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Variable viscosity and thermal conductivity effects
on heat transfer by natural convection from a cone
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THE PROBLEM OF STEADY, laminar heat transfer by natural convection flow over
a vertical cone and a wedge embedded in a uniform porous medium with variable
viscosity and thermal conductivity is investigated. The transformed governing equa-
tions are solved numerically by using a finite difference scheme. The obtained results
are compared with earlier papers on special cases of the problem and are found to
be in excellent agreement. The influence of porous medium inertia effect, viscosity
variation parameter ¢ and thermal conductivity variation parameter v on the fluid
velocity and temperature is discussed. Including the porous medium inertia effect
or viscosity variation parameter in the mathematical model is predicted to reduce
the local Nusselt number. Furthermore, the local Nusselt number increases in the
presence of thermal conductivity variation parameter.

Notations
¢,  specific heat,
f dimensionless stream function,
F  inertia coefficient of the porous medium,
g gravitational acceleration,
h local heat transfer coefficient,
K  permeamility of the porous media,
K thermal conductivity of the porous medium,
ks  thermal conductivity of the ambient fluid,
n geometric factor,

Nu, local Nusselt number,

local Raleigh number, geosmBrK(Ty = Tm)z,

Hf Qe
Raleigh number based on the characteristic length,

gcosNPBrK(Tw — Teo)L
by Cte :

temperature,

wall temperature,

tangential velocity,

normal velocity,

e NN
L
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Vw wall mass flux coefficient,
T distance along the cone or the wedge,
y distance normal to the cone or the wedge.

Greek symbols

effective thermal diffusivity of the porous medium, EL
PCp

Q
@

thermal expansion coefficient,

viscosity variation parameter,

thermal conductivity variation parameter,
half angle of the cone or the wedge,
pesudo-similarity variable,

dimensionless porous medium inertia coefficient,
dynamic viscosity,

dynamic viscosity of the ambient fluid,
dimensionless temperature,

density,

dimensionless distance,

stream function.

CMD BT T IR

Subscripts

condition at the wall,
oo  condition at infinity.

g

1. Introduction

FLoOw AND HEAT transfer from different geometries embedded in porous media
have many engineering and geophysical applications such as geothermal reser-
voirs, drying of porous solids, thermal insulation, enhanced oil recovery, packed-
bed catalytic reactors, cooling of nuclear reactors, and underground energy trans-
port. Most early studies on porous media have used the Darcy law, which is a
linear empirical relationship between the Darcian velocity and the pressure drop
across the porous medium and is limited to slow flows. However, for high velocity
flow situations, the Darcy law is inapplicable because it does not account for the
resulting inertia effects of the porous medium. In this situation, the relationship
between the velocity and the pressure drop is quadratic. The high flow situation
is established when the Reynolds number based on the pore size is greater than
unity. VAFAI and TIEN [1] have discussed the importance of inertia effects for
flows in porous media.

CHENG and MINKOWYCZ [2] have used the Darcy law in their study on free
convection about a vertical impermeable flat plate in porous medium. CHENG
et al. [3] have analyzed the problem of natural convection of a Darcian flow about
a cone using the local nonsimilarity method. CHAMKHA [4] has obtained similar-
ity solutions for the problem of non-Darcy free convection from a nonisothermal
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cone and a wedge in a porous medium. Y1H [5] has reported the effect of uniform
lateral mass flux on free convection about a vertical cone embedded in a fluid-
saturated porous medium. HOSSAIN et al. [6] have studied non-Darcy natural
convection heat and mass transfer along a vertical permeable cylinder embedded
in a porous medium. YIH [7] studied coupled heat and mass transfer in mixed
convection about a wedge embedded in saturated porous medium. CHAMKHA (8]
has studied simultaneous heat and mass transfer by natural convection about a
vertical wedge and a cone embedded in a porous medium.

In all of the papers mentioned above the viscosity and thermal conductiv-
ity are assumed as constant. However, the problem of mixed convection flow
past a wedge for temperature-dependent viscosity was investigated by HOSSAIN
et al. [9]. HASSANIEN [10] analyzed the problem of mixed convection from im-
permeable vertical wedge in a fluid-saturated porous medium incorporating the
variation of permeability and thermal conductivity. HOSSAIN and MUNIR [11]
have investigated the natural convection flow of a viscous incompressible fluid
from an isothermal truncated cone. HOSSAIN et al. [12] have studied the effect
of radiation on free convection flow of fluid with variable viscosity from a porous
vertical plate.

The aim of the present work is to study the variable viscosity and thermal
conductivity effects on heat transfer by natural convection about an isother-
mal vertical wedge and cone embedded in a fluid-saturated porous medium. A
nonsimilarity transformation is employed to transform the governing differen-
tial equations to a form whereby they produce their own initial conditions. The
transformed equations are solved numerically. The obtained results for special
cases of the problem were compared with the previously published work and
were found to be in excellent agreement.

2. Problem definition

Consider steady, laminar, heat transfer by natural convection flow over a sta-
tionary permeable cone embedded in a fluid-saturated porous medium. Figure 1
shows the schematic diagram of the problem. The origin of the coordinate sys-
tem is placed at the vertex of the cone, where the z-direction is taken along the
cone and the y-direction is normal to the cone. The fluid is assumed to be New-
tonian and has constant properties except the density in the buoyancy term of
the balance of momentum equation, the viscosity and thermal conductivity. The
fluid and the porous medium are assumed to be in local thermal equilibrium.
The surface of the cone is kept at constant wall temperature. The temperature
at the cone surface is always greater than its uniform ambient values existing far
from the cone surface.
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Fic. 1. Flow model and physical coordinate system.

The governing equations that take into account the inertia effects of the
porous medium within the boundary layer and Boussinseq approximations may
be written as follows:

or"u  Or™w

(2.1) pe + 39 =,
du d paBr K cosy, 0T
2.2 1+ 2—u u— 2 i el L2
22) [ ]Oy Hay (M) 7 Ay’
oT oT 1 9 oT

The boundary conditions are defined as follows:
(2.4) v =V T=T, a8 Y=0
(2.5) u = 0, T=Ty at y— o0,
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where u and v are velocities in the z and y directions, p is the density, ¢, is
the specific heat, g is the gravitational acceleration, K is the permeability of
the porous medium, Br is the thermal expansion coefficient of the fluid, T is
the temperature, F is the inertia coefficient of the porous medium, the value V,,
(constant) is the surface mass flux coefficient. The value of n can be either n = 0
for a flow over a vertical wedge or n = 1 for a flow over a vertical cone. When
n = 0 and v = 0, the problem will reduce to the case of a vertical flat plate.
The above equations were derived under the assumption that the boundary-layer
thickness is sufficiently thin compared to the local radius of the cone. Thus, the
local radius at a point in the boundary layer can be replaced by the radius of
the cone (z = rsiny).

Following [11], the variation of dynamic viscosity and thermal conductivity
with the temperature are written in the form:

1 [du
. = 1+ — (22 o
(26) p 1 +ﬂf (dT)f(T Tw)|
[ 1 /4 ]
K
(2.7) K = K 1+—(—) (T-T)|,
I " ks \aT ), s

where the subscript f denotes the quantities outside the boundary layers. Intro-
ducing the following dimensionless variables:

Va
(2.8) £ = 02——\/RT
g
(2.10) f&n) = W,
(21) o = T

and substituting Eqgs. (2.8)—(2.11) into Egs. (2.1)-(2.3) we obtain the following
transformed governing equations:

I n_ 1 gt /
(2.12) [1+'H—€ef]f -—H—eo[—ffo +0],

it LY oo _€(,00 Of
(2.13)  [1+90]0 +(n+§)f0+79’2—§<f6—€—06—§),
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with the boundary conditions transformed to:

£
(214) f 2n +2’ & s

(2.15) f = o, =0 at 17— oo,

2FKac.Rap,

where the primes denote partial derivatives with respect to n, I' = Bl
f

1 [/d
is dimensionless porous medium inertia coefficient, e = — (—M> (Ty — Two) is

wr \dT /;

1 /d

the viscosity variation parameter, vy = — (d—;> (Tw — To) is the thermal con-
ductivity variation parameter, and a, is the equivalent thermal diffusivity. The
kind of the applicable fluid for the present form of viscosity and thermal conduc-
tivity is discussed in more detail is given in [11, 14]. The velocity components

are given by:

(2.16) T
T

(2.17) v = _ae__szaz (2n+1)f+§%£+nf'.

The local Nusselt number Nug is given by:

Nu, 15 o /
\/m;‘ (1+7)9 (5,0)

We now obtain approximate solutions of the equations (2.12)-(2.13) based
on the local similarity and non-similarity methods [13]. For the first level of
truncation the ¢ derivatives in equation (2.13) can be neglected. Thus, the gov-
erning equations for the first level of the truncation are equation (2.12) and the
following equation:

(2.18)

1
(2.19) 1+ +6)0" + (n + 5) 0 +~46%=0
subject to the boundary conditions

(2.20) f= -

(2.21) o 0=0 at n — 00.
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At the second level of truncation, we introduce IT = %‘g—, = g—z and restore all

of neglected terms in the first level of truncation; thus, we have Eq. (2.12) and
the following equation:

(2.22) [1+~0)6" + (n + %) 10 + 40" = g (f'e—6'm)

subject to the boundary conditions

(2.23) f = , 6=1 at n=0,
(2.24) ff =0, 0=0 at 1N — 00.

The introduction of the two new dependent variables IT and @ in the problem
requires two equations with appropriate boundary conditions. This can be ob-

tained by differentiating (2.12) and (2.13) with respect to ¢ and neglecting the
32 2

terms 8_52 and 8_52 which leads to
r el’
2 1 nm—-—_¢f"
(225) [ +1+60] (1+ €0)? !
1 1 5l 1o/ ’ €d 1o/ /
= —e(f'd' +1I'6 S| - —— |-
1+€9[ (f e+ )+ ] (1+60)2[ €f0+0]’

(2.26) (1+~60)9" + 90" + <n + %—) (I10' + f&') + 270'®

= g (1® - ') + % (fle—-0'1),
with boundary conditions
(2.27) o = - =0 at =0
B - 2n i) 27 =i T’ R ¢
(2.28) o = o, &=0 at 11— oo.

The resulting equations with the boundary conditions have been solved nu-
merically using a finite difference method.
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3. Results and discussion

Numerical results are obtained for ¢ = 0,5, v = 0,2.5, I' = 0,0.5, and
n = 0,1. In order to verify the accuracy of our present method, we have compared
our results with those of YIH [5] and CHAMKHA et al. [7]. The present results
compared with the above researches are in good agreement, as shown in Table 1.
Table 2 gives the parametric conditions for each of the curves shown in Figs. 2-5.

Table 1. Values for —6' (&,0) for the cases of wedge n =0 and cone n =1 with
('=0,€e=0, y=0).

n=0 n=1
¢ Y1 [5] | CHAMKHA et al. [7] | Present results | YiH [5] | CHAMKHA et al.[7] | Present results
-10|4.9999 4.9830 5.0008 5.0995 5.0857 5.1006
-813.9999 3.9892 4.0015 4.1244 4.1156 . 4.1256
-612.9999 2.9936 3.0036 3.1655 3.1603 3.1661
-412.0015 1.9976 2.0127 2.2434 2.2409 2.2453
-2(1.0725 1.0722 1.0810 1.4139 1.4132 1.4153
0]0.4437 0.4439 0.4445 0.7686 0.7686 0.7687
210.1416 0.1423 0.1355 0.3537 0.3541 0.3530
410.0333 0.0340 0.0229 0.1342 0.1349 0.1309
610.0055 0.0058 0.0011 0.0400 0.0411 0.03559
810.0006 0.0007 0.000009 |0.0092 0.0096 0.0064
10 0.0001 0.0001 0.0 0.0016 0.0017 0.0006

Table 2. Parametric values for curves in the figures.

Curve r € vy
I 0 0 0
II 0.5 0 0
II1 0 0 2.5
v 0.5 0 2.5
A% 0 5 2.5
VI 0.5 5 2.5

Figures 2 and 3 represent the behavior of the stream function and the fluid
velocity for the situations shown in Table 2 for both a cone and a wedge at
positive lateral wall mass flux at £ = 10. A resistance against the flow exists if the
porous medium inertia effect is considered. As a result, the flow stream function
and velocities near the wall decrease as shown by curves II and IV compared
with curves I and III for a cone and a wedge. Also, the effect of viscosity and
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thermal conductivity variation parameters on both the stream function and the
velocity is observed. It is found that the flow stream functions and velocities near
the wall decrease as the viscosity variation parameter € or thermal conductivity

variation parameter 7y increase.
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Figure 4 illustrates the temperature profiles for a cone and a wedge at £ = 10.
The resistive force discussed in the previous paragraph due to the presence of
inertia effect tends to increase the temperature of the flow for a wedge and a cone.

Fi1G. 3. Velocity distribution for various values of ¢, v and n.
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It is also seen that the temperature increases as viscosity variation parameter.
Also, as thermal conductivity variation parameter increases, the temperature
profiles decrease near the wall.
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F1G. 5. Nusselt number distribution for various values of ¢, v and n.

Figure 5 illustrates the distribution of the local Nusselt number for a wedge
and a cone. The porous medium inertia effect tends to decrease the local Nusselt
number due to its effect on the wall temperature slopes. As viscosity variation
parameter increases, the Nusselt number decreases. On the contrary, the Nusselt
number increases as thermal conductivity variation parameter «y increases.
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4.

Conclusions

The problem of steady, laminar heat transfer by natural convection boundary

layer flow of variable viscosity and thermal conductivity over an isothermal ver-

tic

al permeable cone or wedge with constant lateral wall mass flux embedded in

a uniform porous medium was considered. The governing equations for uniform
wall temperature were developed and transformed by using appropriate nonsim-
ilarity transformations. The transformed equations were solved numerically by
using the Keller-Box method. The numerical results are presented. It is found
that the Nusselt number decreased when the porous medium inertia or thermal
conductivity variation parameter effects are considered. Furthermore, the local
Nusselt number increases in the presence of the viscosity variation parameter.
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