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THE TWO-DIMENSIONAL flow problem of a third order incompressible fluid past an
infinite porous plate is discussed when the suction velocity normal to the plate, as well
as the the external flow velocity, varies periodically with time. The governing partial
differential equation is of third order and nonlinear. Analytic solution is obtained
using the series method. Expressions for the velocity and the skin friction have been
obtained in a dimensionless form. The results of viscous and second order fluids can
be recovered as special cases of this problem. Finally, several graphs are plotted and
discussed.

1. Introduction

THE OSCILLATING flows play an important role in many engineering applica-
tions. The study of such flows was first initiated by LIGHTHILL [1] who studied
the effects of free stream oscillations on the boundary layer flows of viscous,
incompressible fluid past an infinite plate. Thereafter STUART [2] extended it
to study a two-dimensional flow past an infinite, porous plate with constant
suction when the free stream oscillates in time about a constant mean. After
the appearance of LIGHTHILL'S [1] classic paper on the response of skin friction
in laminar flow due to fluctuations in the free stream, considerable interest has
been developed in the subject of boundary layers which have a regular fluctuating
flow superimposed on the mean boundary flow. A large number of papers deal-
ing with this subject have appeared, cf. for example WATSON [3], MESSIHA [4],
KELLY [5] and LAL [6]. The idea has been also extended to magnetohydrody-
namic flows, SURYAPRAKASARO |[7], and the elastico-viscous flows, KALONI (8],
SOUNDALGEKAR and PURI [9] and PURl [10]. The boundary layer suction is a
very effective method for prevention of the separation. The effects of different
arrangements and configurations of the suction holes and slits on the undesired
phenomenon of separation have been studied extensively by various scholars, and
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have been compiled by LACHMAN [11]. In technological fields, the boundary layer
phenomenon in non-Newtonian fluids has recently become a fascinating problem,
under a wide range of geometrical, dynamical and rheological conditions.

Some experiments by BARNES et al. [12] confirmed that an increase in the
flow rate is possible and that the phenomenon appears to be governed by the
shear-dependent viscosity. In fact, in [13] WALTERS and TOWNSEND show that
the mean flow rate is unaffected by second-order viscoelasticity. Although the
second-order model is able to predict the normal stress differences which are
characteristic of non-Newtonian liquids, it is not shear thinning or thickening,
the shear viscosity is constant. Third-order model exhibits shear-dependent vis-
cosity, for a simple-shearing motion (u = (yy,0,0)), where 7 is the rate of
strain. The relation between the shearing stress and the rate of strain is given
by Szy = 1 (1 F Ts272) v, where T} is the shear relaxation time (its reciprocal is
the characteristic rate of strain at which the apparent shear viscosity noticeably
decreases or increases), and p is the lower limiting viscosity. Experiments made
by BRUCE [14] has shown that there are materials that exhibit: (1) strong normal
stresses but are weakly shear thinning or thickening (class 1 a,b); (2) roughly
equal normal and shear effects (class 2 a,b); (3) weak normal stresses, but they
are strongly shear thinning or thickening (class 3 a, b).

Since many years there has been much interest in the effect of a variable
suction velocity on the flow field. Regarding the elasto-viscous (Walters liquid B')
model, SOUNDALGEKAR and PURI [9] obtained the perturbation solution for the
fluctuating flow of the elasto-viscous fluids past an infinite plate with variable
suction.

As far as the authors are aware, no attempt has been made to examine the
effect of the variable suction velocity on the flow fields of third-order fluids past
an infinite plate. In the present work such an attempt has been considered.
Literature survey revealed no previous attempts on studying this problem, even
in the constant suction velocity case. The external flow velocity in the present

paper is taken as Ué 1+ et ] and the suction velocity is assumed to be of the

’ . ,t, ’o. . .
form vy [1+ € Ae™ ], where v is a non-zero constant mean suction velocity,

€ is small and A is a positive constant such that € A < 1. By neglecting higher
powers of €, approximate solutions are obtained for the velocity field in the
boundary layer.

2. The constitutive model

The incompressible, homogeneous fluid of third order is a simple fluid of the
differential type whose Cauchy stress tensor has the representation [15]

(2.1) T = —pl+pA,+a1As+asA2+81As+6; (A1 As+ArA )40 (trAd) Ay,
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where —pl is the indeterminate part of the stress due to the constraint of in-
compressibility, u, a1, asz, 81,82 and (3 are material constants, and the tensors
Ap, n =1,2,3 are defined through [16]

A = (gradV) + (gradV)7 ,

2.2
22 A, = (% + V.V) An_1+ An_y (gradV) + (gradV)T Ay, n > 1,
where V is the velocity and ¢ is the time.

JOSEPH [17] proved that the rest state of fluids of grade n, n # 1, any is un-
stable in the spectral sense of linearized theory when the ratio of the coefficients
of A, and A, _; in the constitutive equation is negative. Hence, if a; < 0 then
the above model exhibits unacceptable stability characteristics. On the other
hand, Eq. (2.1) must be consistent with thermodynamics principles. The ther-
modynamic of fluid model by Eq. (2.1) has been the object of a detailed study
by Fospick and RAJAGOPAL [18]. They have shown that the Eq. (2.1) to be
compatible with thermodynamics, and the free energy to be minimum when the
fluid is at rest, the material constants should satisfy the relations

p 20, ay >0, ﬁ1262:0a

B3 >0, —V24pPs < a1 + az < \/24uB3.

It is easy to see that the ratio of the coefficients of A and Az in the form of
T, i.e. the “ratio” ﬂ, does not satisfy neither the hypothesis of JOSEPH [17] nor
the hypothesis of RENARDY [19], who assumed the coefficients a,—1 (n > 5 and
here 3) of A, is non-zero for instability. We also point out that the retarded mo-
tion approximation does not lead the models. Thus subject was clearly explained
by DUNN and RAJAGOPAL [20]. Therefore, the model of Eq. (2.1) reduces to:

(2.3)

(2.4) T = —pl + pA; + 1A + a2A? + s (trA?) A,

The equation of motion, in the absence of body forces, is

(2.5) p’%t‘—,’ = divT,

, . e . A d .
where p is the density of the fluid in the dimensional form and —; is the ma-

terial derivative. The fluid is incompressible, thus only isochoric (i.e. volume
preserving) flows are possible, i.e. the flow satisfies the constraints

(2.6) divV = 0.
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We consider a two-dimensional incompressible fluid flow along an infinite
plane porous wall. The flow is independent of the distance parallel to the wall
and the suction velocity normal to the wall is directed towards it and varies
periodically with time about a non-zero constant mean value v(/). The z'-axis
is taken along the wall, y’-axis normal to the wall. Dash denotes dimensional
quantities. Thus for the problem under consideration, we seek a velocity field of
the form

2.7) V= [u (y’,t’) ,v’,o] ,

where v < 0 is the suction velocity.
From Egs. (2.6) and (2.7)

(2.8) — =0.

It is evident from Eq. (2.8) that v' is a function of time only. Hence we
consider v" in the form [4]

(2.9) v = —vy(1+ € Ae®t).

The negative sign in Eq. (2.9) indicates that the suction velocity normal
to the wall is directed towards the wall. In view of Egs. (2.4), (2.7) and (2.9),
Eq. (2.5) takes the form

o' N 10P du
2.10 — — (1 AewWt ) — _—
( ) atl UO( + € € )ay/ p/ 33}' +v ayi?

2
3/ ) N B3| 685 [Ou ) 9%
T — 1 E A w t I -~ 7 —/7
5y 0 v (1+ € A4 8y'3:| T\ | o

'3

ag
DG

p

!

ov 1 6P
2.11 I
(2L1) at p Oy
where
v=1FE,
p
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/

P
From Egs. (2.9) and (2.11), it is clear that %—, is small in the boundary

layer and can be neglected [9]. Hence the pressure is taken to be constant along
any normal and is given by its value outside the boundary layer. If U’ (¢ ) is the
stream velocity parallel to the wall just outside the boundary layer, then

!

_1oP_dU’
p oz dt
and the Eq. (2.10) takes the form

!

Ou ! w't

a_u’ v’ 8%

I_—I+ a 12
Oy dt V8y2

! ! 1 2 !

o | Au / 1\ Bu 683 [ Ou 0%u
7 e v Penep-aiianan 1 E A 't 7 7 ~ _I'

+ p [8y'23t' Vo ( + e ) ay 3 :l + P ay ay 2

The boundary conditions are
(2.13) u =0 at y =0 and u = U’(t/) as yl — 0.

We introduce dimensionless quantities defined by

' 21 /

V) vy t 4vw
y= _y__Q’ t= 0_7 W= —7,
v 4u Vg
(2.14) )
(6] ’U, u' U, 6 2
= - 20 ) u:—l', U=_/7 ElzliiUoszQ)
pv Uy Uy pv

where U(') is the reference velocity and w' is the frequency. Equation (2.12) takes
the dimensionless form

l?ﬂ _ wt
(2.15) 15 ~ (I € 4

ou_ 14U o
dy 4dt = 0y?
1 d%u .\ O%u ou\? 8%u
A O (| A wt) 7% bt cdte
[ PEREY s )6y3]+€1 (3@/) y*
subject to the conditions
(2.16) u=0 at y=0 and u—U as y— oo,

where

(2.17) U =14 € e,
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3. Perturbation solution

We note that the resulting equation of motion (2.15) is of the third order.
Moreover, this equation is nonlinear as compared to the cases of the second order,
elastic-viscous [9] and Newtonian flow [4] equations. As a result, it seems to be
impossible to obtain the general solution in a closed form for arbitrary values of
all parameters appearing in the nonlinear equation. Even in the case of constant
suction and elastic-viscous fluid [8], all analytic solutions obtained so far are
based on the assumptions that one or more of the parameters are zero or small.
Therefore, we seek the solution of the problem as a power series expansion in
the small parameters €;. Accordingly, we assumed that the velocity component
u can be expanded in powers of €; as follows:

(3.1) u(y, €1) = uo(y)+ €1 wi(y) + ...

Substituting Eq. (3.1) into Eq. (2.15) and the boundary conditions (2.16), and
then collecting terms of the same powers of €}, one obtains the following systems
of partial differential equations along with appropriate boundary conditions.

System of order zero

(3.2) %% -1+ € Aei“’t)%% = %’- € et + %2—:;’
+a iaa::‘;t — (1+ € Ae™) %‘3 ,
(3.3) =0 at y=0 and wyg — 1+ €€’ as y— oo.
System of order one
(3.4) i% —(l+e Ae"“’t)%—z;l = %‘f}
+o %% — (1+ € Ae™t) %3;‘] 4 (%—?)2 %2—:;’,

(3.5) uy=0 at y=0 and u; — 0 as y— oo.
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Zeroth-order solution

We note that the zeroth order mathematical problem is same as that of SOUNDAL-
GEKAR and PURI [9] except that (—k) is replaced by « in Eq. (3.2). Thus, in
order to avoid repetition, the details of calculations are omitted and the solution
is directly given by

1-Se™™ — (1 - 8)e ¥ 4 Lye ™

(3.6) wo(y,t) =1—eY—aye ¥+ € ™t (1-S)e )
N\ -a-yev
where
(3.7) b [_\/1+2W+1 ] ,
(r2)(-2)
3.8 L= ,
(3:8) 14w
(3.9) B fo 22,
w
First-order solution
Now, let
(3.10) ui(y,t) = fi(y)+ € € fa(y).

Substituting Eqgs. (3.6) and (3.10) in Eq. (3.4) and boundary conditions (3.5),
comparing nonharmonic and harmonic terms and neglecting coefficients of €2,
we get

(3.12) @_ 1+iw_a d2f2_@ _f
’ Y3 1 ) a2 i
3
..A——‘%-‘l-Bl [ df;+Bg]
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23:18) at y=0 and y— 00 :fi=f=0,
where
(3.14) By =e% [f;- -3(1 - S)] + %e_y + (h2S — 2hS)e~ W2y,
A
(3.15) By=¢7Y [ (9 +2y) +2_E]
A A 94
—e [Z(9+y2—2y)—E(y—l)——2——1+3y+S—2Sy

— e~ "2 [9p(1 — S) +4hL — 2L — h? — K*Ly] .

There have been several investigations devoted to study the existence and
uniqueness of the solutions to the equations governing the flows of fluids of
differential type [21-23]. These equations are usually higher order partial differ-
ential equations than the Navier-Stokes equations. Hence the issue of whether
the “no-slip” boundary condition is sufficient to have a well-posed problem is
very important. This question can not be answered by any generality for fluids
of differential type of complexity n, for arbitrary n. However, if attention is con-
fined to fluids of grade 2 or grade 3, one can provide some definite answers, while
some partial answers are also possible for fluids of grade n [24].

Before proceeding with the solution of Egs. (3.11) and (3.12), it would be
interesting to remark here that although in the classical viscous case (a = 0) we
encounter differential equations of order two [2,4], the presence of the material
parameter of the second order fluid increases the order to three. It would therefore
seem that the additional boundary condition must be imposed in order to get
a unique solution. In order to overcome such a difficulty, several authors have
studied an acceptable additional condition. FOsDICK and BERSTEIN [25] have
studied the flow in the annular region between two porous rotating cylinders.
They assumed one of the constants in the solutions to be zero. However, there
is no apparent reason for such a choice. FRATER [26] has studied the asymptotic
suction flow. Since only two of the coefficients in the solution can be found by
the no-slip condition, he imposes an extra condition that the solution tends to
the Newtonian value as the coefficient of the higher derivative in the equation
approaches zero. However, the perturbation expansion may give correct results
under certain conditions [27]. Thus following (8, 28], we overcome the difficulty in
the present study using perturbation expansion for small material parameter «
and assume the solution in the form as follows [28]:

fi = fo + afi1 + 0(?),

(3.16)
f2 = foo + afiz + O(?),
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which is valid for small values of « only. Putting Eq. (3.16) in Egs. (3.11) and
(3.12) and equating the coefficient of a we obtain

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

d2f01 @ e _e_3y
dy?  dy ’

d*fu dfu _ dféy o3y
dy?>  dy dy?

dfor | dfey w
2R =B
B + . 7 /02 15

@ fiy dhy _ _Pfo _iwdfer o
dy2 T dy 4’1 a3 4 dy 2

for=fi1=foo=fi2=0at y=0,

for = fi1 = fo2 = fi2 =0 as y — oo.

Solving Eqgs. (3.17) to (3.20) under the boundary conditions (3.21), we have,
in view of Eq. (3.16),

(3.22)

(3.23)

where

(3.24)

(3.25)

(3.26)

fi =%[e‘y{2+a(9+2y)}—e‘3y{a(9+y2—2y)+2}],

fa=M (e_3y - e_hy) + Ny (e‘y— e'hy) + P (e_(h+2)y — e’hy)

(Mg (73— e ™M) + Ny (e7¥— e™™) + Py (e~ (h+2y — e_hy))
— & ,

fe (36y — 248y + 3Ay? - 2Ay>
3w

2[4-6(1-9)) 2iA (R —2h) S
M= Mg w’
h? +3h+2— vy
i —4
My = — (36 M; + 94 + 8 — 8S), N2=—(12N1—13A—24),
w 3(4)2

_ 2h(1—S)+4hL — 2L — h* — h’L

P2 w
h2+3h—2—Z
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In view of Egs. (3.10), (3.22) and (3.23), we have

(327) wy = % [e—y 2+a(@+29)} - e {a(9+y" - 2) +2} |
M, (e—sy — e—hy) +MN (e—y — e—hy)
+P (e—(h+2)y _ e—hy)
M, (6‘3-’/ — e“hy) + No (e'y — e‘hy)
+P, (e—(h+2)y _ e—hy)

i -3y _ 2 _
+o-e (36y 24Sy + 3Ay 2Ay)

+ € ™
e

Now from Egs. (3.6) and (3.27), the velocity field in the boundary layer is given by

_ 1-Se ™™ —(1-98)e V-
(3.28) u=1l-eY—ayeV+e€e | a{(1-S)e™—-(1-y) eV}
+Lye~hv

+ €1 %[e_y{2+a(9+2y)} —e W {a (9+y* —2y) +2}]
M (e —e™™) + Ny (e7¥ —e™™)
+P (e—(h+2)y _ e—hy)
M, (™% — e™h) + Ny (e7¥ — e~hv)
+P, (e—(h+2)y _ e—hy)

+£e_3y (36y — 245y + 3Ay? — 2Ay)

+ €€ etwt
-

The real, u,, and the imaginary, u;, parts of this expression, respectively,
yield

(3.29) ur=1-eY(1+ay)+ —% [e‘y{2 + a2y +9)}

—e{a(y® -2y +9) + 2}] + €{ M; cos(wt) — M;sin(wt)},

(3.30) u; = € (M, sin(wt) + M; cos(wt)),
where
(3.31) M, =m;, + eomyyy,

(3.32) M,; = My + €14y, -
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The parameter functions m,,,, m;,,, Mr,, and m;,, involved in u,, u; and M, M;
are explicitly computed, and are listed in the Appendix.

The other interesting aspect of the solution (3.28) is, however, the prediction
of the shear stress near the wall. From Eq. (4) the expression for the shear stress
is given by

’ / ! ’ 3
' ou  ay | O%u ' o\ 0%u ou
33 Pr=po+— 57757 — At ) —— | +203 | o= | »
(3.33) iy N6y+p layat v0(1+€ e )8y2 +203 9

which in virtue of Eq. (2.14) reduces to

/

Py ou ol d%u o 0%u €1 [(0u\?
34 p. =%y _ 2, (> wty 2 2 L SL 27
(3.34) %= Fos By +7 [Byat 4(1+ € Ae )8y2] +3 <3y)

where u is given by Eq. (3.28).

4. Discussions

In order to investigate the effects of the third order fluid on the velocity
profile near the plate (both in case of constant and variable suction), we have
plotted u, against y in Figs. 1 to 4 for the different values of ¢, €;, A, w, @ and
wt = /2. From Figs. 1 and 2 we observe that the velocity profile increases with
fixed w and large values of €;. Figure 3 is prepared to bring out the effects of
the variable suction velocity on the separation of the fluid at the plate for large
frequency. It is evident from this figure that velocity increases with an increase
in w, in A and €, the third order fluid parameter. Further, for fixed €, increase
in ¢, A and w increases the velocity and then the two velocities coincide (see
Fig. 4).

In Figs. 5 to 9 the fluctuating parts are plotted for different values of ¢, €],
w, @, A and for wt = /2. For A = 0, it is noted that an increase in €; with
fixed € and w (Fig. 5) leads to a decrease in M,, but with increase in €; and for
€ = 0.2 and w = 10, M, is almost the same. Figure 6 shows the effect of €; in
case of variable suction. In this case, it is noted that increase in €; leads to a
decrease in M, first then the curves tend to coincide. Further, it is clear from
Fig. 7 that for ¢, = 0.7 and increase in A and w, results in a decrease in M;,
and ultimately the curves are almost the same. In case of non-Newtonian fluids
at large w and increase in €; there is a fall of M; (Fig. 8), which is not observed
in Newtonian fluids. From Fig. 9, one can conclude that an increase in A and w
leads to an increase in M; first; then there arises a decrease, then increase and
finally it reaches zero level.



FiG. 1. Graphs for the parameter values a = 0.7,¢ = 0.5,wt = 7/2, A = 0,w = 10.
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Fi1G. 2. Graphs for the parameter values a = 0.8,¢ = 0.5,wt = 7/2, A = 0,w = 100.
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Fi1G. 3. Graphs for the parameter values € = 0.2, = 0.8, wt = 7/2.
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F1G. 4. Graphs for the parameter values €; = 0.7, = 0.9, wt = 7/2.
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FiG. 6. Graphs for the parameter values a = 0.7,wt = 7/2,¢ = 0.2, A = 0.4,w = 10.
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FI1G. 9. Graphs for the parameter values o = 0.7,wt = 7/2,¢ = 0.2,€; = 0.9.

5. Conclusions

In this paper, the unsteady flow past an infinite porous plate is studied under
the following conditions:
(i) the suction velocity normal to the plate oscillates in magnitude but not in
direction about a non-zero mean value,
(ii) the free stream velocity oscillates in time about a constant mean value.
The solution obtained is the sum of steady and unsteady parts. The following
results are obtained:
1. There is a decrease and increase in the fluctuating parts M, and M; with
the increase of the third order parameter €¢; and A # 0.
2. Increase of variable suction, increase in €; and A lead to an increase in the
velocity.
The velocity increases as the third order fluid parameter increases.
The results for constant suction can be obtained by taking A = 0.
5. The solution for second-order fluid with variable suction can be obtained
as a special case of this problem by taking €; = 0.
As far as the authors are aware, no attempt has been made to examine the effect
of variable suction velocity for second order fluids. However, a second order fluid
exhibits normal stresses but is not shear thinning; the shear viscosity is con-
stant. The third order approximation of a simple fluid exhibits shear-dependent

et
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viscosity. Keeping this fact in view, the problem considered for the third order

fluid in this paper is more general.

Appendix

Equation (3.28) is a very complex algebraic equation. In order to split it into
real and imaginary parts, for brevity, we define the following list of parameters:

1+V1+w?
By E = 5

1 1
mr2:=§+§mr1,
Mgy + = — 7L
B m2 +m?

-1+ V1 +w?
my; = ) )
1
mgi, Emiu
SR, B
13 2 29
mz, +my

Myy © = My (R4 + 4BR3) — My (R3 = 4BR4) s

Miy = Mgy (R3 == 4BR4) + my, (R4 + 4BR3) ,

Mrg - = 96A/R5,

mig 1 =24 (w — (24)*/w) /Rs,

mye 1= {Re (R7 + 4BRg) + Ry (R — 4BR7)} / (R? + R}) ,
. Mig - = {RG (RS —4BR7) — Ry (R7 + 4BR8)} / (Rg + Rg) 5

1
My, 1= =~ (36m; +32B), my, :=

4
mrs L= 51(7(1314'*‘24),

1
= (36my, +94),

324

Mig : = _'3&)_3’

Myy : = {(—SBm,i2 +4R10—R11 —R12) 1‘2164-(837717‘2 +4R13—2R14—R15) Rg}

+ (R} + R3),

mi, : = {(8Bm;, +4R13—2R14— R15) Rig—(—8Bmi, +4R10— R11 — R12) Rg}

+ (R + R3),
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My, o = l—e7™2Y (cos(m;,y) —4B sin (my,y))—a(4Be™™2Y sin (my,y)— (1—y)e™Y)
+ ye~"2¥ (m, cos (miyy) + my, sin (M, ) ,
mi,, 1= € "2Y(4B cos (my,y)+ sin (m;,y)) —4Be™Y — 4Bae™""2Ycos (M, y)

+ ye~ ™Y (my, cos (miyy) — My, sin (Miyy)),

My, 1= (Mpy —amy,) (e73Y —e ™2Y cos (mi,y)) —(mi; —ami,) e”™2Y sin (my,y)
— amy, (7Y — e7™2¥ cos (mi,y)) — (2B/3 + myg) €7 ™72¥ sin (my,y)
+ 32aA4e™% Jw? 4 (Mg — amy,) e,
Miy, = (Mpy —ammy,) e"™2Y sin (Mg, )+ (mi; —amy,) (e73Y —e ™ ™2Y cos (my,y))
— amgge”™2¥ sin (m;,y) + (2B/3 — amy,) (€7 — e ™2 cos (4, y))
— (12y + 34y* — 24y) e~ /(3w) + (M, — am,) e,

where

Ry := mfz — mfz, Ry :=m;, +w/4, R3:= 2m$2mi2 + R1 Ry,
Ry :=myR) — 2m,,my,Ry, Rs:=(24)2 +w?, Re:=R;+3my, +2,
R; := Ry —2m,,, Rg:=2m,,mi, —2m;,, Rg:=2m;,m;, +3m;, —w/4,
Rio :=myymy, — myymy,, Ri1:=2m,, + Ry,
Rip :=my Ry — 2mp,miymi,,  Rig i= miymy, + My,
R4 : = mj,+mp,mi,, Ris :=mi,Ri+2m,,mi;mi,, Rie := R1+3m,,—2,
B:=Ajw.
The parameter functions h, L, S, My, My, N1, Ny, P, and P, of Egs. (3.7)—(3.9)
and (3.24)—(3.26) can now be expressed in terms of these m,s and m;s as follows:

1 1 .
h=§+§mr1+i§mi1 = My, +1M;,, L = m;, +1my,, S=1-14B,

M, = Myg + 1My, My = my, +1my,, N =z2B/3,
Ny = Mg + imis, P = Mrg + 1M, P, = My + 1M

Substituting the values of these parameters, Eq. (3.28) can be split into real and
imaginary parts (the calculation is very lengthy and tedious but straightforward),
u, and u;, as given in Egs. (3.29) and (3.30), with

M, = my,, + eemyy,, M; = my,, + eemyy,.
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