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Non-Newtonian flows over an oscillating plate
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THE FLOW OF second order fluid due to an oscillating infinite plate in the presence of
a transverse magnetic field for two forms of time-dependent suction are considered.
The analytical solutions of the governing boundary value problems are obtained. It
is found that an external magnetic field and normal stress coefficient on the flow has
opposite effects.

1. Introduction

IN THE PAST few years there has been a considerable interest in the oscillating
flows due to possible applications in engineering. The study of such flows was
first initiated by LIGHTHILL [1] who studied the effects of free-stream oscillations
on the boundary layer flow of a viscous, incompressible fluid past an infinite
plate. Thereafter STUART (2] extended it to study a two-dimensional flow past
an infinite, porous plate with constant suction when the free-stream oscillates
in time about a constant mean. The boundary layer suction is a very efficient
method for the prevention of separation. The effects of different arrangements
and configurations of the suction holes and slots on the undesired phenomenon
of separation have been studied extensively by various scholars and have been
compiled by LACHMANN |[3].

Due to the development of practical boundary layer control systems, interest
in problems concerning suction have been renewed. This problem has also been
useful in the study of unsteady flow. Watson [4] generalized the Stuart’s problem
to the case of an arbitrary free-stream velocity. Later, KALONI [5] and MEs-
SIHA [6] extended Stuart’s problem to the case of constant and variable suction
respectively. Further, SOUNDALGEKAR and PURI [7] discussed the fluctuating
flow of an elastico-viscous fluid past an infinite plate with variable suction.

Using the viscous fluid model, the flow of a fluid near a porous oscillating
infinite plane has been investigated in SCHLICHTING [8]. RAJAGOPAL [9, 10]
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discussed the flows of second and third order fluids due to a rigid plate oscillating
in its own plane. Later, FOOTE et al. [11] examined the flow of an oscillating
porous plate for an elastico-viscous fluid. PURI [12] studied an oscillating rotating
flow of an elastico-viscous fluid. Morerecently, HAYAT et al.[13-15] analyzed
some periodic flows of a second order fluid. TURBATU et al. [16] generalized the
viscous fluid flow problem of an oscillating flat plate in two directions. They
first considered the oscillating flat plate with superimposed blowing or suction.
The second generalization is concerned with an increasing or decreasing velocity
amplitude of the oscillating flat plate.

On the other hand in view of the increasing technical applications using the
magnetohydrodynamic effect, it is desirable to extend many of the available hy-
drodynamic solutions to include the effects of magnetic fields for those cases
when the fluid is electrically conducting. Flow past a flat plate has been stud-
ied by Rossow [17]. He has considered transverse magnetic field on the flow.
SURYAPRAKASRAO [18, 19] investigated the effects of transverse magnetic field
on the fluctuating free-stream velocity when the plate is subjected to a constant
suction velocity. Boundary layer flows of fluids of small electrical conductivity
are important particularly in the field of aeronautical engineering. Further, in
technological fields boundary layer phenomenon in non-Newtonian fluids is also
being studied extensively. Therefore, it is of interest to analyze the effects of mag-
netic field on the flow of second order, incompressible and electrically conducting
fluid over an infinite oscillating plate with variable suction.

The object of Sec. 2 is to investigate the effect of the variable suction velocity
of the form v/ (1+ € Ae™'t) as assumed by MESSIHA [6]. It is of interest to
study how second order results get modified due to the conducting fluid over an
oscillating porous plate. In Sec. 3 we assumed the suction velocity of the form
vo[1+d(e*t +e~™?)] as in KELLY [20]. Detailed study is made in order to extend
the Kelly’s results [20] of viscous fluid past an infinite plate with time dependent
suction to the second order and electrically conducting fluid over an oscillating
porous plate. Thus, in this section the combined effects of second order fluid and
a magnetic field are considered.

2. Problem formulation

Consider the two dimensional flow of an incompressible and electrically con-
ducting second order fluid over a porous oscillating plate of infinite extent, which
occupies the plane y' = 0. The geometry of the problem is shown in the Fig. 1.
Let u' and v’ be the velocity components parallel and normal to the plate respec-
tively. We look for a solution for the velocities which is independent of z’, the
distance parallel to the plate. Then the continuity equation requires that v’ is at
most a function of time and therefore retains its value at the plate throughout
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the flow. Hence, following MESSIHA [6] and SOUNDALGEKAR |[7] we consider v’
for the first boundary value problem as

(2.1) v = —vl(1+ € Ae¥'?),

where v}, is a non-zero constant mean suction velocity, w' is the angular frequency,
€ is small and A is real positive constant such as € A <« 1. By neglecting higher
powers of € approximate solutions are obtained for the velocity field in the
boundary layer. The negative sign in Eq. (2.1) shows that the suction velocity
normal to the wall is directed towards the wall. Further, the conducting fluid
is permeated by an imposed uniform magnetic field B = [0, B,, 0] which acts
in the positive y'-direction normal to the sheet. In the low magnetic Reynolds
number approximation (SHERCLIFF [22]), in which the induced magnetic field
can be ignored, the magnetic body force j x B becomes o(V x B) x B when
imposed and induced electric fields are negligible and only the magnetic field B
contributes to the current j =o(V x B). Here, o is the electrical conductivity
of the fluid, which has density p’. The constitutive equation of a homogeneous
incompressible fluid of second order is

T = —pl + pA; + a1 Ay + agAl,

where T is the Cauchy stress tensor, A; and A, are the well known first two
Rivlin-Ericken tensors, u is the dynamic viscosity, a; and a9 are normal stress
moduli and p is the pressure. In view of T the momentum equation in absence
of modified pressure gradient gives

(22) o' o ou' V62u' + ot o3’ o o3’ 3 0B/
: ot oy’ - 3y/2 6y'28t’ 3y13 o ’
where
_E s
p’ o

In above equation «; is the material constant. For fluids to have motions which
are compatible with thermodynamics in the sense of Clausius-Duhem inequality
and the condition that the Helmholtz free energy be a minimum when the fluid
is at rest, the following conditions must be satisfied [23]

II'ZO, 0120’ a1+a2:0'
The relevant boundary conditions for the problem are

(2.3) u' (0,¢) = UL e e,

(2.4) Limit ' (y',¢') =0.

y' =00
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A Conducting second
order fluid
(y'>0)

Plane of oscillations .
suction

W(O,t)=U,e e

Fic. 1. Physical model under consideration.

It should be noted that for &y = B, = 0 we are left with the equations
governing the flow of a non-conducting Newtonian fluid over an oscillating porous
plate.

2.1. Solution of the first boundary value problem
Following [7] we take a solution of the form

(2.5) o (y/’ tl) i Ué [fl (yl) Le eiw’t’f2 (y/)] )

Now using Egs. (2.1) and (2.5) in Egs. (2.2) to (2.4), comparing harmonic and
non-harmonic terms and neglecting coefficients of €2, we get

2%} e e R =T,
n Y

d3f2 g w
(2.7) a—an—3—(1+ziwa)d—7ﬂ-a;+(T+N>f2— %—O[Adn:;,
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where
y'vl v 4vw’
n=rs" = ) W= ey
v 4y vy
(2'9) ] #.09 2
U a*v/ ovB;
u=—, a= , = —7.
U! v? P2

During the past three decades there have been several studies of boundary
layer flows of non-Newtonian fluids. These investigations have been for non-
Newtonian fluids of the differential type [24]. In the case of fluids of differential
type, the equations of motion are an order higher than the Navier-Stokes equa-
tions and thus the adherence boundary condition is insufficient to determine the
solution completely (see [25-27] for a detailed discussion of the relevant issues).
The same is also true for the approximate boundary layer approximations of
motion. In the absence of a clear means of obtaining additional boundary con-
ditions, BEARD and WALTERS [28], in their study of an incompressible fluid
of elastico-viscous suggested a method for overcoming this difficulty. They sug-
gested a perturbation approach in which the velocity and the pressure field were
expanded in a series in terms of small parameter. This parameter in question
multiplied the highest order spatial derivatives in their equation. Though this
approximation reduces the order of the equation, it treats a singular perturbation
problem as a regular perturbation problem.

In 1991, GARG and RAJAGOPAL suggested that it would be preferable to over-
come the difficulty associated with the paucity of boundary conditions by aug-
menting them on the basis of physically reasonable assumptions. They thought
that it is possible to do this in the case of flows which take place in unbounded
domains by using the fact that either the solution is bounded or the solution has
certain smoothness at infinity. To demonstrate this, GARG and RAJAGOPAL [29]
studied the stagnation flow of a fluid of second order by augmenting the bound-
ary conditions. Their result agreed well with the result of RAJESWARI and
RATHNA [30] who studied the problem based on the perturbation approach for
a small value of the perturbation parameter.

Before proceeding with the solution, we note that Eqgs. (2.6) and (2.7) are the
third-order differential equations when « # 0 and for the classical viscous case
(a = 0), we encounter differential equations of order two. Hence the presence of
the material constant of the fluid increases the order of the governing equations
from two to three. It would, therefore, seem that an additional boundary con-
dition must be imposed in order to get a unique solution. The difficulty, in the
present case, in however, removed by seeking a solution of the form [28]

fir=fou+afii+0(e?)),

(2.10)
fa = foo + afiz + 0 (a?),
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which is valid for small values of a. Putting Egs. (2.10) in Egs. (2.6), (2.7) and
boundary conditions (2.8) and equating the coefficients of o and then solving
the resulting boundary value problems, the velocity field is given by

(2.11) u = (1+ aLn) € e~ hmrtwt,

where

1 -
o, S +\/1+24N+zw,

hz(h+iui)
)

9.12 Y ST, e iy
(23] PSS i

Knowing the velocity field, we now calculate the shearing stress which in terms
of 7 is given by

Dl ou al d%u 0%y
2.1 - Yo oo = - iwt
(2.13) Pov = gt 7 8n+4[6n6t 4(1+ € Ae )62]
From Egs. (2.11) and (2.13) we get
(2.14) (Pay)yo =€ € [aL h— —ah ahz]
Now from Egs. (2.11) and (2.14) we have
(2.15) u (y, t) = (M, coswt — M;sinwt),
(2.16) Pzy = |B|cos (wt + B),
where
(2.17) M, =€ e " [cos hin+ an (L, cos hin+ L;sin h;n)],
(2.18) M;= — e hm [sin hin — an (L;cos hin — L, sin h;n)],

B = B, +1B;, [ = arctan i,
B,

1
B" =€ [aLr SR hr + Zwahi —-Q (hf i h?)] ’
(2.19)

B; =€ [aL,' —h; — %wahr - 2ah,h,~] ;
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171 2 1/2
(2.20)
hy =~ 4 2|1 V(1 +4N)? + w2 + 144N .
rT 3732 w :
L __1_+£+a wa_Na_w2a
(2.21) rTg 9 2 4r 2r 167’
' L'_w+b Nwa _]ﬁ_}_w_"’b
YT 4727 4r 2r = 167’

(2.22) r=a®+b = /(1 +4N)? + w?,

(14+4N)> + w2+ 144N

az\ 3 ,

. \ V(A +4N)2 4 w2 —1-4N
= . .

3. Second boundary value problem

(2.23)

In this section geometry of the problem is the same as that in the previous
section except the form of the variable suction velocity. Thus, following the
notation of [20], the boundary layer equation with no pressure gradient is given
by

Fu it | _—iwt)] O

(3.1) at+v°[1+6(e +e ) 9
0% [ &u wt . —iwtryOu]  oBu
_Vc')_g/2+a [W-FUO{I-F(S((‘Z +e )}a—y3 . 5 .

where v = pu/p, o* = ai/p, vo < 0 is the suction at the wall and the cou-
pling parameter is the non-dimensional amplitude, say, §. Note that in writing
Eq. (3.1) we have used the variable suction velocity equal to v,[1+4 (et +e~%?)]
from KELLY [20]. We further note that for a* = 0 = B, Eq. (3.1) reduces to
KELLY [20]. For the problem under consideration the boundary conditions are

(3.2) u(0, t) = 2U,coswt,
(3.3) u(oo, t) = 0.
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3.1. Solution of the second boundary value problem

We shall assume a solution of the form

(34) u (y’ t) = up (y) + Z Up (y) einwt o Z an (y) e—-inwt’
n=1 n=1

where U, (y) is the complex conjugate of u, (y). Substituting Eq. (3.4) in (3.1)

to (3.3) and then introducing

(3.5) n= %’ up = Usp,

into the resulting equations and the boundary conditions we arrive at the fol-

lowing boundary value problems

o e (2.

[vo| dn " Jvo| \ dn " dn

) - Nld)()a

Phy  ve ddgo | v, [Ph | P4
= ——— o— —F o— ——— _+_ RGP | V. 8
dn? = lve| dp®  |wel \ dn®  dn?
(3.7) $0(0) =0, ¢ (o0) =0,
. Vo d¢n J'Uo (d¢n—1 d¢n+1)
3.8 Mty B o o+
el ¢ lvo| dn  |vo| \ dn dn
_ d2¢n a(s'Uo d3¢n—1
~ dn? [vo| \ dn?
bl @ T N s
|’U°| dT]a d7]2 1 0’ — b
3.9) $1(0) =1, ¢1 (o0) =0,
3.10) ¢n (0) =0, ¢n (00) =0, n>2,
where
‘* 2 2
oty e e S R L S T
v |vo ] p vl

Equations similar to (3.8) to (3.10) result for q~51 and ;n
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For § < 1, the equations are weakly coupled and an expansion is performed
in terms of powers of §. Hence, we define

(3.12)

bn (1) = bnj () 6.
7=0

Making use of (3.11) in (3.6) to (3.10) and then comparing the powers of § we

get

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

« dT]s

Booo  dpoo Vo déoo
«a = +
dn? dn?  |vo| dn

$00 (0) =0, $oo () =0,

=+ N1¢00 = 0’

d3 a2 d
P10 _ (1 4 iad) df;;‘) - ——20 + (iA + Ny)io = 0,

¢10 (0) = 17 ¢10 (OO) = Oa

dBgor > door
- - N
(0] d'I73 d’l72 d7] + N1

_ d¢10+d¢1o _a d3¢10+d3 $10 ’
dn dn dn3 dn?

¢o1 (0) = 0, ¢o1 (00) =0,

31 W d*on don .
87 d7]3 == (1 + 'LOt/\) d’l72 == W + (Z)\ + N1)¢11
d3oo a0 deoo | deoo
__a( i )+(dn - dn)’
¢11(0) =0, $11 (00) =0,
d3 d? d '
JE00n _ ddn _ dbo Nydos

dp®  dn?>  dp

_ [ 9¢u +d¢11 By d*¢11 +d3 ¢11 ,
dn ~ dn dn®  dp?

$o2 (0) =0, P02 (00) = 0.
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Similar to (2.10) we can write

do0 = 00,1 + adpo2 + O (?

k)

)

Cy)
$10 = d10,1 + adioz2 + O (?),

(3.18) $o1 = do1,1 + adoi2 + O (?)
¢11 = b11,1 + g2 + O (e?),
bo2 = do2,1 + adoz2 + O (o?).

Substituting (3.18) in (3.13) to (3.16), equating the coefficients of a and then
solving the resulting systems we arrive at

(3.19) bno=0, n=0 and n>2
(3.20) ¢10 = (1 + aSn) e,

(3:21) ¢11 =0,

(3.22) $02 = 0,

2 2 .
(3.23) $o1 = — (Xgi +adp + Xangi) e+ Qr cos gin + Q;singn ,

where
2
Ao = Vi [(2+ gr) A2+ X (3gi — Si) — gr + (Srgr — Sigi)]
} 1+ 1+ 4N; + 41
g=9rt19; = 2 ’
2 .
) g% (g + 1)
G Spf iy = ,
N Ry ATy

21
Qr = 53¢797[ — aX? 2+ gr) + Ags — aA{(3g; — )

-1 (S:9i + Sigr)} + agr — a(Srgr — Sigi) ],
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2
Qi = -)‘—2e‘9"' [ — a)g; — Agr + aM{3gr — S, + 1

=1 (Srgr — Sigi)} — agi + a (Srgi + Sigr) ]
Hence from (3.4), (3.5), (3.12) and (3.19) to (3.23); the velocity field in the

boundary layer is given by

2 2 -
324  u=Uo[{(=56i — ado — angi)e™"

+ Qr cos gin + Q;singin}d + e~ 9" cos (gin — wt)
+ e Ian{S, cos (gin — wt) + S;isin (gin — wt)}].
The expression for the shearing stress in term of 7 is given by

A\ 0%¢

_ ad’ iwt —iwt @
(325) ny—on !’Uol [%+a [;m—vo{l+5(e +e )} 8"72 .

Using (3.5) and (3.24) in (3.25) and neglecting O (62) terms we get
(3.26) (ny),,_,o = pUs |vo| [| E| cos (wt + ) — 24],

where

E.
E? = E? + E2, v = arctan E—z,
1

Ey = —gr +a(Sr+Agi —9r),
Ey=gi—a(Si+Agr+gi+]),

N =

o g,-=—;-[%{\/(1+4N1)2+16/\2—1—4N1}] :

1 171 2
gr=§+§[§{\/(1+4N1) +16/\2+1+4N1}] )

DN =

1 N; a1 NiMy N A2
I W W I B o W, D al,

2 2 2 ™ 27‘1 T1
b N1 Nib \2b
g il L g e
2 T1 2’!‘1 ™
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ro=al+bd= \/(1 +4N1)? + 1622,

V(L +4N)? +16)2 + 1+ 4N,

a) = )
)

: V(144N +16)2 — 1 — 4N,

1.5 .
)

4. Discussions

In order to investigate the effects of the material parameter on the flow we
have plotted u against n in Figs. 2 to 7.

e In Fig. 2 we note that the boundary layer thickness decreases with increase
in frequency. It is further noted form Fig. 3 that velocity is negative for
higher values of w when N = 100.

e Figure 4 indicates the variation of the velocity profile for various values of
a. It is observed that as « increases, the value of the velocity decreases.
That is, increasing the normal stress coefficient has the effect of increas-
ing the boundary layer thickness. Further, comparison of Figs. 4 and 5
show that layer thickness decreases drastically with increase of N. It ap-
pears that the electromagnetic force makes the layer thicknesses thinner.
It is likely that the magnetic field provides some mechanism to control
the growth of the boundary layer thickness. Moreover, Fig. 5 also illus-
trates that u is negative for wt = 7/2, € = 0.5, w = 10, N = 100,
a = 0.025, 0.05, 0.075, 0.1.

e In Figs. 6 and 7, the effect of material parameter is shown for second
problem when N = 0 and N # 0 respectively. It is also clear from
Fig. 6 that u decreases with increase of « first and then increases. With
N # 0 in Fig. 7, the velocity is less in comparison to the velocity in
Fig. 6.

e In Figs. 8 and 9 the fluctuating parts are shown for comparison purposes
when N = 5, €= 0.5 and w = 100. Figure 9 is particularly interesting
because it illustrates the effects of a at large w on M;. In the case of fluids
with material parameter, at w = 100, there is a sudden rise and fall of M;
near the wall. Also, from Figs. 8 and 9 one can conclude that an increase
in a leads to much increase in M; than M,.
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5. Concluding remarks

Exact solutions for the Stokes problem on a porous plate for an second order

fluid are obtained in the presence of a magnetic field. From Egs. (2.15), (2.17),
(2.18), (3.24) and (3.27), it is found that the penetration depth decreases with
fundamental frequency. This is not surprising; if we slowly oscillate a plate in
a sticky fluid, we expect to drag large masses of fluid along with the plate;
on the other hand, if we move the plate rapidly in a fluid of low viscosity, we
expect the fluid essentially to ignore the plate, except in a thin boundary layer.
Further, we note from these solutions that an increase of the magnetic field
reduces the velocity within the boundary layer and also to reduce the boundary
layer thickness.

References

1.

10.

11.

12.

13.

M. J. LIGHTHILL, The response of laminar skin friction and heat transfer to fluctuations
in the stream velocity, Proc. R. Soc. Lond., A224, 1, 1954.

J. T. STUART, A solution of the Navier-Stokes and energy equations illustrating the re-
sponse of skin friction and temperature of an infinite plate thermometer to fluctuations in
the stream velocity, Proc. R. Soc. Lond., A231, 116, 1955.

G. V. LACHMANN, Boundary layer and flow contro, its principles and applications, vols.
I and II, Pergamon Press, Oxford 1961.

J. WATSON, A solution of the Navier-Stokes equation illustrating the response of the lam-
inar boundary layer to a given change in the ezternal stream velocity, Quart. J. Mech.
Appl. Math., 11, 302, 1958.

P. N. KALONI, Fluctuating flow of an elastico-viscous fluid past a porous flat plate, Physics
of Fluids., 10, 1344, 1966.

S. A.S. MESSIHA, Laminar boundary layers in oscillating flow along an infinite flat plate
with variable suction, Proc. Camb. Phil. Soc., 62, 329, 1966.

V.M. SOUNDALGEKAR, P. PURI, On fluctuating flow of an elastico-viscous fluid past an
infinite plate with variable suction, J. Fluid Mech., 35, 3, 561, 1969.

. H. SCHLICHTING, Grenzschicht theorie, 8-th edition, Braun, Karlsruhe 1982.

. K.R. RAJAGOPAL, A note on unsteady unidirectional flows of a non-Newtonian fluid, Int.

J. Non-Linear Mech., 17, 369, 1982.

K.R. RajacoraL, T.Y. Na, On Stokes problem for a non- Newtonian fluid, Acta Mech.,
48, 233, 1983.

J.R. FooTE, P. Puri, P. K. KYTHE, Some ezact solutions of the Stokes problem for an
elastico-viscous fluid, Acta Mech., 68, 233, 1987.

P. PuRl, Rotating flow of an elastico-viscous fluid on an oscillating plate, ZAMM., 54,
743, 1974.

T. HavaT, S. ASGHAR, A. M. SipDIQUI, Periodic unsteady flows of a non-Newtonian
fluid, Acta Mech., 131, 169, 1998.



344

T. Havat, Q. ABBAs, M. KHAN, A.M. SiDDIQUI

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

T. HAvAT, S. ASGHAR, A.M. SippIQuUl, On the moment of a plane disk in a non-
Newtonian fluid, Acta Mech., 136, 125, 1999.

T. HAYAT, S. ASGHAR, A. M. SipDIQUI, Some non steady flows of non-Newtonian fluid,
Int. J. Engng. Sci., 38, 337, 2000.

S. TurBaTu, K. BUHLER, J. ZIEREP, New solutions of the II-Stokes problem for an
oscillating flat plate, Acta Mech., 129, 25, 1998.

V.J. Rossow, NASA Tech. Note 3971, 1957.

U. SURYAPRAKASARAO, The reponse of laminar skin friction and heat transfer to fluctu-
ations in the stream velocity in the presence of a transverse magnetic field, I. Z. Angew.
Math. Mech., 43, 133, 1962.

IBID, IT Z. Angew. Math. Mech., 43, 127, 1963.

R.E. KELLY The flow of a viscous fluid past a wall of infinite extent with time-dependent
suction, Quart. J. Mech. Appl. Math., 18, 13, 287, 1965.

K. WALTERS, in IUTAM. International Symposium on second order effects in elasticity,
Plasticity and fluid dynamic, M. REINER and D. ABIR, [Eds.], Pergamon Press., Inc., 507,
New York 1964.

J. A. SHERCLIFF, A tezt book of magnetohydrodynamics, Pergamon Press, 1965.

J. E. DunN, R. L. Fospick, Thermodynamics stability and boundedness of fluids of com-
plezity 2 and fluids of second grade, Arch. Rat. Mech. Anal., 3, 191, 1974.

C. TruesDELL, W. NoLL, The nonlinear field theories of mechanics (Handbuch der
Physik, I1I1/3), Berlin Heidelberg New York Springer, 1965.

K.R. RAJAGOPAL, On boundary conditions for fluids of differential type, [in:] A. SE-
QUEIRA [Ed.], Navier-Stokes equations and related nonlinear problems, Plenum Press, 273,
New York 1995.

K.R. RajacopraL, P. N. KALONI, Some remarks on boundary conditions for differential
type, [in:] G. A. C. GRAHAM, S. K. MALIK, [Eds.], Continum mechanics and its applica-
tions, 936, Heimsphere, New York 1989.

K. R. RAajaGoPAL, A.S. GUPTA, An ezact solution for the flow of non-Newtonian fluid
past an infinite plate, Meccanica, 19, 158, 1984.

W.D. BEArD, K. WALTERS, Elastico-viscous boundary-layer flows, Proc. Camb. Phil.
Soc., 60, 667, 1964.

V. K. GARG, K. R. RAJAGOPAL, Flow of non-Newtonian fluid past a wedge, Acta Mech.,
88, 113, 1991.

G.K. RAJEsWARI, S.L. RATHNA, Flow of a particular class of non-Newtonian visco-
elastic and visco-elastic fluids near a stagnation point, ZAMP., 13, 43, 1962.

Received August 26, 2002; revised version April 10, 2003.



