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THE PURPOSE of this paper is to present analytical expressions of the effective elastic,
piezoelectric and dielectric constants of reinforced piezoelectric composite materials
with unidirectional fibers periodically distributed in a square matrix, as obtained by
means of the “double asymptotic homogenization” method. The cross-section of the
fibers is square. Each periodic cell of the medium is a binary piezoelectric compos-
ite wherein both phases are homogeneous piezoelectric materials with transversely
isotropic properties. Comparison between the derived theoretical predictions of char-
acteristic parameters and the existing experimental results shows a rather good agree-
ment. The results obtained in the present paper were verified by means of the uni-
versal relations of Schulgasser. Numerical computation of the effective properties can
be realized without difficulties.
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1. Introduction

The piezocomposite materials have been used for hydrophone applications
and transducers for medical imaging. The determination of the overall properties
of piezocomposite, according to the physical and geometric characteristics of
their components, is very important for applications.

Different techniques have been reported to estimate the effective electro-
elastic properties of piezoelectric laminate composites. For example, in [1] the
effective coefficients of a bi-laminate medium of 4mm symmetry using the hy-
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potheses of equivalent homogeneity were obtained. In [2], the effective behavior
of bi-laminate media of hexagonal symmetry using the theory of uniform fields
in heterogeneous media by means of appropriate boundary conditions was deter-
mined. An effective medium model of layered composites has been investigated
starting from a physical reasoning given in [3]. In the case of very fine composite
structures, quasistatic and iso-strain (constant strain) approximations were used
to derive the effective properties of composites (see, [4, 5]) which include the
effective elasticity, permittivity, piezoelectricity, and density; some physical pa-
rameters useful for different applications were derived. Basing on the asymptotic
homogenization method, analytical formulae for the overall properties of layered
piezoelectric composites can be found in [6, 7).

Unidirectional fibrous composite with square cross-sections of fibers has been
investigated only by means of numerical solution of the local problems. For
instance, the finite element method was applied in [8] for determine the global
properties of a piezocomposite. The Ritz method was used in [6] to investigate a
rectangular cross-section in a square matrix for thermopiezoelectric composites.

In the present paper, using “double homogenization”, (e.g., the homogeniza-
tion is applied two times in different directions, according to the geometric con-
figuration of the composite), analytical expressions of the effective coefficients
are obtained, in a composite with square fibers distributed periodically into
square cells. Somehow, the present work is related to a recent work by ANDRIA-
NoV et al. [9, 10], where an asymptotic approach and Padé approximants are
proposed for evaluating effective elastic and heat conductivity properties respec-
tively, of two-component periodic composites with fibrous inclusions. In order
to apply the so-called “double homogenization”, the problem is divided into two
homogenization stages: 1) the composite structure is homogenized, that is, the ef-
fective coefficients for a unidirectional structure in the direction z, are obtained;
2) afterwards, the effective coefficients are calculated for the composite 2-2 in
the other direction z;. In this case, due to the symmetry of the composite, the
double homogenization can be easily realized. The main theoretical aspects used
in this work can be found in [7]. These results for square fibers are compared
with the expressions obtained in [7] for the laminate composites 2-2, and with
some theoretical and experimental results reported in the literature, [11]. The
universal relations given in [12] are satisfied for the set of coefficients calculated
in the present work.

2. Theoretical procedure

Piezoelectric materials are characterized by the following different material
coefficients: C (elastic), e (piezoelectric) and e (dielectric), which are the fourth,
third and second order tensors, respectively. When these materials are hetero-
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geneous and periodic, the material coefficients are X-periodic functions. Here
X denotes the periodic cell. Applying the method of asymptotic homogeniza-
tion, the material coefficients are transformed into new physical coefficients C
(elastic), € (piezoelectric) and € (dielectric), which represent the homogeneous
properties or effective coefficients. To obtain these coefficients it is necessary to
solve a set of local problems, which are represented by a system of partial dif-
ferential equations. In case of circular transverse section of fibers, an analytical
solution for this system is obtained making use of the potential methods of the
complex variable and properties of the Weierstrass elliptic functions, [13-17]. On
the other hand, analytical closed forms of the effective coefficients of piezoelectric
composites with square transverse sections of the fibers using asymptotic homog-
enization have not been reported yet. Therefore the purpose of the present work
is to present an alternative form for the computation of analytical expressions
for such composites.

Let us suppose that we have a composite material with unidirectional square
fibers periodically distributed, where each periodic cell is a binary homogeneous
piezoelectric medium with square symmetry in welded contact at the interface.
Both the matrix and the fibers are assumed to be composed of homogeneous
piezoelectric materials with 6 mm hexagonal symmetry.

2.1. Effective coefficients for the first homogenization in the direction z;

In [7], the effective coefficients were obtained for piezoelectric laminated com-
posites. Let us suppose that we have a laminate material formed by a piezoelec-
tric phase (phase 1) of elastic, piezoelectric, dielectric and density constants

CS ), ez(;), ES), p) respectively; and a phase of piezoelectric polymer (phase 2)

of elastic, piezoelectric, dielectric and density parameters denoted by: C’z(j2 ), g),
e@ o2,
1) ?

The effective coefficients for a piezoelectric laminate in the direction xo are
exactly expressed as follows:
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Effective dielectric constants
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The expressions Cy}, e}, €

)

;; and p* represent the effective coefficients in the

Structure I (Fig. 1) and we denote by I'p the volume fraction of piezoelectric

material in this structure.

2.2. Effective coefficients for the second homogenization in the direction z;

Now, the laminated composite is made of Phase 1 whose properties are the

averaged coefficients in the direction z3 calculated previously, namely: C};,

z]>

€5 p* and a phase of piezoelectric polymer (Phase 2) of elastic, plezoelectnc

dielectric and density properties denoted by:
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Structure II

1-3 Piezocomposite

Fi1G. 1. Schematic diagram of a 1-3 piezoelectric composite, illustrating the periodic cell and
two homogenization stages.

The effective coefficients of the composite in the direction x; are exactly given
in the following form:
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where
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The expressions _C—ij, €;j, €i; and p denote the effective coefficients in the
composite Structure II. These expressions represent the effective coefficients of
the composite for square reinforcement fibers. The volume fraction of fibers is
expressed according to I'r = (I'L)?.

3. Applications to transducers. Results

One of the important applications of the piezoelectric composite materials
appears in transducers used for medical imaging applications. The desired prop-
erties are a high electromechanical coupling coefficient K; (0.6 to 0.7) and a
low acoustic impedance Z (< 7.5 MRayls). Now, the case in which two differ-
ent homogeneous phases are involved in the composite is studied. The effective
properties of the composite can now be computed from Egs. (2.5)-(2.8). A set
of important physical parameters for pulse-echo transducer applications can be
calculated. For instance, let us mention the electromechanical piezoelectric cou-
pling coefficients K; and K, the specific acoustic impedance Z, the longitudinal
wave speed V; and the hydrostatic charge coefficient dy,. They are given by the
following formulae (see, [18]):

(3.1) Ry =yl — ==
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The superscripts D and T at a given symbol in (3.1) and (3.2) mean that the
relevant quantity is measured at constant electric displacement D or at constant
stress T'; Eij is the piezoelectric coefficient of the composite, §ij are components
of the effective compliance tensor S, 7 is the Poisson‘s ratio, A is determinant
of the 5,~j matrix and A;; is the minor obtained by excluding the i-th row
and j-th column. Some properties of the composite are presented as functions
of the volume fraction of piezoelectric phase and also their implications for the
design of pulse-echo ultrasonic transducers are shown. Material parameters of the
piezoelectric and polymer phases used in the calculations are shown in Table 1.

A composite of PZT — 5A rods embedded in a passive polymer Araldite
is now considered. The material values appearing in Table 1 were taken
from (7, 11]. In Fig. 2, the electromechanical piezoelectric coupling coefficients
K, and fp are plotted as functions of the piezoelectric volume fraction. The
dotted line corresponds to the laminated composite 2-2 and the solid line to the
fibrous composite 1-3. We observe that the value of K; for the fibrous composite
is greater than that for the laminated composite. Also we can appreciate that
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for the same values of piezoelectric volume fraction, the 1-3 composite has a
smaller value of K. Therefore, the composite 1-3 has better physical properties
than the composite 2-2 for applications in transducers used for medical imaging

applications.

Table 1. Material parameters

PZT 5A | ARALDITE | TLZ-5 |VDF/TrFE copolymer

CE (10'°N/m?)| 12.10 0.546 12.6 0.85

CE (10"°N/m?) | 7.54 0.294 7.95 0.36

CE (10'°N/m?) | 7.52 0.294 8.41 0.36

C¥% (10'°N/m?) | 11.10 0.546 10.9 0.99

e33 (C/m?) 15.8 - 24.8 —-0.29

e31 (C/m?) —5.4 - —6.5 0.008
€33/€0 916 7.0 1813 6.0
p(103Kg/m3) 7.75 1.17 7.898 1.88

€0 = 8.85 107!2 C?/Nm? (permittivity of free space)

0.7

0.2 — 1-3 piezocomposite 402
e 22 PIGZOCOMPOSite
0.1 401
0.0 L 1 n L A 1 0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. Plot of electromechanical coupling coefficients K and K, versus volume fraction of
piezoelectric. The laminate composite 2-2 (continuous line) and the fibrous composite 1-3
(dotted line).
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The analytical expressions that were derived using the “double homogeniza-
tion” method can equally be used for a passive or piezoelectric matrix. The sec-
ond example is for a 1-3 composite of TLZ — 5 piezoelectric rods embedded in a
piezoelectric copolymer VDR/TrFE. The properties are displayed in Table 1.
In Fig. 3(a—f), the parameters: short-circuit stiffness constant (E-constant) Cs,

open-circuit stiffness constant (D-constant) Uﬁ and dielectric constant €13 /eo,
specific acoustic impedance Z, electromechanical coupling constant K, longitu-
dinal wave speed V are plotted against volume fraction of the fibers, respectively.
The continuous curve is the result of computation using the model proposed by
the authors. The dotted curve for the approzimate theory and the bullet points of
the experimental results were reported in [11]. The agreement is seen to be quite
good. The theoretical values show essentially the same trend as the experimental
data [11] as well as the approzimate theory used in [11] which was introduced
by Smith and Auld (see, [4-5]). In this sense, six simplifying approximations to
extract the essential physics are introduced en [4] and [5]. In connection with
that, the main assumptions can be summarized as follows. First, the authors as-
sume that the strain and electric field are independent of z and y throughout the
individual phases. This is clearly not true in detail, as finite element calculations
reveal. The expectation is that this approximation captures the physical behavior
in an average sense. Second, they add the usual simplifications made in analyzing
the thickness mode oscillations in a large, thin, electrode plate (symmetry in the
z — y plane, Ey = E5 = 0, etc). The third approximation embodies the picture
that the ceramic and polymer move together in a uniform thickness oscillation.
Thus the vertical strains (in the z direction) are the same in both phases. This
is clearly not always true as the laser probe measurements of the displacements
of oscillating composite plates reveal. Fourth, they describe the electric fields in
two phases. Since the faces of the composite plates are equi-potential, they take
the electrofields to be the same in both phases. Fifth approximation concerns
the lateral interaction between the phases. They assume that the lateral stresses
are equal in both phases and that the lateral strain in ceramics is compensated
by a complementary strain in the polymer, so that the composite as a whole is
laterally clamped. Sixth approximation deals with the dependent coordinates.
Since the lateral periodicity is sufficiently fine, the authors obtain the effective
total stress and electric displacement by averaging over the contributions of the
constituent phases (rule of phases for both z3-components of strains and electric
displacement).

Note that the results of the “simple” physical analysis of Auld-Smith [4-5]
agree remarkably well with the “rational” homogenization method, while the
Auld-Smith results concern a thin plate with square inclusions whereas the
“double homogenization” technique is applied to a body which is infinite in di-
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rection z3. This may correspond to different hypotheses concerning the states of
stress and strains in the body as in the case in a plate and the cross-section of
an infinite cylinder. This may explain the difference observed the last value dj.
This hydrostatic charge coefficient dj, is plotted as a function of the fiber volume
fraction in Fig. 4. The solid line for the values are obtained using the“double
asymptotic homogenization” method. The dotted line for the calculated values
and the experimental bullet points were taken from [11]. This proves that the
agreement between the experimental data and the “double homogenization” pre-
diction is very good.
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FI1G. 4. The hydrostatic charge constant dj, versus fiber volume fraction.
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