oy oy Oz

is the Poisson bracket.

REMARK 2. The solution ¥ = 0 of (2.15), corresponds to liquid potential
motion, known as the motion near the stagnation point.

3. Solutions of some special types

We consider Riabounchinsky type flows in order to solve (2.15).

3.1. Solution of the type ¢(z,y) = yé&(z)

In order to obtain a class of solution of (2.15) we substitute

(3.1) P(z,y) = yé(z)

into (2.15) and get the following equation

¢(3§IV +$£V) '|
_ ({ISIV _ €£V)

where ¢ (z) is an arbitrary function of z and primes denote the derivative with
respect to z.

Integrating (3.2) once and equating the constant of integration equal to zero
we obtain

(32 p[p (3" +2t") - (€€ - e€")] =ue"" + [

(33)  u€"+p[(€% —€€") — ¢ (26" +2¢")]
(_§£IV + 25’61” _ 5”2)
— a1 =0
_¢ (2{/// + (II{IV)
For the solution of the equation (3.2) we write
(3.4) &(z) =0 (14 Xe’®) — ¢z

in which §, o and A are arbitrary real constants. Making use of (3.4) into (3.2)
we have

_ ko 49
(3.5) 6_/)-—01102 ;
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and thus from (3.1)

(3.5) P = [~ = 2y ae) - g

The velocity components (2.14) and the pressure field (2.12b) become

4

(3.7) u= [—’“’—2 - —"5] (14 Ae’®),

p— a0 o

4
(38) 9 = 2¢y = l:plll—;fo_2 - ;] y)\oe”.
— O]
2.2

(3.9)  p=po+puaio (1 - %) g% %p[ﬁQ +4¢% (y* + 2%) - 62A2e2”]

2,2
+ o [E)\a (@o — 2¢02y? — 4¢) 7 + a*\%o? (3 + %) 7% 8¢2] g

where pg is an arbitrary constant, known as the reference pressure.
The streamline flow for ¢ = (2, is given by the functional form

2

.10 =
(3.10) ¥ (14 Xeo%) e — z¢p’
where
PR O .
T 1-A0?2 o

in which v is the kinematic viscosity and A is the second-grade parameter.
Figure 1 shows the streamlines for ¢ =0 =X =1, u/p = 0.5, a;/p = 0.1,
P = 15, 20, 25, 30, 40.
3.2. Solutions of the type ¢ (z,y) = yé(z) + n(z)
Inserting
(3.11) ¥ (z,y) = yé(z) + n(z)
in (2.15) we obtain the following equation

2¢ (y€" +1") + ¢{y (€" + z€") + zn™}
(3.12) p [ =y + nIV)
~{y (£¢" - €€") + ('€" — en™)}

[ 26 (y&™V +0') + ¢{y (1Y + 2€Y) + 20"}
+«
1 —{y (€€ —6V) + (n€" —enV))
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X

po  —4¢

F1G. 1. Streamline fl ttern f ) = | ———
reamline flow pattern for 9 (z,y) [p—a102 3

] y (14 Xe%®) — ¢zy.

From above equation we have

141 " 7 m (5161‘/ - £€V)
and

140 " " " (nlglv - an)
(3.14) p[(n'€" —&n") = (20" +2n")] + 0"V — [—¢ - +xnv)} =0,

where £ (z) and 7 (z) are arbitrary functions of its arguments. Integrating (3.13)
and (3.14) and then taking the constants of integration equal to zero we have

(315)  p€" +p[(€7 - €€") — ¢ (26 +z£")]
(_£€IV + 2‘5,5,” _ 6//2)
-« =0,
___d) (26/// + x&IV)

(3.16) " +p[(n'€ —€n") - ¢ (20" +2")]
|i §/n/// _ 5771 v 2 n/ {/// :l
— 0¥ =0.
_n//£// - ¢ (277”, + 11:77”/)
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We note that (3.13) is similar to (3.2). Its solution is given in (3.4). Substituting
(3.4) into (3.13) we have

(317) @1+ xe")n" + (1 +3eag)n'” — pa (L + re”) 7"
— 2p¢n" + aro? (p-— a102) e’ =0,

where

Ho 42

G= ———py
p— 1o o

We note that it is not easy to obtain the general solution of (3.17). In order
to find its solution we consider the following special cases:

CAsE 1. When a; #0, ¢#0, o=1, A=0
then (3.17) reduces to
(3.18) ara@n’ + (u+ 301¢) 'Y — pan™ — 2p¢n" = 0.

We see that (3.1§_) is of fifth order and in order to solve it we reduce its order
by putting n” = A (z) such that (3.18) becomes

—n

(3.19) @A + (b +3a19) A" — paA — 2ppA = 0.

On substituting A(z) = ﬁ(z)e”, (3.19) takes the form

(320) «a (313’ +3P" + 13”’) € + (1 + 301 9) (213’ Jy 13”) e® — paP'e® = 0.
Finally, P (z) = R (z) converts (3.20) into a second order differential equation
321)  a@R"+ (p+3a1(¢+3))R —[(3an — p) T+ 2u + 6a1¢] R = 0.

The solution of above equation is

—_C — 2: 0 el Vo2 —
(3.22) R(z) = Aszexp (__c__2§__4¢1) T+ Agexp (——Ci%;g) z,

where A3 and A4 are arbitrary constants and

o 3oy (@+ @) +u

aa
d_3a1(6+2q5)+2u—p'a'
= a1a i
=t . 44

p—
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In order to find 7 (xz) we make backward substitutions and finally obtain the
form

A3
3.93 ) = ——_plldmi)e
32 (@)= Ay
Ay

2e(l+m2)z + Ase® + Agz + A7,
ma (1 + mg)

where A; (1 =5, 6, 7) are constants of integration and

_—c- Z—4d —c+Ve2—4d

mo = )

From (3.4), (3.11) and (3.13) we get

(3.24) iy =y —¢(4+2)| + Ase” + Agz + A7

p— Q1

A3 e(1+m1):v ! A4 (1+m2):c'

+ S L S R ORI 1
ma (1+my)? ma (1 + ma)

The velocity components and pressure field are

I

3.25 u=
(3.25) s

- 4¢)v

_ As (+mi)s
(3.26) v = 2¢y [ml Ot ml)e

Ay (Lpms)
4+—¢ 2)T 1 Ase® + Agl
mo (1 +m2) 2 ¥

1
B p=p- polat+ 40 (4 + ) - dusa

. A_geZ(1+m1)z + 24344 (24mi+ma)z ry A_42162(1+m2):1:
m? mimsa m3
2A3A5 (2 + 3m1 + m%)
(2 +m1)my (14 my)

(24+mi1)z

+ AZe?4¢? +

2A4A5 (2 o 3m2 + m%) e(

24+m2)zx )
(2 + m2) mo (1 + mg)
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The streamline for ¢ = (25 is given by the functional form

1
3.28 = —
(3.28) g=—— -
—25 + %e(l+m1)z + Ay 26(1+m2)z
x my (1 +my) ma (1 4+ mg) ,
+Ase® + Agx + A7
where 5 v
= -4 = — 4¢.
a=7-—x 4% @ = ¢

Streamline pattern is plotted in Fig. 2for¢ =a=A=1, u/p=0.5, ay/p = 0.1,
A3 = Ay = As = Ag = A7 =1, ¢ = 15, 20, 25, 30, 40.

|
PO I WS SRS ORS00 (S WA W 3

1 0.5 0 0.5 1
X

F1G. 2. Streamline flow pattern for ¥(z,y)
=y [_&_ -4+ z)] + Ase® + At + A7 + —Aieltmi)e 4 ___As __ o(14ma)z

p—ay my(1+my) m2(1+m2)

CASE 2. When a; #0, ¢=0, o=1, A#0
then (3.17) reduces to

(329) a1 (L+2e")n" +(p—a)n™ —p(1+ ") 0" + (p— 1) Ae™n' = 0.

To obtain the solution of (3.29) we try to reduce its order. For this purpose we
put " = A(z) which leaves (3.29) into a form which is one order less, that is

(330) o1 (14+A®) AT +(p—a1) A" — p(1+ Ae®) A" + (p — a1) Ae®A = 0.
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Now substituting A\(m) = P(z)e® in (3.30) and then P (z) = R(z) into the
resulting expression we get
(1 +Xe®)R" + (3 +4Xe®) R

(3.31) aq
+(3+6Xe®) R + (1+4Xe*) R

=p[R"+(2- ") R + (1 -2Xe") R].
The equation (3.31) is of order three. In order to reduce its order further, we
multiply it by e® and then integrate to obtain
(3.32) ay (14 2e®) R" + [(2a1 + p) + 2a1Xe”| R

+ 1 +p— (201 = p) Ae’] R = 0,

where we have taken the constant of integration equal to zero.
The solution of (3.32) for A = 0 is given by

(3.33) R(z) = Cse™® + Cgel(ertp)/aile,

The backward substitution gives the value of 1 (z)

2

(3.34) n(z) = —Csz + ﬁcﬁe-“’/m)’c + Cre® + Ch,

where C, (r = 5, 6, 7, 8) are arbitrary constants. The stream function, the
velocity components and the pressure field in this case are respectively given as

2
(3.35) ¢ (z,y) = y+ | =Csz + ——L—Cge~(P/®1)7 4 Cre® + Gy,

p—a p (a1 +p)
v
3.36 u = )
(3.36) i
— a1 —(p/or)T _ (1 @
(3.37) v=0Cs+ (o + ) Cge Cre”,

a3 + C2 + 2Cse(i-plo)z
(3.38) P=po—3p i (1- a])C7_a.e(l—p/a1)1:
(a1 —p)

2—=2 -
072621: + p C; e—2(p/a1)z _ 07%6(1—;)/&1)33

a7 1
+ a1 + (aﬁ = 1) 0766(1_”/0‘1)1 ,
1
rol =3
+C7&e(1—ﬂ/al)$ ~ ap e(1=p/a1)z

L ap—p o (ay — p) i
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where
= aq o
a = s az = )
ap+p p—a
and the streamline for 1 = (23 is given by the functional form
(3 39) Y= ——L —f23 — Csx + AF 066_(1/A)z + Cre* + Cg
' €2 1+A ’
where
€9 = =
R PR
Streamlines are sketched in Fig. 3 for ¢ = A =0, o =1, u/p = 0.5
al/p = 0.1, C5 = Cﬁ = C7 = Cg = 1, 'l/) = 15, 20, 25, 30, 40.
S I = he
60 | / v ]
/ L y=20
/ - y=25 .
40 + / I R LA — S
'( / ~ Q(/: 30 . B
| il T [ —
” il / y=40
/]
N I -
i
|
!//// 1
-20 s bl/ l . — _ i "
-1 -0.5 0 0.5 1 1.5
X
Fic. 3. Streamline flow pattern for
2
_ ¥k _ ay —(p/ay)z z
w(I’y)_p—a1y+[ Csz+p(a1+p)cse + Cre” + Cs| .

4. Concluding remarks

In this paper, the analytical solutions of nonlinear equations governing the
flow for a second-grade fluid are obtained by assuming different forms of the
stream function (already used by various authors in different situations). The
expressions for velocity profile, streamline and pressure distribution are con-
structed in each case. Our result indicate that velocity, stream function and
pressure are strongly dependent upon the material parameter oy of the second-
grade fluid. It is shown through graphs that increase in second-grade parameter
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(a1 = 0.15) leads to decrease in velocity and decrease in second-grade parameter
(ay = —0.5) leads to increase in velocity (see Figs. 4 and 5). Also, the present
analysis is more general and several results of various authors (as already men-
tioned in the text) can be recovered in the limiting cases.

80 + w=15 \’“\\ ]
2 ST R e "
=25 TN
40 | — ¥=30 T —\\\ \
> . S ] ‘\\\\\ \
20 =40 N "\\‘\ |
\ \
! i \\\\ ‘\\\\ \.. ]
O t \\ \\ '.\ \\ ;‘.
‘ ‘\\\\\ \ \\
-20 l ‘-,,\ \‘\\\\ q
] 0.5 0 0.5 1 1.5

Fi1G. 4. Streamline flow pattern for negative second-grade parameter for

2
¥ (z,y) = —F—y+ [—-Csl‘ +—3 _Cee /27 4 Cre® + Cs .
p— p (a1 +p)
B e ==y
/ = 15
50 / R N A
wt/ 7 - R R -

P =25
> 30 ¢ e
¥-30 )

ol 1/

=], —0;5“““ 0 ey A0.5A B 1 — 1.5;

FiG. 5. Streamline flow pattern for positive second-grade parameter for

2
P (:t, y) = e y+ —Csz + —ﬂ"—"CGC—(p/al)m + C7er + Cs] .
p—o p (a1 + p)
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