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DURING DYNAMIC LOADING PROCESSES, large plastic deformation associated with
high strain rates leads, for a broad class of ductile metals, to degradation and failure
by adiabatic shear banding. The paper presents an attempt to model some salient
features of this process viewed as an anisotropic damage mechanism coupled with
thermo-elastic/viscoplastic deformation. The model is destined to be applied in the
context of high velocity impact and penetration mechanics. The methodology em-
ployed within the framework of the internal state variable structure strives to keep
a middle way between extensive description of complex viscoplastic flow and dam-
age events and application-oriented accessibility requirements. Model capabilities are
prelaminarily illustrated for shear loading process.

1. Introduction and scope

DYNAMIC LOADING CONDITIONS such like high-velocity impact and penetra-
tion (see Figs. 1, 2), explosive vs. metal interaction, high-speed machining and
other, imply high strain-rate viscoplastic flow characterized by negligible redis-
tribution of the heat generated by plastic deformation. The process is essentially
adiabatic and leads to thermal softening which, at some advanced stage of de-
formation, becomes prevailing against the strain and strain-rate hardening. One
observes a decrease in the flow stress and large plastic strain localization within
narrow regions known as adiabatic shear bands. The latter are most frequently
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observed in high-strength alloys and steels (see e.g. WOODWARD [1] and NEMAT-
NASSER et al. [2]). A significant temperature difference exists between the inside
of bands and the outside. Adiabatic shear band localization phenomena are gen-
erally attributed to plastic instability events generated by thermal softening, see
e.g. BAl [3] and WRIGHT and BATRA [4]. Extensive investigation and literature
have been devoted to the matter in the 1980’s and later. The experimental stud-
ies by MARCHAND and DUFFY [5], employing thin-walled tubes twisted at high
strain rates by means of a torsional KOLSKY bar set-up, are most frequently
cited. The reader can find more references, including the earliest investigations
into the fracturing by adiabatic shear banding from the mid of the 20*" century
on, in WOODWARD [1]. As stated by MERCIER and MOLINARI [6], most of the
early theoretical approaches to the subject considered a shear band as a one-
dimensional entity in a much simplified context of material behaviour. A great
number of studies in the 1990’s went deeper into multiform material parame-
ter influence on multiple shear band forming, spacing, characteristic thickness
and related propagation phenomena (velocity, extension of the process zone),
see e.g. MOLINARI [7] and GRADY [8]. Most of those analyses are performed by
zooming on an elementary layer under simple shear loading conditions. Various
approaches of instability have been advanced and connected with the geometric
pattern of shear bands, e.g. MOLINARI [7] and PECHERSKI [9].

PERZYNA was probably the first to have incorporated the shear band forma-
tion into three-dimensional (3D) modelling, regarding viscoplastic flow coupled
with micro-damage process embodied by specific internal variable(s). In the pa-
per [10] adiabatic shear band localization under dynamic loading conditions has
been considered together with spalling by ductile void formation in the mod-
elling framework insisting on and turned towards induced anisotropic effects.
The microdamage mechanism by nucleation and growth of microcracks is dealt
with in [10]. The anisotropic nature of the process is accounted for by specific hy-
potheses concerning the distribution and the shape of defects including a random
nature of micro-damage evolution. The more recent papers by LODYGOWSKI and
PERZYNA [11] and DORNOWSKI and PERZYNA [12] focus even more on fracturing
phenomena related to localized adiabatic shearing in a quantitatively elaborated
damage modelling coupled with thermo-viscoplastic flow. The well-posedness
of the evolution problem and numerical regularization aspects are discussed in
the framework of consistent formulation of the discretized initial-boundary-value
problem.

The objectives of the present paper are clearly situated in the above per-
spective traced by PERZYNA’s damage-and-viscoplasticity 3D modelling of duc-
tile metals at large strains and high strain rates. Including specific anisotropy
effects induced by a particular deterioration mechanism, i.e. shear banding re-
lated damage, it is being done in an alternative manner based on the second
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Fi1G. 1. Impacted hard steel plate (after ~FiG. 2. Adiabatic shear band with ulti-
GIAT Industries). mate crack (after GIAT Industries).

authors earlier contributions to anisotropic damage, see e.g. the synthetic re-
view by DRAGON et al. [13]. The highly non-trivial and still arduous problem
of combining finite-strain plasticity and anisotropy effects is being considered
here using Mandel-Sidoroff framework, see e.g. MANDEL [14] and SIDOROFF and
Dogut [15].

The present work presents an attempt to model some salient features of dam-
age by shear banding as coupled with thermo-elastic/viscoplastic deformation,
involving multifold anisotropy effects while introducing some simplifying hy-
potheses (e.g. as concerns plastic hardening). The purpose is to get a tractable
model to be applied in the context of high-velocity impact and penetration me-
chanics.

The paper is organized as follows: in Sec.2 preliminary remarks concerning
internal damage variable related to adiabatic shear bands (ASB) are given and
some terminology is introduced. In Sec. 3 large deformation thermo-elastic/visco-
plastic model with internal variables and damage-induced anisotropy effects is
introduced and discussed. An auxiliary analysis, allowing for evaluation of the
onset of instability via thermo-viscoplastic perturbation method, is employed to
pose a damage-inception criterion. This analysis is summarized in Sec. 4. In Sec. 5
the constitutive model is preliminarily but extensively tested on a homogeneous
volume element (material point) under simple shear loading. Some comments
concerning the identification and bounding of material parameters are also given
in Sec. 5.

2. The ASB-related damage variable and kinematic preliminaries

In this paper, we are interested in the description of the material behaviour
in the presence of ASB considered as damage mechanism to be put forward in
the framework of a 3D continuous model: within this model, the deterioration
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Fi1G. 3. Equivalent homogeneous volume element (o = 1).

at stake is to be captured by a corresponding internal variable, its evolution and
its effect on elastic stiffness and viscoplastic flow. The model should be robust
enough to overcome local instabilities relative to inception and growth of ASB on
mesoscale level. Another feature to be accounted for by this model is a strongly
oriented character of ASB, thus inducing significant mechanical anisotropy with
both elasticity and plasticity being potentially affected.

In order to describe the anisotropic degradation state of the material caused
by the presence of ASB, a 2" order tensorial damage variable is introduced.
Its components are denoted as D;; and are expressed by (2.1), where d* and
n® represent respectively the scalar intensity and the orientation of the band
pattern « (see Fig. 3).

D = ) d*-Ng,
(2.1) a
N2 = ngng.

As discussed before, the onset and further evolution of adiabatic shear band-
ing are a consequence of thermal softening, respectively in the sound material
during locally homogeneous plastic deformation, and inside the bands themselves
during evolving localization process. The intensity d* includes consequently in-
formation relative to temperature inside the band pattern a. Consider now a
single band pattern (o = 1), and introduce the adjective “singular” for the pro-
cesses relevant strictly to the adiabatic shear banding, and the adjective “regular”
for the processes not relevant to the adiabatic shear banding. With such a dis-
tinction, the current density d of the damage variable D depends on “singular”
temperature, and can thus be written as:

(2.2) d=d(T",..)

where T™ represents the “singular” temperature, and where the dots represent
other possible arguments.

The lower bound dmin = d(Tj, ...) of the density d is obviously zero, T rep-
resenting the initial “singular” temperature value which is equal to the “regular”
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temperature value at the incipience of damage. On the other hand, temperature
is supposed to be bounded in the band material by the melting point. This is
probably a strongly over-estimating statement (see e.g. [1]) for metallic mate-
rials subject to this mechanism of adiabatic shear banding. The density d of
the damage variable D is consequently bounded too. The upper bound of d is
denoted by dmax = d(Trm, --.-), where Ty, represents the temperature value at the
melting point. In Sec. 5, an estimation of dp,x is given based on mechanical
considerations for the case of simple shear.

The geometric consequences of the shear band pattern (Fig. 3) are viewed
as those of a “super-dislocation” (see also PECHERSKI [9]). By using concepts of
the crystalline plasticity, the damage-induced supplementary strain rate d¢ is
introduced as the result of the glide velocity ¥ caused by the band pattern «
of normal n® and with orientation g% (see Fig. 3):

d .
dl o Y M,
(2.3) @ 1
s
M5 = (9fnf)" =5 (97nf +g5ni).

The kinematic variable d¢ allows to smooth the boundary discontinuity caused
by the ASB (see Fig. 3). There are thus two contributions to the inelastic evolu-
tion of the equivalent homogeneous volume element: the “regular” plastic strain
rate, denoted by dP, and the “singular” damage induced strain rate, denoted
by d4. The total inelastic strain rate d9P is written as the sum of those two
contributions:

d
(2.4) df =df; +df;.

Further on, care must be taken to ensure the concomitance of the two rates ]%
(an objective derivative of D to be defined) and d9, which are both relative to
the same process of ASB-induced damage.

On the other hand, very large strains and rotations occurring during the adia-
batic shear banding process make the finite elastic-plastic deformation framework
indispensable. Since pioneer MANDEL’s works [14], many valuable contributions
appeared concerning the introduction of (initial and/or induced) anisotropy in
the context of large elastic-plastic strains. Despite this, the problem remains still
open, see e.g. SIDOROFF and Dogul [15] and EkH and RUNESSON [16]. In the
present approach, a spatial vision of the motion is adopted in order to preserve
the physical signification of the state variables, of their derivatives and of their
conjugate forces. Clearly, the Eulerian point of view is suitable to deal with plas-
ticity whose rheology is close to the fluid one in some aspects [15]. However, the
Eulerian point of view is not proper to identify material symmetries. In isotropic
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elastic-plastic media, the rotation required to define the intermediate configura-
tion is in fact of secondary importance, and rotational and material derivatives
lead to the objectivity of the incremental constitutive model as well. With re-
gard to anisotropic elastic-plastic media, the definition of the rotation becomes
essential [14].

3. Large deformation damage-viscoplasticity constitutive model with
ASB-anisotropy effects

The constitutive model to be formulated must be able to describe the thermo-
elastic/viscoplastic behaviour of the sound material and the mechanical aniso-
tropy (directional degradation of both the elastic and viscoplastic moduli) in-
duced by ASB. As stated above, the framework of large elastic-plastic deforma-
tion with anisotropy is put forward.

3.1. Large elastic-plastic deformation kinematics including anisotropy

Let Cy be the initial undeformed configuration of the material, and C; its de-
formed configuration at current time ¢. In order to account for finite elasticplastic
strains — plastic means here inelastic in the sense of both plastic “regular” and
damage-induced “singular” terms — the pseudo intermediate configuration Ciner
is introduced by elastic unloading with respect to the current configuration C;.
Because arbitrary local rotations superposed to relaxed state give alternative
intermediate configurations, Cinter is generally non-unique. The deformation gra-
dient F from Cy to C; is conventionally decomposed as the product F = FeFdp
(Fi J= Z-‘;Fgg), where F9P denotes the “damage-plastic” transformation from
Co to Cinter, and F© denotes the elastic transformation from Cipter to Cy.

In the present case, anisotropy is induced by damage (in the form of adiabatic
shear bands) during inelastic transformation F9P. It then seems to be natural
to define anisotropy in the intermediate configuration Cipter that becomes hence-
forth a pseudo-material configuration (see also LUBARDA [17]).

During inelastic deformation F9P, matter is moving with respect to the lab-
oratory fixed frame S. This motion can be decomposed as the sum of the motion
of the matter with respect to the anisotropy axes .4 and the motion of the
anisotropy axes A with respect to the laboratory frame S. To maintain the axes
of anisotropy (damage tensor eigenvectors) A fixed with respect to the laboratory
frame S, it is necessary to rotate at the same time the intermediate configuration
Cinter- The rotation needed is then included into elastic transformation F€. On
the other hand, the parameters (vectors and tensors) are expressed with respect
to the laboratory frame S. To ensure the double objectivity (invariance under
change of frame on the current configuration C;, and invariance under rotation:
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FI1G. 4. Intermediate configuration as pseudo-material configuration.

of the intermediate configuration Cipter) of the constitutive model, derivatives
in the motion of the matter with respect to the anisotropy axes A are required
[14]. Interference effects of the rotation of anisotropy axes .A with respect to the
laboratory frame S have then to be neutralized.

Let the current configuration C; be virtually unstressed by a pure elastic
stretching V™1 to a new configuration called Ct (Fig. 4). Q denotes the orthogo-
nal transformation from Cjyter t0 Ct (Q describes the rotation of anisotropy axes .A

with respect to the laboratory fixed frame §), and W = QQT ( QmQa])

denotes the rotation rate relative to these two configurations.
The deformation gradient F can be written as:

(3.1) Fi = VEQuaFS = VS F
with
v
(3.2) F® — QiaF2.
v

Introduce the derivative F4P of f‘dp, objective under any rotation of the inter-
mediate configuration Cinter as follows:

V .
(3.3) F% = QoI = F® — Wy Bl

1

and denote 19P the objective damage-plastic velocity gradient:

: 8 = FRFE,
A~ ~ [0

(3.4) iy = QualopQg; =I7 -Wy  with ¢ AN

i = FLir.
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The velocity gradient 1 can thus be expressed by:

5 _ . E S ~dp—1v e
(35)  lj=FixFg; = VRV + Vi F Frp V!

v =
= ViVt + Wi + Vgl vie?
where
Ve 7e e e

(3.6) Vi; = Vi5 — WaVi; + VigWh;.

As objective derivatives (3.3), (3.4) and (3.6) are constructed with the orthogonal
tensor W, they will be called rotational derivatives.

The decomposition of the velocity gradient 1 (3.5) into a symmetric part, the
strain rate d, and an antisymmetric part, the spin w, yields:

Ve e—1 s e 7dp yre—1 R

ik Vlcj + (Vimlmpr]‘ ) )
(3.7 o AS ) s
wij = Wi+ ( i szj_l) + (sznlgfpv}%_l)

The elastic strain rate d® and spin w®, and the inelastic strain rate d9P and
spin w9P are extracted from (3.7) as follows:

v 3 S
5 - ()

(3.8) . s
wh = (Viivkej—l)
~ S S
df = [Vadbve] + [veetve]
s dp Jdp yre—1 — ~dpyre—1 AS
o = [Vadhve ] + [veatve ]
where
S S
jap  _ (7dp\" _ (7dp
ay = (1) =)
(3.9) s
o% = (i‘.’?)
1] 1] ’

According to (3.7) and (3.8), the total strain rate d and spin w are given by:
d
dij = di +diJ’-’,

(3.10) S
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The rotation rate W of the damage tensor eigenvectors (anisotropy axes) is
obtained from (3.10), by:

(3.11) Wij = wij — (wfj +ng?> )

As previously written by MANDEL [14], constitutive relations for anisotropic
media need not only the definition of the strain rate but also that of the spin.
The laws concerning w® and w9P are indeed required to achieve the calculation
of the rotational derivatives (see also DAFALIAS [18]).

3.2. Constitutive model

The state of the material is described at the intermediate configuration Cipter
employing the following variables:

e elastic right Cauchy-Green tensor of = Fer i = Us U

e absolute “regular” temperature

e scalar isotropic strain-hardening variable p

e internal damage variable Dog = d.nqng with d = d(T™, ...).

When the corresponding state variables are expressed in the current configu-
ration Cy, they must be invariant under rotation of the intermediate configuration
Cinter- The elastic left Cauchy-Green tensor b® satisfies this condition.

Anisotropy evolves during the inelastic transformation F9P. Through a rota-
tion Q of the intermediate configuration Cipter, the vector n is transformed into
nasn=Qn (7; = Qianqa). Then

Dog = d - nang = dQLR:Q%;7; = dQL:,Q;5 = QL DijQjp.

Consider the new damage variable D invariant under rotation of the intermediate
configuration Cipter as:

(3.12) 51‘]‘ = d'ﬁi'ﬁj = QiaDaﬁng g

The state of the material may be described at the current configuration C; em-
ploying the following variables:

e elastic left Cauchy-Green tensor bg; = F&Fel = VEVE

e absolute “regular” temperature T

e scalar isotropic strain hardening variable p

e internal damage variable D;; = dninj = QiaDaﬂng

The objective rotational derivative of D (3.12) is obtained by neutralizing
the rotation Q:

4 .
(3.13) Dij = QiaDapQf; = Dij — Wit Dij + DipWop; .
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The thermo-elastic response of the anisotropic medium is supposed to be de-
scribed by a thermodynamic potential, namely the free energy per unit un-
stressed volume pP1(C®, T;p, D), where pP represents the density in the inter-
mediate configuration and ¥ (C¢,T;p, D) the specific free energy. Assuming in-
compressible inelastic deformation (det FIP = 1), initial and unstressed volume
are equal, then poy(Ce®,T;p,D) = pPy(C®, T;p,D), where py represents the
initial density. Material frame-indifference requirement is ensured through the
invariance of the thermodynamic potential by any rotation of the intermediate
configuration:

pow (C%,T;p,D) = potp (QC°QT, T;p,QDQT) = potp (b, T;p, D) .

The free energy per unit initial volume is further decomposed into a reversible
part po1®(b®, T;D), namely the elastic potential, and a stored energy part
poYP(T; p, D) as follows:

(314)  pow (b%,T;p,D) = poy® (b, ;D) + pov (T3p, D).

The elastic potential includes the initial isotropic linear thermo-elasticity of the
sound material and damage-induced anisotropic elastic effects in the degraded
material. It is constructed from the theory of isotropic scalar functions of several
tensorial arguments (see BOEHLER [19]). The elastic degradation is described
as dependent on f), thus comprising damage-induced orthotropy effects via two
terms involving material constants a and b below, see also DRAGON et al. [13].
It is assumed that possible interactions between different band clusters are not
taken into account. The form (3.15) below is thus limited to the first order in D.
The elastic potential is assumed in the form:

)\ 0C
(3~15) qu:be i u ]] + /“ez] ]z O‘Ke'fiAT - ZTO

— aegief; D], 2be; e],ch1

AT?

with
3A+2u
3 3

where e® represents a spatial elastic strain measure, a function of b® (see
Eq. (3.23) below), which satisfies the hypotheses mentioned above concerning
the elastic potential under the assumption of small elastic strains. The expres-
sion of corresponding stress tensor is given in Eq. (3.26); below. In this context,
A and p represent Lamé’s coefficients, K the bulk modulus, a the thermal dilata-
tion coefficient, pg the initial density, C the heat capacity, a and b the constants

e;=9(5), AT=T-T,, K=
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mentioned above related to elastic energy degradation caused by adiabatic shear
banding.

The stored energy reflects the competition that takes place inside the material
between hardening and softening. Hardening is a consequence of the micromech-
anisms of “regular” plasticity, while softening is due to heating on the one hand
and to current ASB-related damage on the other one. During their evolution
(formation and propagation), ASB modify internal stresses. In this sense, one
can assume that damage acts much like temperature to release the stored energy.
These considerations justify the choice of a multiplicative decomposition of the
hardening into respective heating and damage contributions. Note that in the
expression (3.16) below, the introduction in the stored energy of the 2" invariant
of the damage variable D allows to produce some effects of band interaction.

The stored energy is written as follows:

1 . il
(3.16)  potp” = Reo [p +e eXP(—kp)] exp(—T') exp <~d1Dz‘i = fDiiji>

where Ro, represents the saturation stress, k the plastic hardening parameter
linked to the initial hardening modulus,  the thermal softening parameter, d;
and d; the damage (ASB)-related softening constants.

A model consistent with irreversible thermodynamic framework should sat-
isfy the Clausius-Duhem dissipation inequality. The latter is written below in
the current configuration:

(3.17) Dint = O'ijdji —-p (’(/J + ST) >0

where o represents the thermo-elastic (reversible) Cauchy stress tensor, p the
current density, and s the entropy.
Chain rule applied for differentiation of the free energy gives:

31/’ 31/) 31/) 3¢
b, ol T 5Pt 55

(3.18) P = e P

ij

Nevertheless, the invariance of 4 requii‘es objective derivatives for the tensors. To
avoid surplus contribution to dissipated energy, rotational derivatives are used

following DOGUI and SIDOROFF [20]:
op.

o 3 0 g
12 —"’—Dl'
5es, 5 T or T T gp? T oDy

(3.19) P =

v
In the foregoing, the derivative b€ is related to the strain rate d by:

im mj in“nj

v v
(3.20) b = (VEVIS) = 2ViduVis — (be [ 4 jdepe )
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Gibbs relation and Clausius-Duhem inequality are finally written as:
. , _ v
—psT + Oij (dﬂ = dﬁ’) + Rp — Ki]' Dji 5
v
Dint = a,]d — Rp+ K” D >0,

oy
(3.21)

where o represents the thermo-elastic Cauchy stress tensor, R the isotropic hard-
ening conjugate force, K the damage conjugate force, and s the entropy.
The conjugate forces are derived from the thermodynamic potential:

e OV oY
Tij = JO'ij :2P0 Ikabe Vrfy,] = Obzpabe )
r = JR= poad)
dp’
(3.22) ”
R = JRy= -2
] J pOaDij
oy
pos = —pogr

where 7 represents the thermo-elastic Kirchhoff stress tensor, and J the Jacobian
determinant of F.

As stated above, the class of materials considered here implies small elastic
strains. The elastic strain measure e® is chosen herein as follows:

1
(3.23) e = 3 Indj; = InVjj.

\Y
Derivation of e® yields an equality between the rotational derivative e® and the
elastic strain rate d®:

v

On the other hand, the thermo elastic Kirchhoff stress tensor is simply expressed
as follows:

oY

(325) TU = pogf:7 .

The conjugate forces (3.22) are henceforth expressed by:
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Tijg = /\ezkéij + 2#6% = aKAT(SU
—a <efnn5nm5ij + eikﬁij) —-2b (efkﬁkj g 5ikeii) ?

N i
r = R [1 — exp (—kp)] exp(—T) exp <—d1Dkk - —;Dleuc),

1
(3.26) kij = aegyer; + 2befier; + Roo [p +e exp(—kp)]
G ly o 5 ”
-exp(—T') exp <‘d1Dkk = EDlelk) [d15ij + dQDij} i
pos = aKegy + EAT
To

1 ~ " P
+ YRoo [p + e exp(—kp)] exp(—~T) exp (‘dlek - —22‘Dlelk)~

Isotropic heating and anisotropic damage contribute to reduction of the stress
level 7;; (ee, T, D) (3.26);. Positive constants a and b contribute both to reduc-

tion of the Young’s modulus, while b is alone related to the decrease of the shear
modulus (see also Sec. 5).

Without heating and damage (isothermal conditions in quasi-static configu-
ration), the conjugate force 7(T'; p, D) in (3.26)9, relative to isotropic hardening,
tends to the saturation stress R, exp(—<vTp). This force increases during pure
hardening but decreases with heating and damage, describing the competition
between hardening and softening. _

The damage conjugate force k(ee,T;p,ﬁ) — the energy release rate with
respect to D — (3.26)3 includes the first contribution from the reversible part of
the free energy, and the second one from the stored energy. The corresponding
terms represent respectively elastic and stored energy release rates. It is notewor-
thy that both contributions to the damage conjugate force exist before damage
inception. It is assumed that a finite supply of energy is necessary to activate
the damage process.

The objective formulation of the incremental constitutive model can be writ-
ten in a compact form as follows:

v Jdp
+ Tij Cijw 0 Eijm  Ji = dy
+7 0 A S p
(3.27) v ¢= . b v
e Eijiw  Aij  Lijmw Vi i
Jkl S Vi X

—po$
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with
9% %y 0% %y
Ciikl = Po——— ; Eiipl = po——=—: Jii = : = e
kL= PO Gt et 9P des 0D 4= P0eeoT Q=rogy
and o o 5%
S =poa—as] ij = =—;  Liju=po=—=;
Po 3paT j = PO 9pdDy; jki = PO 8505
8% 8%y
Vij = po 9Dy 0T POST2

(see Appendix A for further details).
Since we have assumed small elastic strains (Vl;3 ~ 0;5 + €5 with g;5¢5; < 1),
expressions (3.8) are reduced to:

v dp _  ip

&g = Vg d;j = dij,

(3.28) i ap
e s ) = %

wij = 0 Wi Wij -

As a consequence, the rotation rate (3.11), needed for the rotational derivatives,
becomes:

d
(3.29) Wij = wij — u)z-]-p .

As stated before, the constitutive model requires a law specifying w9P in addition
to the conventional complementary laws.

Another consequence of the small elastic strains assumption concerns the
form (3.27) which becomes:

v de

+7ig Cijki 0 Eijr  Jij K

+7 0 Q Ag S p

40 v (T | E e g % A
iy ijkl ij ijkl ij Dy,

- J S Ve X :

—pos M T

The dissipation can be decomposed into a “regular” part directly linked to plas-
ticity and a “singular” part resulting from band formation:

(331) Dint e Dreg + Dsing .
The respective contributions are as follows:

Dreg = O'ijd?i — Rp,
(3.32) v
Dsing = 0id% + Fij Dji,
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where dP represents the “regular’ plastic strain rate, and d¢ the “singular”
damage-induced strain rate.

The effects of “singular” heating localized inside the band cluster are included,
by definition of the damage variable (2.1)-(2.2), in the scalar damage density
d® (2.2), evolving with the ongoing deterioration. “Regular” heating caused by
plasticity outside the bands is then expressed by the common relation established
with the adiabaticity assumption:

(3.33) poCT = U,’jd?i =5 Rp

One may distinguish three stages during the deformation progress: before
the onset of localization, “regular” plasticity is the only dissipative mechanism;
just after the onset of localization, both mechanisms, namely “regular” plasticity
and “singular” damage coexist; when localization advances, ASB damage pro-
cess becomes progressively the prevalent dissipative mechanism. Using a single
yield function that includes both the plasticity and damage effects, seems to be
suitable to favour such a chronology in the evolution of “regular” and “singular”
variables.

The following extended form of the plasticity and damage loading function
F is postulated:

(3.34) F (Tij,T‘, Eij) = jQS (Tij, /;ij> —(Ro+ 1),

where the generalized 2" invariant JQS (7‘, l~<) incorporates the damage conjugate

force k (]5, ) as follows:

(3.35) 1 (Ti]‘,icij) = \/gsijpijkl (ifmn> Skl

In (3.35) s represents the deviatoric part of the Kirchhoff stress tensor, and
P (l~<) the 4*" order tensor inducing anisotropy of plastic flow.

The tensor P (E) , see (3.37) below, includes the first term relative to conven-

tional plasticity without damage and the second one relative to damage-induced
effects on the plastic flow. The evolution laws (3.43), which are derived from
the normality rule, require by definition the collinearity of the “regular” plas-
tic strain rate dP to the deviatoric part s of the Kirchhoff stress tensor, the
collinearity of the “singular” damage-induced strain rate d to the orientation

tensor M (according to (2.3)1), and finally the collinearity of the damage rate
v

D to the orientation tensor N for conservative damage growth configuration
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considered here (according to (2.1);). Conjugate forces (s,ﬂ) and “orientation”

tensors (s, M, N) are then associated in the generalized 2" invariant (3.35) to
satisfy such conditions. The continuity of stress at the onset of damage is pre-
served. In the expression of P, the damage driving force k intervenes via the

expression Tr (E“‘N), where Tr (l?rN) represents the difference between the
current value Tr (1~<N> and the corresponding one at the incipience of damage

kine = Tr (EN)

mnc
(3.36) ];';;Nji = <];'iiji = kinc>a

where the bracket () defines the ramp function. To determine ki, an auxiliary
analysis based on perturbation method will be conducted in Section 4 for a
particular loading path.

On the other hand, to ensure the concomitance of both damage-induced rates

v
d9 and D, the polynomial in Tr (k*N) specified below in (3.37) starts with the
exponent g = 2 (see (3.43)2 and (3.43)4 below).
The 4 order tensor P (E) is finally represented as follows:

N
1 ~ q

(3.37) Pijiy = 5 (0ikdjt + durdjk) +2 > g (k;;nNnm) MMy .

q=2
The function Ry in (3.34), which represents the radius of the Huber-Von Mises
cylinder without hardening in the stress space, must account for heating and
damage softening. A form close to the hardening conjugate force (3.26), is
adopted:

- do =
338 Ro=Rioxp(~7T)exp (~diDus — E D Don ).

where R; represents the internal stress, v the thermal softening parameter, d;
and dy the damage (ASB) softening parameters. The inelasticity criterion F = 0
is assumed. The viscoplastic flow and (viscous) damage growth domain is thus
F>0.

The existence of a viscoplastic potential of PERZYNA’s type [21] is assumed:

Y 5 n+1
5-2(5)

where F represents the yield function, ¥ and n viscous parameters relative
to “regular” plasticity, and the bracket (-) the ramp function. Time-dependent
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shear banding (damage mechanism considered here) is an evident consequence
of thermo-viscoplastic flow. The viscous damage potential is thus chosen close
to the plastic one (3.39):

Z ]_- m+1
(3.40) o <§>

where F represents the yield function, Z and m viscous parameters relative to
“singular” damage, and the bracket (-) is the ramp function.
Evolution laws are consequently derived from the normality rule:

oy oOF
dp  __ d _ P _ .
; 095 OF Y a4 OF
o= WP p 0 ga0F
or or ki ki

with the viscoplasticity and viscous damage respective multipliers expressed by:

s w-()-(F) =)

The corresponding fluxes are finally written as follows:

&L = §Apfil
1) i
2 J3

N - q

22770 (kr-tmNnm) Skt M

q:
dfj = 3AP = M;;,

(3.43) 2

po= AP,

N i q—1 9
v . qu"’]q (kfﬁnNnm) (8K M)
- JO=

2

\Y
As discussed above, the rates dP, d? and D are respectively collinear to s, M
and N. The adiabatic shear banding process which generates the damage-induced
strain rate d4 modifies the initial direction of Vthe inelastic strain rate d4P. The

norms of the damage-induced rates d¢ and D contain both a part relative to
the damage conjugate force k (via the expression Tr (1~<+N)) and another part
relative to the resolved shear stress 7,3 = Tr (sM) (in the band cluster plane).
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The damage conjugate force k is actually the preponderant driving force of the
damage-induced strain rate d? (see the expression (3.43); above), while the
damage conjugate force k and the resolved shear stress 7.5 keep approximately

the same weight in the expression (3.43)4 governing the magnitude of the damage
v

rate D, recalling that damage is primarily the consequence of a shearing process.
Let the inelastic velocity gradient 19P be decomposed into a “regular” contri-
bution 1P and a “singular” one 19:

d
(3.44) P =00+

In the absence of damage (19 = 0), the “regular” structure of matter can be
supposed to be approximately statistically isotropic, what implies that wP = 0,
see MANDEL [22]. The rate W is in this case equal to the spin w: rotational
derivatives are then simply the Zaremba-Jaumann derivatives. In the presence
of damage, the damage-induced velocity gradient 14 generates the spin w9. As-
suming that the effects of the distorsion caused by the presence of ASB are
concentrated in their close vicinity, “regular” matter is supposed to be globally
weakly affected. In this sense, the “regular” plastic spin wP can be neglected
with respect to the “singular” damage-induced spin w9. The rotation rate (3.29)
is thus reduced to:

(3.45) Wij = wij — wis.

The analogy drawn in Section 2 between a band cluster and a “super-dislocation”
is used here again to postulate the “singular” contribution 14 as:

(3.46) 1 oY 4ging.
«

The partition of the damage-induced velocity gradient 14 (3.46) gives the damage-
induced strain rate d4 and the damage-induced spin w? as follows:

aG o oA (efn5)”,
«a

(3.47)
wh o YA (gpng) ™.
a

According to relation (3.43)y, which expresses the damage-induced strain rate
d9d, one can express the damage-induced spin w9 (3.47), as:

N - r
2 Tr (k;qup) Sk My
(3.48) wl = 3APT=2

Js T
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where

1
Ty = (ging*® = 5(92’”]‘ — g;jni).

As stressed before, material behaviour, described via the incremental law (3.30),
requires objective rotational derivatives. From the analogy of damage-induced
viscoplastic deformation with finite plastic distorsion in crystals, the above eval-
uation of the damage-induced spin has been obtained, thus completing the con-
stitutive relations.

4. Damage incipience via simplified perturbation analysis

The constitutive model is now completed by a damage incipience criterion
based on a simplified analysis of material instability using the linear perturbation
method.

The method is in general applied in the case of simple shear under con-
stant velocity boundary conditions. Assuming negligible elastic effects, laminar
viscoplastic flow and adiabatic conditions, the problem can be reduced to a one-
dimensional formulation, see e.g. BAI [3], CLIFTON et al. [23], MOLINARI [24],
and SHAWKI and CLIFTON [25]. Admitting analytical solutions, the linear per-
turbation method provides in this case a criterion of instability onset, which is
interpreted as the incipience of the adiabatic shear banding process. Nevertheless,
instability does not rigorously imply localization [24]. This means that the use
of the method gives a “lower” bound of the deformation localization incipience.

An auxiliary simplified analysis performed here is intended to help to estab-
lish damage incipience threshold and its form based on more pertinent indica-
tions than the purely phenomenological formulation. The output of the analysis
presented below will be limited to a particular loading path. Instead of rigorous
instability search (“lower” bound for localization mentioned above), the aim is
to search a more realistic (“upper” bound) evaluation for localization incipience.
The hypotheses taken further favour delaying the strong localization onset with
respect to the supposed instability onset.

As mentioned in Sec. 3, this auxiliary analysis allows actually to determine
ke = Tt (kN)V in (3.36), which activates the damage-related rates d9 and
mc
v
D (see expressions (3.43)2 and (3.43),), from mechanical considerations. In the
absence of damage, assuming negligible elastic effects, the governing equations

may be written as:

Tijj — Povi = 0,

(4.1) . .
poCT — KT gy, — (Jo —7r)p =0,
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3 sl]

= ) . 0’
(4.1) 2(”1,1 Vji) 2 T
[cont.]
p - Ap(TijapaT) = 07
3 .
where Jy = §sijsji and where « represents the thermal conductivity.

Let a small perturbation U = (dv;, 6745, 6p,d0T') be superposed on the set of
homogeneous solutions U = (v;, 735, p, T') of the system (4.1):

U=U+46U with 06U <« U.

Homogeneous solutions evolution is supposed to be slower than perturbations
(see also KERYVIN et al. [26]): the system is considered to be temporarily frozen.
The perturbed system can thus be studied independently.

After linearization, it takes the form:

0735 — podv; = 0,
poCéT - Ii(ST)kk - ((5]2 - 51") ) — (J2 - 7‘)519 = Oa

(4.2) 1 Sij 3 Sij
5(5111,] + 0v;) — 6;07— - —p5 (72—) = 0,

5p = 5Ap(Tij,p,T) = 0.
Let the perturbation have a wave-like form:
(4.3) 6U = U exp (wt + iknz) = U exp[wgt] exp [ik (ct + nz))]

where U represents the perturbation magnitude, w the wave pulsation, & the
wave number, n the wave vector, wpg and wy respectively the real and imaginary
parts of the wave pulsation w, and ¢ = w;/k the wave velocity.

According to the right-hand term of (4.3), the case wgr = 0 points the tran-
sition between the stable and unstable states:

e if wr > 0, the perturbation increases with time;

e if wp < 0, the perturbation decreases with time.
The objective consists in looking for the conditions of the transition from the
stable state to the unstable state by studying the sign of wg.

After injecting the perturbation (4.3) into the system (4.2), one obtains:

ikn;Tj; — powv; = 0,
.3 8iTji : _
(pocw+/€k2+50 ) p2 :7]] + [Qop—(JQ—r)w]p = 0,
44
( ) 1k _ ol 3 Sij _ . _
- (Ui + nij) — o —~wp — pGijuTk = 0,

2 2 Jy

(w~B)p— PyTji— ET = 0,
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with
0 0 3 9 (?J)
o_ 97, 0. o, R 27 .
Q - (9p’ s 8T, G”kl 2 aTkl k
OAP OAP OAP
i = ; = E=——r
B 0T g dp oT

(see Appendix B for further details).
The system (4.4) can be written as:

(4.5) (MI{T} = {0}.

The next step consists in finding the roots w from the determinant of the matrix
[M]. In the case of a thermo-viscoplastic behaviour, the determinant is a 4"
degree polynomial in w. Solutions are not trivial and require the knowledge of
the perturbation direction.

In the particular case of simple shear, where v{ # 0 and 715 # 0, the perturbed
system (4.4) takes the form:

tknoT1a — powv; = 0,
(46) (poCw + kk* + 8%) T — V3pT12 + [Q% — (V3na — 1) @] P = 0,
1knovy — \/ng_) = 0,
(w—B)p—V3a71, — ET = 0,
or otherwise
—pow 1kng 0 0
0 —V/3p [Qo;b - (\/?_)7'12 - 'r) w] (ngw + kk? + S’Op)
(&) ikng 0 —3w 0
0 —V3a (w — B) —E
U1 0
T19 0
X 5 =3 &
T 0

The system (4.7) can be written as:
(4.8) (M]{T} = {0}.

The direction of the pertubation is obviously collinear with x5 and the determi-
nant of the matrix [M] is a 3™ degree polynomial in w:

(4.9) det[M] = azw® + ayw? + ayw’ + ag
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where

a3 = 3piCa,

az = po[3(E+S%)p+k?(Bka+C)],

a; = k2 [nkQ + 8% — poCB - E (\/37'12 — r)] ,
ap = k?[(EQ® - BS°) p—kk’B].

(4.10)

Assuming adiabatic conditions (k = 0), the coefficients (4.10) are reduced to:

a3 = 3nga,
as = po [3 (E+ Soa)p'+k20] ;

4.11
( ) ap = k? [Sop —poCB—FE (\/57'12 - r)} ,
ag = k? (EQO - BS’O)p,
E+S% = —a% ,
(4.12) a5
0 _ 0o _ _,97%~0
EQ° — BS «a 5T Q°,

(see Appendix B for further details).

As stated previously, the idea is to delay the instability onset to approach
the strong localization incipience. Adiabatic shear banding occurs as thermal
softening overcomes the plastic hardening. In the constitutive model developed
in Section 3, thermal softening is described through the partial derivatives of

the hardening conjugate force r <T;p, ]5) and of the internal stress Ry (T; f))

with respect to temperature. By neglecting the last contribution (0Ry/90T = 0)
to thermal softening, the aforementioned delayed estimation (an “upper” bound
for the instability onset) is reached without losing the mechanical consistency.

It is noteworthy that this simplification facilitates obtaining the analytical
results. The expressions (4.12) become indeed zero, as also the coefficient ag in
(4.11). The degree of the polynomial (4.9) is then equal to 2, and analytical
solutions are obvious.

With the simplification dRy/0T = 0 in the stability analysis, the coefficients
(4.11) become:

a3 = 393001,

az = p0k2cv

a1 = k2[S° —poCB - E (V3rz —1)],
apg = 0

(4.13)
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As shown above, the determinant of the matrix [M)] is a 2°¢ degree polynomial
in @:

(4.14) det [M] = a3w? + agw +a; = 0.
The condition of instability may thus be written as:
w >0 if and only if aja3 <0.
The perturbation grows if and only if
(4.15) 3p2Cak? [SOp — wCB-E (\/ﬁm — 1’)] <0,

or else, with the relations in Appendix B,

p

(4.16) or o (\/gm _ r> "o (—ﬂ

. Bp poC oT )’

. .1/n
With g = Yp , inequality (4.16) becomes:
Ypl/n

(4.17) —51< (\/5712—7“)+ = (_ﬁ)

' op poC or )

This condition of instability involves plastic hardening and thermal soften-
ing through the partial derivatives of the isotropic hardening conjugate force
r (T;p,D).

Consider another expression of inequality (4.16) as follows:

. Or 0
(418) G (’ri]‘,r,p; a_;’ é) = \/3s5; M5, M

or
Y :1/n a.
r— LE + poC————ag > 0.
n _Or
(-5%)

Inequality (4.18) relates the resolved shear stress 7pes = 5;;Mj; to the isotropic
conjugate force r, the strain rate-induced overstress Yp'/", and the ratio of the
plastic hardening Or/dp to the thermal softening dr/9T.

In the present simplified analysis, the damage process is actually assumed to

. Or Or

run as soon as G | 7i;,7,p; 55, 3T

preted as the auxiliary indicator for the damage process incipience leading to the

> = 0. This latter condition must be inter-
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determination of the damage conjugate force threshold kinc = Tt (ﬂN) in the
model of Section 3, see Eq. (3.36). Though a delay has been introducgéc in the
instability onset, this condition is surely necessary but not sufficient, as shown
in [24]. Further advanced studies involving the onset of strain localization in the
presence of multiple mechanisms of inelastic deformation can be envisioned fol-
lowing the lines of the recent study by PETRYK [27]. The latter would necessitate
adaptation to the rate-dependent constitutive framework.

It is noteworthy that the criterion (4.18) is obtained from an analysis based
on the linear perturbation method, and not from an arbitrary, or purely phe-

nomenological, damage incipience criterion.

5. Preliminary evaluation and comments on model capacities

The three-dimensional constitutive model developed in Sec.3 is tested on a
volume element (material point) loaded in simple shear in the context of adi-
abatic dynamic process. The time integration procedure is purely explicit and
the time increment is imposed at the beginning of the analysis. The simple
shear loading is applied via the velocity gradient l;2 (Fig. 6). The damage pro-
cess (strong deformation localization) is supposed to occur inside the material
through the development of a single shear band pattern of normal vector n
collinear with the z, axis (Fig. 5). The calculation of ki, is determined via the
auxiliary method detailed in Sec. 4.

X2 A I
="
> X1 t
Fi1G. 5. Volume element FiG. 6. Nominal shear strain
containing a band. rate history.

The nominal deformation gradient F, the nominal velocity gradient 1, ind
the damage variable D are given by:

1 I 0 01 0 000
[Fl=]0 1 0|, J=|0 0 0|, [Dl=d|0 1 0],
00 1 000 000

where I” represents the nominal shear strain rate, and I" the nominal shear striin.
In order to illustrate the model capabilities, experimental data by MAR-
CHAND and DUFFY [5] have been chosen as general reference. The curve (Fig 7)
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they obtained from a high strain rate torsional test on a HY 100 steel tubular
sample is usually used to illustrate adiabatic shear banding effects. This curve
displays three consecutive stages: in the 1%° stage, thermo-elastic/viscoplastic
behaviour is stable; in the 2" stage, a weak instability in flow appears; in the
3 stage, the instability becomes strong and the deformation localizes through
adiabatic shear bands. Model constants (Table 1) have been identified from these
experimental data (Fig. 7). Consequently, the curve in Fig. 8 should not be
considered as the one validating the model; it reproduces simply the experimental
curve of Fig. 7. The discussion of model capabilities will be given below on the
basis of specific additional correlations concerning the actual model, namely its
response in terms of the state variables and their conjugate forces. Finally, by
modifying the loading conditions given by [5], the beginning of validation will
be considered (Figs. 22, 23).

Table 1. Material constants of the constitutive model (Section 3).

po (kg/m®) | C (J/kgK) | E (MPa) v a (K™Y | a(MPa) | b(MPa)
7800 500 200e+3 0.33 le—6 0 15e+3
R: (MPa) | R, (MPa) k y(°Cc™h di ds n2(MPa™?)(N = 2)
510 400 20 1.5e—3 0.05 0.05 0.01
Y (MPas'/™) n Z (MPa-ss'/™) m
100 10 10 2

Following simulations have been performed for Ty = 20°C and I'=1600s"1.
The value of nominal shear strain at the damage incipience (strong deformation
localization onset) is close to 39%.

Numerical strain components have been drawn versus the nominal shear
strain I" in Figs. 9 to 11. Strains have been obtained by integration from the
corresponding expressions giving strain rates as follows:

) iy s .. p€ P .d
Vij = dij + Wikvkj — vipWp; vij = (elJ’eij’eij’eij) ,
(5.1) + " where
vz] ’U” + vz] At dzy - (dz],dija d%, d”) .

After the onset of damage, damage-related strain contribution increases while
both elastic strain and plastic “regular” rate decrease: as the deformation con-
centrates more and more inside the bands, the mechanism of damage replaces
progressively the mechanism of “regular” plasticity.
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Numerical spin components have been drawn versus the nominal shear strain
I' in Fig. 12. According to (3.45), the rotation rate W represents, in the absence
of damage, the spin w obtained from the anti-symmetric part of the velocity
gradient 1. In this case, the objective derivative is simply the Zaremba-Jaumann
derivative. After the onset of damage, Fig. 12 shows how the increase of damage-
induced spin w9 leads to the decrease of the rotation rate W.

Total strain components have been drawn versus the nominal shear strain I"
in Fig. 13. After a value of nominal shear strain I" close to 10%, strain compo-
nents e;; and egy increase and become significant compared with the strain e;s.
This induces a change of the ratio eja/I" which is initially equal to 1/2. Finite
rotation-related terms which appear in the time derivative (5.1); are directly
responsible for the existence of both strain components e1; and ess. In the small
deformation framework, these strain components would be zero because (5.1);
should be reduced to v;; = d;;. This remark concerns also time derivative of
stress.
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“Regular” temperature has been drawn versus the nominal shear strain I" in
Fig. 14. “Regular” temperature increases indeed until the damage onset. During
the damage process, “regular’ heating contribution decreases while “singular”
heating contribution increases (see (3.32)) in relation to the damage variable
growth.

Components of the thermo-elastic Kirchhoff stress tensor 7 (called S ij)
have been drawn versus the nominal shear strain I" in Fig. 15. The existence
of stress components different from 7y, is a direct consequence of the finite de-
formation framework (see the remarks on strain derivatives). The various stress
contributions to the generalized 2"¢ invariant J3 (called Jo) have been detailed
in Fig. 16. It is noteworthy that, while the shear stress 712 decreases strongly,
the isotropic hardening conjugate force r remains significant. This preserves a
certain strength of the material outside the bands.

The first invariant (density d) of the damage variable D has been drawn versus
the nominal shear strain I" in Fig. 17.

At the end of the calculations, the value of d is about 3. Interpretation of
this result needs returning to the definition (2.2) of the density d of the damage
variable D:

d=d(T",..).

In the case of simple shear, neglecting second order terms (resulting from com-
plete time integration (5.1)), the thermo-elastic shear stress (3.26); is approxi-
mately:

(5.2) T12 = 2#6?2 = 2b6‘f2522 =2 (/L e bf)gg) 6(132
where
(5.3) Doy = diigfiy, 7= (0,1,0).

According to (5.2) and (5.3), with the notation employed in (3.30), one can write:
(5.4) Cro12=p—bd

where (212 represents the current “global” shear modulus and p is the initial
shear modulus.

As shown in Fig. 18 below, the shear modulus can be approximated by a 274
degree polynomial in temperature, in the interval [300 K, 1000 K]:

c1 = 8.1e — 3 GPa/K,

5.5) w(T) = p(0) — 1T — coT? with
( ) (0) = ? c2 = 2e — 5 GPa/K2.



007 T T T T T
Total _—" _
006 |- =TT e
Plastic
0.05 - <
_ 004 b —
® om 4
002 L -
oot | -
Damage ...
a I DT 1
0 0.2 04 06 08 1 12
Nominal shear strain
Fic. 11.
06 T T T T T
os | PR
04 | s 4
03 f e 4
5 e
02 - s =
of T i
0= =——— =
ol 1 1 R P —
0 0.2 04 0.6 08 1 12
Nominal shear strain
FiG. 13. Strains e;; vs. nominal shear
strain I
600 T P S | T T T
500 - b \ -
s i
g \
—_ \‘.
s \
g 4. .
= .
@ -h\A
1 1 1 1
02 03 04 0s 06
ey

Fi1G. 15. Stress vs. nominal shear strain I".

(30]

900 T T T T T
800 e g
700 o Damage <
600 :’/ -
L
\
500 |- ot
| \ 1
2 400 | 1 -
)
300 |- I B
h
200 |- H —
N
100 |- ! ) Rotational -
0 . ! L Lo
[ 0.2 0.4 0.6 08 1 1.2

Nominal shear strain

Strain ej; vs. nominal shear strain I'. F1G. 12. Spin w2 vs. nominal shear strain I".

65 T T T T T
60 - -
55 - -
50 |- -
~ 45 -
e
a0 |- —
35 N
30 f o
25 |- 4
2 1 1 1 1 L
0 0.2 04 0.6 0.8 1 12
Nominal shear strain
FiG. 14. “Regular” temperature vs. nomi-
nal shear strain I".
1200 T T T T T
i Damage (ASB) incipience
=
w

04 0.6 08 1 12

Nominal shear strain

FIG. 16. J§ contributions vs. shear strain I".



MODELLING ADIABATIC SHEAR BANDING ... 31

0 1 | 1 i
0 02 04 0.6 08 1 1.2
Nominal shear strain

FiG. 17. Damage density vs. nominal shear strain I.

Fluctuations in shear modulus at low temperature (from 300 K to 400 K, which
bound the range of “regular” temperature before the onset of damage) are weak,
what justifies that the constitutive model supposes independence of the shear
modulus p from temperature in the elastic potential (3.15). On the other hand,
at high temperature, especially inside the bands, the shear modulus is strongly
affected. As the deformation is accommodated by ASB at advanced stage of
localization, the current “global” shear modulus is close to the shear modulus of
the band material.
Combining relations (5.4) from the present model with (5.5) yields:

(5.6) for T >T;  Ciaiz = u(T*) = p(0)—c1T* —caT** = p(Tg) —bd(T*)
Rearranging (5.6) gives the following expression for d(T™*):

w(Tg) — p(0) + &1 T* + coT*?

(5.7) d(T*) = 2 ;

which verifies dmin = d(T§) = 0.
As a result of highly overestimating evaluation of an upper bound for d =
d(T*), we can state first that temperature inside the band is bounded by the

80

2 N o=
a2 3

©n
@
Y

Shear modulus p (GPa)
3 2

IS
@

;-]

300 400 500 600 700 800 900 1000
Temperature (K)

Fi1G. 18. Shear modulus g vs. temperature for a hard steel
(after JUANICOTENA [28] with 1(0) = 80 GPa).
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melting point. Consequently, the shear modulus is bounded by its value at the
melting temperature. Extrapolating relation (5.5) to the melting temperature,
the expression (5.7) gives the upper bound dpax of density d as:

~w(T3) = w(0) + 1T + 2Ty
_ ’ .

(5.8) dmax = d(Tr)
If u(T;n) = 0, the upper bound dmax can be crudely approximated from (5.8) by:

(5.9) dmax = 7
The value of the material constant b, related to elastic energy degradation
through the degradation of the shear stiffness produced by adiabatic shear band-
ing, governs the upper bound dpax. In the present numerical example, the value
of b is chosen as 15 GPa (Table 1), which gives an upper bound for dpyay close
to 5. In the foregoing case (Fig. 17), the value close to 3 attained for nominal
shear strain of about 1.2 is well below this limit. If prolonged further, the curve
in Fig. 17 would ultimately approach (but never attain) the upper bound limit.
Evolution of the current “global” shear modulus Cja12 versus the nominal shear
strain I" is reported in Fig. 19.

In a tentative conclusion to this evaluation, it is interesting to note that
when b — p, then, according to (5.9), the interval of d(T*) is [0, 1], and conse-
quently, according to (5.4), the interval of Ci212 is [, 0]. In that interval, Cia;o
takes the values p(1 — d(T™)) which can be approximated, following (5.7) and
assuming independence of the shear modulus from temperature before damage
incipience, by 1(0) — ¢;T* — coT*?. The shear stiffness of the representative vol-
ume becomes a function of the “singular” temperature only (with no b explicitly
intervening). Fluctuations in “singular” temperature inside the band cluster are
thus directly and exclusively responsible for fluctuations in the shear stiffness of
the representative volume. This limiting case can be further explored in the fu-

80000 T T T T T

(MPa)

Shear modulus C_1212

0 0.2 04 0.6 08 1 1.2
Nominal shear strain

F1G. 19. Shear modulus Cj2;2 vs. nominal shear strain I.
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ture, especially in the context of mesh sensitivity control when performing finite
element numerical calculations.

The upper bound of d(T™) being related to the value of shear degradation
constant b (dependent on particular material) may represent some inconvenience
in practical applications. Normalizing definitely the function d(7™) by fixing
its maximum to, say e.g. 1, necessitates some technical modifications of the
preceding equations (this will obviously shift in parallel the actual limit value of
dmax = 1 for b — ). This subject will not be analysed here.

The components of the damage force tensor k (called £_ij) have been drawn
versus the 1 invariant (density) of the damage variable in Fig. 20 and versus
the nominal shear strain I" in Fig. 21. The damage conjugate force increases with
the nominal shear strain. At the onset of damage, the component kj, diverges
from ki1 and k33 to increase more strongly in the damage process.

Different loading conditions have been imposed in shear to test the response
of the model. Following effects have been illustrated in Figs. 22 and 23:

e nominal shear strain rate I" effect on stress-nominal strain response;

e initial temperature T effect on stress-nominal strain response.

Figure 22 shows that instability appears earlier when the nominal shear strain
rate is higher. This agrees with the experimental investigations. Concurrently the
influence of the nominal shear strain rate on stress increase is higher after the
onset of damage.

Figure 23 shows that instability appears earlier when the initial temperature
is lower. Numerical values of nominal shear strain I" at the onset of localization
do not agree exactly with experimental values obtained in [5]. The influence of
the nominal shear strain rate on stress is higher before the onset of damage.
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F1G. 20. Damage force k vs. damage vari- Fi1c. 21. Damage force k vs. nominal shear

able density d. strain I.
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Shear behaviour - Rate effect - 200 C Shear behaviour - Initial temperature effect - 1600 s-!
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F1c. 22. Shear stress vs. nominal shear Fic. 23. Shear stress vs. nominal shear
strain I", Tp = 20° C. strain I', I' = 1600 s .

6. Concluding remarks and perspectives

An elastic/viscoplastic constitutive model has been elaborated involving dam-
age and damage-induced anisotropy produced by adiabatic shear banding. The
latter deterioration mechanism has been captured through a second-order ten-
sorial damage internal variable whose evolution is considered as rate-dependent
(viscous) in some formal analogy to the plastic flow evolution.

As pointed out by PERZYNA et al. [11, 12], rate dependency favours main-
taining ellipticity of the equations governing the evolution problem related to the
class of constitutive models including the present one. The viscosity-related reg-
ularizing influence of the viscoplasticity and damage respective relaxation factors
Y and Z (together with the exponents n and m; see Egs. (3.39)-(3.40)) allows
to overcome local instabilities, as it is shown in the numerical simulations above
(Sect. 5).

The modelling methodology put forward herein in the finite elastic-plastic
strain Eulerian framework has had to face the difficulties inherent for this for-
mulation to cope with anisotropy effects and objectivity requirements combined
[15]. As there is no clear consensus of the scientific community on this subject
(while some convergent methodologies can be noticed, see e.g. LUBARDA’s study
[17] including damage and EKH and RUNESSON [16]), the Mandel-Sidoroff based
approach has been favoured and adapted in this study. The analogy advanced
here between an adiabatic shear band (ASB) cluster and a “super-dislocation”
leads to a fairly simple evaluation of the damage-induced spin. The objective
rotational derivatives can thus be operational within the model framework. By
combining these specific factors, relevant to kinematics and anisotropy hypothe-
ses, with thermodynamic postulates (existence of the free energy and dissipa-
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tion potentials, and their consequences), a coherent model could be formulated.
Some simplifying assumptions, regarding notably the strain hardening descrip-
tion and small elastic strain, have been made. The assumption of a single damage-
plasticity yield function allows to express the strong coupling between the dissi-
pative mechanisms at stake.

Constraints relative to consistent formulation of discretized boundary value
problem and to relevant numerical implementation of the model have constituted
a significant guideline to the formulation presented. Those aspects will be pre-
sented in details in forthcoming papers. Another question concerns the number
and nature of material constants involved in the formulation presented. A com-
promise has been searched between conceptual pertinency of the constitutive
model vs. complexity of mesomechanical and metallurgical phenomena and the
tractability of the formalism advanced when applied to high velocity impact and
penetration engineering problems. Those applications are currently under way.

Appendix A
2 50 s
Cijkt = pom = Mij0k + p(dikdji + 05djx) — a (%‘Dkl + Dijékl)
-b [5ik5ﬂ +8uDjk + Diydjy + f)it5jk] ;
Eijri = p ﬂ— = —a [6"66 + ﬁB((Y 051 + 050, )]
17kl anfjaﬁkl 17kl 2 1k?jl 95k
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T -
17kl £o aﬁijaﬁkl
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OAP Or ORy

EQ° = _ 0 Qo
9T Op a(aT S)
OAP Or
0 _ _ . 0q0
BS§’ = o T a@"S
E+ 8% = —a—
then

EQ°-BS® = —a—Q".
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