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THE ELECTROELASTIC response of a penny-shaped crack in a piezoelectric cylinder of
finite radius is investigated in this study. Fourier and Hankel transforms are used to
reduce the problem to the solution of a pair of dual integral equations. They are then
reduced to a Fredholm integral equation of the second kind. Numerical values of the
stress intensity factor, energy release rate and energy density factor for piezoelectric
ceramics are obtained to show the influence of applied electrical loads.

1. Introduction

MECHANICAL RELIABILITY and durability of piezoelectric ceramics offer im-
portant considerations in the design of smart structures and devices. In recent
years, significant efforts have been made to the study of fracture behavior of
piezoelectric ceramics [1, 2]. In the theoretical studies of the piezoelectric crack
problems, the electrical boundary condition imposed across the crack surface
remains a debating issue. There are two commonly used electrical boundary
conditions. PAK [3] has assumed the crack face to be free of surface charge
(the so-called condition of impermeability) while SHINDO et al. [4] have as-
sumed that the normal component of the electric displacement and the tan-
gential component of the electric field are continuous across the crack face
(the permeable crack boundary condition). The impermeable crack is an in-
appropriate model [1, 5]. Recently, NARITA and SHINDO [6] obtained a crack
growth rate equation of a plane strain slit-like permeable crack parallel to the
edges of a narrow piezoelectric ceramic body under Mode I loading. The re-
sults indicated that under applied uniform strain, positive electrical fields (elec-
trical fields in poling direction) impede crack propagation while negative elec-
trical fields (electrical fields applied opposite to the poling direction) aid the
crack propagation. SHINDO et al. [7] also made a finite element analysis (FEA)
for the single-edge precracked piezoelectric ceramics for various electric fields
to calculate the total potential energy release rate and mechanical strain en-
ergy release rate for permeable and impermeable cracks, and performed the
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single-edge precracked beam tests on piezoceramics to verify the theoretical
predictions of the influence of the applied electric field on the fracture be-
havior of piezoceramics. They concluded that for applied displacements, the
total potential energy release rate and mechanical strain energy release rate
for the applied positive electric field under the permeable boundary condition
are lower in magnitude than those for the applied negative electric field. This
explains an increase in the fracture initiation load in the presence of a posi-
tive electric field as observed in the experimental studies. For applied load, the
positive (negative) electric field increases (decreases) the total energy release
rate and mechanical energy release rate. The FEA results for applied force are
in agreement with experimental findings of PARK and SUN [8] and SHINDO
et al. [9].

The strain energy density theory has opened the door to a new and fruitful
area of research in fracture mechanics [10]. In recent works, the energy density
criterion was applied to determine the piezoelectric crack growth segments for
conditions of positive, negative and zero electric field based on the imperme-
able assumption. Failure stresses of Mode I and II cracking were also obtained
[11]. It is evident that this assumption is valid only for modeling flaws of finite
thickness.

This paper considers the electroelastic problem of a penny-shaped crack in
a piezoelectric circular cylinder under tensile loading. The method of solution
involves the use of Fourier and Hankel transforms to reduce the mixed boundary
value problem to a pair of dual integral equations. The solution is then given in
terms of a Fredholm integral equation of the second kind. The stress intensity
factor, energy release rate and energy density factor are determined and numeri-
cal results are shown graphically to demonstrate the influence of applied electric
loads.

2. Problem statement and basic equations

Consider a penny-shaped crack of radius a embedded in a long circular piezo-
electric cylinder of radius b (b > a). It is assumed that the center of the crack
is located on the axis of the piezoelectric cylinder and its plane is normal to
that axis. Figure 1 shows the geometry of the problem where the position of
a point is defined by the cylindrical coordinates (r,6,z). In this coordinate
system, the crack occupies the region z = 0, 0 < 0 < 27, 0 < r < a. The
piezoelectric cylinder is transversely isotropic with hexagonal symmetry; it is
subjected to a far-field normal stress 0,, = 0. Two possible cases of electri-
cal boundary conditions are considered at infinity. The first case is a uniform
electric displacement, D, = D,; and the second is a uniform electric field,
E, =F.
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Fic. 1. Geometry and loading of a piezoelectric cylinder with a penny-shaped crack.

The constitutive equations for piezoceramics poled in the z-direction can be
written as

Uy )
Orr = Cl1try + C12—~ + C13Us,2 — e31 E,

Ur
099 = C12Urr + C11 ? + Cc13Uz,, — es1 B,
(2.1) >

Ur
Ozz = C13Ury + 6137 + c33u,,, — ez E;

Ozr = C44 (ur,z + uz,r) —esEr )

D, = 615(ur,z + Uz,r) +enEr

(2.2) -
D, =e3 (Ur,r + 7) + e33u, , + e33l,
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In Egs. (2.1) and (2.2), o,r,099,02z, 0-r are components of the stress tensor; D,
and D, the components of electric displacement vector; u, and u, the compo-
nents of displacement vector; E, and E, the components of electric field vec-
tor; ¢11, €12, €13, C33, C44 the elastic moduli measured in a constant electric field;
€11, €33 the dielectric permittivities measured at constant strain; and e;s, e31, es3
the piezoelectric constants. A comma implies partial differentiation with respect
to the coordinates. The electric field components are related to the electric po-
tential ¢(r, z) by

Er = _¢,r
(2.3) }
Ez = “d’,z

The governing equations can be written as:
Up,r Uy )
c11 (Ur,rr + > ;5) t CaqUrzz

+(c13 + ca4)uzr; + (€31 + €15)Pr, =0
(2.4)

Ur 2 Uz,r
(Cl3 + C44) Urrz + T + 33Uz 2z + Ca4 | Uz pr + o

Tors (qs,rr + "%) e 65 g =0

/

u u
(2.5) (e31 + e1s) (Ur,rz + ;z) +e15 (Uz,rr + :_T)
b _
+ €e33Uz 2z — €11 ¢,rr + T - 533¢,zz =0.

In a vacuum, the constitutive equations (2.2) and the governing equations (2.5)
become

D, = ¢kE;,,
(2.6)
D, = ¢E,;
br _
(27) d),rr + T + ¢,zz = Oa

where ¢ is the electric permittivity of the vacuum.
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Referring to the semi-infinite region z > 0, 0 < r < b, 0 < 6 < 2m, the

boundary conditions can be expressed in the form

(2.8) 0or(r,0) =0 (0<7 <D),
022(r,0) =0 (0<r <a),
(2.9)
uy(r,0) =0 (a<r<b),
E.(r,0) =Ei(r,0) (0<r<a),
(2.10)
¢(r,0) =0 (a<r<b),
(2.11) D,(r,0) = Dg(r,0) (0<r<a),
(2.12) orr(b,2) =0,
(2.13) oglhs 2) =0,
(2.14) D, (b,2) =0,

(2.15) CaseI: 0,,(r,2) =00, D,(r,z2) =Dy (0<7<b2z— 0),

(2.16) CaseIl: 0,,(r,2) =00, E,(r,2)=FEx ((0<71r<bz— 00),

where the superscript ¢ stands for the electric field quantity in the void inside

the crack. The far-field normal stress oo is expressed as

C100 —elDoo (Case I),

(2.17) o
oo —e2E  (Case II),
where
(218) ¢ = (c11 + c12){(c11 + c12)cs3 — 2(cf; + 2c13e33e31 /€33 — cazed; /es)}
| (€11 + &12){csa(cn + ci2) — 2¢;3}
(2.19) e = (en + 012)€§3/633_— 2013631/633’
C11 +C12
(2.20) e = (c11 + c12)ess — 2613631‘

€11 + C12

bl

Note that og is a uniform normal stress for a closed-circuit condition with the
potential forced to remain zero (grounded) and ¢;7 = ¢17 + egl/ €33, C12 = C12 +

egl /€33, C33 = c33 + e§3 /€33 are the piezoelectric stiffened elastic constants.
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3. Solution procedure

Assume that the solutions u,,u, and ¢ are of the form

9 3
up(r,2) = - Z/[ajAj(a) exp(—y;az)Ji(ar)
0

+a;-Bj(a)Il (fy;ar) cos(az)]da + axr,

(3.1) 3 @
uy(r, 2) = —;Z/{—LAj(a) exp(—yjaz)Jo(ar)
0

1 /
+— Bj(a)lo(vjar) sin(az)} do + by 2,
i

Y5

3 % '
62 ¢ =23 [{-Zaj@ ew(—yan)hfan)
0

b ,
+—],Bj(a)Io(fyjar) sin(az)} da — cx2,
K

where Aj(a) and Bj(a) (7 = 1,2,3) are the unknowns to be determined, Jy()
and Jp() are the zero and first order Bessel functions of the first kind, and
Iy() and I;() are the zero and first order modified Bessel functions of the first
kind, respectively. The real constants @ec, b0 and ceo will be determined from
the far-field loading conditions, and 732,7;-2,%, bj,a;-, b;- ( =1,2,3) are given in
Appendix A. Application of the Fourier transform to Eq. (2.7) yields

(3.3) ¢ = %/C(a) sinh(az)Jy(ar)da (0 <y <a)

0

where C(a) is also unknown. The stresses, electric field intensities and electric
displacements can be obtained by making use of Egs. (2.1)—(2.3), (3.1) and (3.2).
The electric field intensities and electric displacements in the void inside the crack
can also be obtained from Egs. (2.3), (2.6) and (3.3).
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By applying the far-field loading conditions, the constants @, boo and ceo
are evaluated as

CasE 1.

1

0o = g{—(€31633 + €13€33)000 — (C13€33 — c33€31)Doo }
1 2

biss = 5 [{(011 + c12)€3s + 2e3, }ooo + {(c11 + c12)e33 — 2013631}1?00],

(3.4)

1

Coo = 5 [{2013631 — (c11 + c12)es3}o + {(c11 + c12)e3s — 20%3}1700] ;

6 = (c11 + c12)(casess + e33) + 2(—clzess + cazed; — 2ci3e3ess).

Cask II.
a : { + ( es)F. }
= C130 Ci13€ — C )
00 22, —caalen + ena) L 13000 13€33 — C33€31) B
1
35) b = [— +
(3.5) oo 232, — ca3(cur + c12) (c11 + c12)000
+ {2013631 — (e + 012)633}Ew]7
Coo = Fo.

The boundary conditions of Eqgs. (2.8) and (2.10) lead to the following relations
between unknown functions:

(3.6) %Al(a) + %Az(a) + %Aa(a) —0,
(3.7) %Al(a) + %Ag(a) + %Ag,(a) ~0,
where

(3.8) fj == C44(aj’)’J2 + 1) - 815bj (] = 1,2,3).
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Application of the mixed boundary conditions in Eqgs. (2.9) gives rise to a pair
of dual integral equations:

3 o0
aFD(a)Jy(ar)d Z/ag]'y] 'y]ar)da
Jj=17y

=—gaoo (0<r<a),

(3.9)
/D(a)Jo(ar)da =0 (a<r<b),
0
where
 A(@)  As(a)  As(a)
(3.10) D(a) = & - 4 4
3
(3.11) F=Y"g;d
j=1

(312)  dy =71(b2fs —b3f2), do=2(b3fr —b1f3), d3z=y3(b1f2—b2f1),

(3.13) gj = ci13aj —c33 +e3zb; (5 =1,2,3).

Through Egs. (2.12)-(2.14), the unknowns B;(a)(j = 1,2,3) are related to the
new parameter D(a) and are given in Appendix B. Note that the only unknown
in Egs. (3.9) is D(a) since A;(c), Bj(a)(j = 1,2,3) are related to D(a) through
Egs. (3.10) and (B.1) in Appendix B.

The solution of a pair of dual integral equations (3.9) may be obtained by
using a new function @(§) and the result is

1
(3.14) D(a) = —%”a? / &(¢) sin(aat)dt.
0

The function &(£) is governed by the following Fredholm integral equation of
the second kind:

1
(3.15) (¢ + / S(n)K (€,m)dn = €.
0
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The kernel function K (£,7) is
4 3 o0 3
316) K€ = 253 0] [ =3 > dni{viaMy(@Ka(riad
: 0 :

— Nji(a) K ('y,/-ab)} sinh('y;aan) sinh('y;-aaf)da
in which Ky () and K/ () are, respectively, the zero and first order modified Bessel
function of the second kind, and Mj;(c), Nji() (¢,5 = 1,2,3), A(a) are given
in Appendix B.

The displacement components u,, u, and electric potential ¢ near the crack
border are

ki1 3 .
v = F ]Z_:lajdj{(COS291+’y?sm291)1/2+cosol}1/2,
(3.17)
_k
My = 1\/—2 J{(Cos 01 + 2 sin® 61)"/2 — cos 6, }1/2,
=1V

3
k1 b;d; 5
(3.18) ¢ = —I—F—ﬂ E —%{(COSQ& + 7]2- sin 0;)1/2 — cos 6, }1/2,
; j

and the singular parts of the strains, electric field intensities, stresses and electric
displacements in the neighborhood of the crack border are

Erp = 2F\/_Za,dR (61),

3
aJ'y +1)
(3.19) | Ermem = 4F\/_Z 7; R;(ol),
gy = — 2F\/_ZdR601
- .7 S
B = 2F\/_Z i L)

(3.20)

E,=— ZF\/_ZbdR (61);
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Opp = 2F\/_X:m]dR (61),
(3.21) Ouz = 2F\/_ZngR (61),

s f]] S
Our = — 2F\/—Zl R

.7 ]
’I" — Z R 0]
2F\/_ =
(3.22)
hjd;R;(61)
He 2F\/_ Z 2
where
(3.23) hj = esia; — es33 — es3bj,
. 1/2
RO = (cos? 0; + 'y? sin® 6;)/2 + cos 6, /
J cos? 01 + 73 sin® 6, ’
(3.24)
. 1/2
RU6) = — (cos? 6, + ’yJ? sin? 0,)'/2 — cos 6; /
J cos2 0; + 7]2. sin® 6,

and the polar coordinates r; and 6 are defined as

(3.25) rn o= {(r—a)?+22}2

(3.26) 0 = a.rctan( - )
r—a

The stress intensity factor k; for the permeable crack is obtained as

(3.27) ki = lim {2(7‘ = a)}l/zau(r, 0) = %aoo\/aqsu).

r—at
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The electric displacement intensity factor kp is also given by

, 1/2 1
(3.28)  kp= lim {2(7‘ - a)} D,(r,0) = | = Zl hjd; | ki
]:

The stress and electric displacement intensity factors for the impermeable crack
are discussed in Appendix C.

By using the concept of crack closure energy and the asymptotic behavior
of stresses, displacements, electric displacement and electric potential near the
crack border, the total potential energy release rate G may be expressed as

Aa
g 1
(3.29) G= AI;I—I»lo po /{azz(rl)uz(Aa —r1)
0

+ Uzr(rl)ur(Aa —r1)+ Dz("'l)d)(Aa - Tl)}d"'la

where Aa is the assumed crack extension. Expression relating G for the per-
meable crack to k; is obtained by substituting representations for the stresses,
displacements, electric displacement and electric potential in the vicinity of the
crack into Eq. (3.29) and taking the limit. The result is

3

3 3
m d; bid.
(3.30) G = —z FE:_J._E:hdeE: J‘J k2.
g=1 ’YJ j=1 j=1 7.7

The mechanical strain energy release rate Gy includes only the mechanical en-
ergy released as the crack extends and is given by

Aa

. 1

(331) GM = Allllr_lzo K(; / {azz(rl)uz(Aa _ 7‘1) + azr(rl)u,(Aa - T‘1)}d7‘1.
0

Writing the mechanical strain energy release rate expression for the permeable

crack in terms of the stress intensity factor, we obtain:

3
T d;
32 =—|5> 2|

The total potential and mechanical strain energy release rates for the imperme-
able crack are also given in Appendix C.

When the stress intensity factor k; and the electric displacement intensity
factor kp are present along the crack border, the fracture criterion should depend
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on a combination of k; and kp reaching a critical value. Such a criterion can be
developed by referring to the amount of energy stored in a volume element ahead
of the crack. The critical value of this energy density will be used to determine
whether the piezoceramic has reached the state of failure or not [10, 11]. For the
piezoceramic, the energy stored in the volume element dV is

1 1
(3.33) dW = {5((}"6" + Opr€ar + OrzEry + 022€5,) + §(DTE‘T + DZEZ)} dv.

Substituting Egs. (3.19)-(3.22) into Eq. (3.33) yields the quadratic form for the
energy density function

daw 1 S
—— = —(am +ap)ki = =
T1 T1

(3.34) .

in which the coefficients aps and ag depend on the angle 6, and they are given by

3 3
1
(3‘35) apy = W E mjdej(()l) E ajd,-R§(91)
j:]_ =1

3

3 3
d; . " .
+ E fJ JR (61) E itesy; + 7 Rs(01 E gjde;(el)E d;Rj(61) ¢,

3 .
(3.36) ag = 8—;2— {Z %R‘;(gl) Z b; d] 2% R (61)

1=1 J j=1 ’Y]

3 3
- Z h;d;RS(61) ijde§(01)} .

The magnitude, S, of the 1/r; energy field in Eq. (3.34) will be referred to as
the energy density factor for the permeable crack. The energy density factor for
the impermeable crack is also given in Appendix C.

For a penny-shaped crack under tensile loading, fracture will always occur in
the normal plane. SiH [10] has assumed that crack initiation starts in a radial
direction along which the energy density is a minimum. Necessary and sufficient
conditions for S to have a minimum value are

s &S

3.37 — = —
S @ -0 @

> 0.
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Rapid crack growth occurs when the minimum energy density factor reaches a
critical value:

aw
(3'38) Smin = Se = T1¢ <W>cy

where 7. represents the last ligament of slow crack growth, just prior to the onset
of rapid fracture. Each increment of stable crack growth r11,712, ..., 715, ..., T1c UpP
to the rapid crack propagation is determined by the condition

(3.39) (ﬂ) S % S 5
av /). rm ro T1; T1c

If the fracture process due to increasing electromechanical load is unstable, then
each increment of crack growth will increase monotonically, i.e.

(3.40) T <7< <71y <--- < Tpe.

The corresponding energy density factors will also increase according to S;/r1; =
const:

(3.41) 51<8 < <8<+ < 8.

A stable fracture process corresponds to decreasing increments of the crack
growth:

(3.42) T11>7‘12>"'>'I‘1j>"'>7"1a,

where 71, is the last increment of growth before the crack arrest. A corresponding
decrease in the energy density factors takes place:

(3.43) S51>8>--->8;>--->8,.

In the piezoceramic, a combination of the conditions described by Eqgs. (3.40)
and (3.42) can exist. That is, the increments of crack growth may either increase
or decrease, depending on the material properties and the nature of combined
electromechanical loading.

4. Numerical results and discussion

The determination of the stress intensity factor, energy release rate and en-
ergy density factor for the permeable crack requires the solution of the function
®(&). The solution of the Fredholm integral equation of the second kind (3.15)



288 F. NARITA, S. LiN, Y. SHINDO

governing ®(¢) has been computed numerically by the use of Gaussian quadra-
ture formulas. Once this is done, k;,G and S can be found from Egs. (3.27),
(3.30), (3.31) and (3.34). The simultaneous Fredholm integral equations of the
second kind (C.11) were also solved numerically to yield the values of the func-
tions ®;(1) and P5(1). These values were then inserted into Egs. (C.13) and
(C.14) to determine the stress and electric displacement intensity factors for
the impermeable crack. The energy release rate and energy density factor were
calculated by using Egs. (C.15), (C.16) and (C.18)—(C.20). The piezoelectric
materials are assumed to be the commercially available piezoceramic P-7. The
elastic, piezoelectric and dielectric properties of material are listed in Table 1.

Table 1. Material properties of a piezoelectric ceramic P-7.

Elastic stiffnesses Piezoelectric coefficients Dielectric constants
(x10'°N/m?) (C/m?) (x1071°C/Vm)
Ci1 €33 C44 C12 C13 e3l €33 e1s €11 €33
P-7 13.0 119 25 83 83 -10.3 14.7 13.5 171 186

Figure 2 shows the normalized stress intensity factor wk; /200a'/? as a func-
tion of the crack-radius to cylinder-radius ratio a/b for different values of the
normalized electric displacement e; Do /c10¢ (Case I) and for the permeable
(exact) and impermeable (approximate) cracks. The data are normalized by
the stress intensity factor 209a'/?/7 of an infinite P-7 piezoelectric ceramic for
Dy = 0 C/m? corresponding to the applied uniform displacement. A similar
phenomenon was observed for the stress intensity factor of the permeable and
impermeable cracks. Note that an increase of a/b causes an increase in the stress
intensity factor. When electric displacement is applied, which is equivalent to
applying a surface charge, k;/ 200a!/? increases or decreases depending on the
direction of the electric displacement. The stress intensity factor k; normalized
by 204a'/?/m corresponding to the applied uniform stress for the permeable
and impermeable crack models is independent of the normalized electric dis-
placement e;Doo/C1000. A similar explanation applies to the results shown in
Fig. 3 for Case II as the normalized electric field ea E /00 is varied. In the case
of electric field loading, which can be more readily achieved in the laboratory by
applying a constant potential difference across the piezoceramic cylinder, apply-
ing the field in the positive direction decreases the stress intensity factor, whereas
the negative electric field increases it. For e; Do /c109 — 1.0 or e2Eo /09 — 1.0,
wky /200a'/? approaches zero. The stress intensity factor is also studied for dif-
ferent conditions of the electric potential at infinity of the piezoceramic cylinder:
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F1G. 3. Stress intensity factor versus a/b for different electric field e2 E /00 (Case II).
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an open-circuit condition where the electric potential remains free (zero electric
displacements) and a closed-circuit condition with the potential forced to remain
zero (grounded). Note that the stress intensity factor for E,, = 0 is smaller than
the one for Dy, = 0.

Figure 4 shows the total energy release rate G for the permeable crack under
applied uniform displacement versus normalized electric displacement e; D, /c100
(Case I) for a/b = 0.5, where the result has been normalized by the energy re-
lease rate G pg for Do, = 0. For comparison, the mechanical strain energy release
rate G for the permeable crack, total energy release rate G and mechanical
strain energy release rate G sy for the impermeable crack are also included in the
figure. Energy release rates Gy, Gy and Gy are normalized by the mechanical
strain energy release rate G prpo, total energy release rate Gypo and mechanical
strain energy release rate G psrpo for Doo= 0, respectively. Comparing the results
from the total and mechanical energy release rates, little difference is observed.
The total energy release rate for the permeable crack is lower for positive electric
displacements and higher for negative electric displacements. Hence, a positive
electrical load will tend to slow the crack growth and a negative electrical load
will tend to enhance the crack growth. The numerical results for the permeable
crack are found to be in excellent agreement with the observations of SHINDO
et al. [7]. On the other hand, when a positive electrical load is larger, a negative
total energy release rate is produced for the impermeable crack. The imper-
meable assumption leads to an overly attractive prediction regarding the crack

VI —
Permeable crack
Total G
. esssasesas Mechanical Gy
L Impermeable crack
N {»  SEs=ES Total G,
Mow g TuEmEes Mechanical Gy

G /Gpo
-
1

a/b=0.5 -
Applied displacement by

AN | P SV (R T i
-%.5 0 0.5
elDoo /C]O'O

FiG. 4. Energy release rate versus electric displacement e; Do /c100 (Case I).
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arresting ability of electrical loads in cracked piezoceramics. Figure 5 shows the
corresponding result for Case II. Here the data G, Gy, G and Gy have been
normalized by the energy release rates G go, GpmEo, Greo and Gpyrgo for Eo = 0,
respectively. The presentation of data for the impermeable crack causes confu-
sion in using the electrical boundary conditions on the crack face. Figure 6 gives
the plot of the normalized total energy release rate Gy/Grpo for the permeable
and impermeable cracks under applied uniform stress versus normalized electric
displacement e; Dy /c105 (Case I) for a/b = 0.5. Also shown is the normalized
mechanical energy release rate Gyar/Grapo-

;SRR LRI Lo b L S
i Permeable crack
% Total G
\\ ———— Mechanical Gy,
SN Impermeable crack
WRY 0 EeEES Total G,
"\\ ------- Mechanical Gy,
)\
2
1F .
Q
O
L D\
A)
\
\\
a/b=0.5 \
Applied displacement \\ i
N
PR ST S S Y SR ST ST S LV S S
-(6.5 0 0.5 1
eono /60

F1G. 5. Energy release rate versus electric field e2E /oo (Case II).

Figure 7 shows the corresponding result for Case II. Appling the electrical
load in either direction decreases the total energy release rate for the imper-
meable crack and eventually arrests the crack growth. However, experimental
investigation does not confirm this crack-arresting behavior. The total and me-
chanical energy release rates for the permeable crack are independent of the
electrical loading.

Figure 8 gives the variation of the normalized energy density factor 72S/4ac3
with angle 6, for different values of e; D /c109 (Case I) and a/b = 0.5. Exclud-
ing the extreme values at the crack boundaries, all curves for the permeable and
impermeable cracks possess minimum at 6; = 0. The variation of 72S/4ac? with
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FIG. 6. Energy release rate versus electric displacement e; Do /c100 (Case I).

6, for Case II is found to be similar to that for Case I. Figure 9 shows the crack
growth segment r1; (energy density factor S;) for the permeable crack under ap-
plied uniform displacement versus normalized electric displacement e; Do /c100
(Case I) for a/b = 0.5 and 6; = 0, where r1; (S;) has been normalized by the
crack growth segment r1po (energy density factor Spg) for Do, = 0. Also shown
are data for the impermeable crack normalized by r17po (Srpo) that corresponds
to the crack growth segment (energy density factor) for Do, = 0. The presence
of positive electric displacement D, leads to a decrease in the crack growth
segment (energy density factor) for the permeable crack. In contrast, the crack
growth segment (energy density factor) increases as the electric displacement
D increases in the negative direction. Figure 10 shows the corresponding re-
sult for Case II. The data r1; (S;) and 7157 (Sj1) have been normalized due
to r1g0 (Sgo) and mi1po (SrEo) for Eo = 0, respectively. For the permeable
boundary condition, no difference in the effects of the electrical loads on crack
propagation is found for the criteria (the stress intensity factor, total energy
release rate, mechanical strain energy release rate and energy density factor).
Figures 11 and 12 exhibit the dependence of the crack growth segment (energy
density factor) for the permeable and impermeable cracks under applied uni-
form stress on €1Dwo/C1000 and eaEo /0o, respectively. Based on the energy
density criterion for the impermeable crack, we cannot explain the experimental

results.
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5. Conclusions

The electroelastic problem of a piezoceramic cylinder with a penny-shaped
crack has been theoretically analyzed. The results are expressed in terms of
the stress intensity factor, energy release rate and energy density factor. It is
found that the stress intensity factor tends to increase with increasing crack-
radius to cylinder-radius ratio, depending on the electrical boundary condition
on the crack face. For the permeable boundary condition, positive electrical loads
impede crack propagation in piezoelectric cylinder under applied displacement
while negative electrical loads aid the crack propagation. The experimental study
has shown that crack growth inhibition corresponds to a positive field. For ap-
plied stress, electric fields have no effect on crack propagation. No consensus is
reached on the fracture criteria for the impermeable piezoelectric cracks, and
the stress intensity factor, energy release rate and energy density factor criteria
for the permeable crack are superior to the fracture criteria for the impermeable
crack.
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Appendix A

'yJ? (7 = 1,2,3) in Egs. (3.1), (3.2) are the roots of the following characteristic
equation:

(A.1) a0y’ + boy* + coy® +do = 0,
where

ag = cqq(c3zess + €33),

2 2
bo = —2case15€33 — ci1€33 — c33(Cag€rr + cr1€33) + €33(c13 + ca4)

+ 2e33(c13 + caa) (€31 + €15) — ci4€s3 — caz(esr + e1s)?,
(A.2)
co = 2c11€15€33 + 0446%5 + ci1(c3z€nr + casez3) — €11(c13 + 044)2

— 2e15(c13 + caa) (€31 + €15) + ciqgenn + caa(esr + e15)?,

do = —c11(caaers + €s)
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and, 7;-2, aj, bj, a'j, b;- (j =1,2,3) stand for the abbreviations:

/ 1
7j

(e31+ 615)(0337]2 —cqq) — (c13 + 044)(6337]2 — e1s)

(A.4) &4 = (044')’]2' - cll)(633’)’12- —e15) + (c13 + caq) (€31 + 615)7]2 )
(A.5) b = (044712 —cin)a; + (c13 + caa) ,
es31 t+exs
L.6) a; = a7},
(A.7) b = —b;

Appendix B

The unknowns Bj(a)(j = 1,2,3) can be related to the new parameter as

3 o0
Bi(a) = —)Z : [ (M1u(@)Gi(s, @) + Nul)Gi(s, ), }D(s)ds,
=l 9
R | ,
(B.1) By(a) = m Zdi/{le(a)G (s, @) + Noi(@)G,(s, @), }D(s)ds
=1 0
Bale) = 575 2 [ (Mau(@)Gi(s,) + Na(@)C(5,0),}D(s), d
=1 0
where
Cilpa) =2 Ty i)
ne T2 +a2 0"
(B.2)
Gi(s,a) = 2 i —5J1(bs),
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Mii(a) = mi{gz(a)r3(a) — g3(a)rz(a)},
Mai(a) = mi{g3(a)ri(a) — qi(a)r3(a)},

M3si(a) = mi{qi(a)ra(a) — g2(a)r1(a)},

((312——011M{q2(a)7.3 (@) — q3(a)r2(a)}

Nii(a) = b

+${r2(a>p3<a) = rs(@lpa(e)} + T pa(edas(e) — ps(edaa(e)),

(24) (c12 — c11)ai
Nai(@) = = {gs(e)r1(a) = qr(@)rs ()}
+§g{r3(a)p1 (@) — r1()pa(a)} + %{ps(a)ql(a) — pi(e)as(@)},
Nis(o) = “”%“”"‘{m(am( ) - (I (@)
{m )pa(@) — ra(@)pr (@)} + %{pl (@)g2(a) — p2(@)q ()},
(z' =1,2, 3);
(B.4) A(a) = pr(a){g2(a)r3(a) — gs(a)ra(a)} + p2(a){g3(a)ri(a)
— qi(@)r3(@)} + p3(@){q1 (@)r2(@) — g2(a)r1 ()}
and
pi(a) = ayimilo(v;ab) + vinil (v;ab),
(B.5) gi(@) = fili(y;ab), (i =1,2,3);
ri(a) = nle( ab)
m; = c¢116; — €13 + e31b;,
(B.6)

n; = e1s(aiy? + 1) + end; (i=1,2,3).



PENNY-SHAPED CRACK. .. 299

Appendix C

The impermeable boundary condition becomes
D,(r,0) =0 0<r<a),
(C.1) ( )
#(r,0) =0 (@ <r<b).

The boundary condition of Eq. (2.8) leads to Eq. (3.6). Making use of mixed
boundary conditions of Egs. (2.9) and (C.1), two simultaneous dual integral
equations are obtained:

( 00

/aFllDl(a)Jo(ar)da+/aFlgDz(a)Jo(ar)da
0

3 o0
- Z/ag]'y]B () Io(y;ar)da = —%ooo (0<r<a)
0

(C.2) 4 p
/Dl(a)Jo(ar)da =0 (a<r<b)
\ O

( 00 00
/aFngl(a)Jo(ar)da+/aF22D2(a)J0(ar)da
0

3 o0
(C3) < -3;0/(1 Y Bj(a)Io(y ar)da = ——D* (0<r<a)
/Dg(a)Jo(ar)da =0 (a<r<b),
L 0
where
Di(a) = —Ai(a) + ~As(a) + —As()
R m e s B
(C4)
b0 B
D;y(a) = s Ai(a) + 72142( a) + " — A3z(a);

3 3 3 3
(C5)  Fu=)_gjdj, Fiu=Y gilj, Fu=) hjdj, Fn=) hil;
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(C.6) h=m(fe—1f3), l=7(fs-1) =7r(fi-/7f)

Dy (Case 1),
(C.7) D* =
c00 + e3Eo  (Case II),
(C.8) _ es3(c11 + c12) — 2c13e3 L= 2e31 + s
(c11 + ci2)ess — 2¢2, c11 + ci2 ’

{Mu S a)

P>

i=l

”\

+N1i(@)Gi(s, ) {diD1(s) + ;Da(s)}ds,

1

By(a) = «—— {Ma;()Gi(s, )

-
Il

a
e
HMw

+N2i( ) S Ot)}{d D1 +l DQ )}ds,

D)

i:l

{Mgl S a)

+N3i( ) (s, }{d D1 (s) + 1;Do( )}ds

The unknowns D;(a) and Dy(a) can be found by the same method of ap-
proach as in the permeable case. The results are

1
Di(e) = —F=a? / &,(¢) sin(aag)de,
0

(C.10)

1
Ds(a) = —;,—E-a? / By (€) sin(acé)d.
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The functions @;(¢) and P2(£) in Egs. (C.10) are the solutions of the following
simultaneous Fredholm integral equations of the second kind:

1 1
1(€) + () + / &, () K11 (6, m)dn + / & () Kn2(€,m)dn = €,
0 0

F. F.
(C11)  F@1() + Fo22(6).
11
1 1 -
+/<151(n)K21(€,n)dn+/¢2(n)K22(§,n)dn Rk
0 0 >
The kernels K;;(€,n)(4,7 = 1,2) are given by
o 3
K (&m) 7T2F 291'732/ Z f)’z{')’zaMJz )KO('Y;ab)
0 1=1

Nﬁ(a)Kl('y,ab)}smh( aan) sinh(y aaf)

1=1

o 3
K12 { Tl Zgj /A Z 1'71{’71an,( )KO('Y;ab)
B 0

— Nji(a) K ( 'yzab } sinh(v;aan) sinh(y aa{)
(C.12)

g 3
K2 (&,m) WQF Zhnj/A—Z dirv; {v;aMji(a) Ko (v;ab)

\_/

— Nji(a) Ky ( 'y,ab } sinh( 'yzaan) sinh(y aa{)

3 " 3 ,
Z H xe § 2 e riaM(a) Kol
=" | B &

— Nji(a) K, (v;b)} sinh(y;aam) sinh(y aa{)

Kx(&,n) =

The stress intensity factor k1 and electric displacement intensity factor kp for
the impermeable crack are obtained as

(C13) by = Z0wv/a{@1(1) + 23(1),
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(C.14) = —aoof{F 2L, (1) + F—2§¢2(1>}.

Using the field distribution in front of the crack border, the total potential
energy release rate G and mechanical strain energy release rate Gy for the
impermeable crack are

-3

(C15) G=- il [{(Fquz — FioF) ) s—]

2(F11Fyy — Fi2F5n)? =L U

j=1

3 3 bis
=Y hisi ) L4k
=1 W

Jj=1 j=1 J
bjt

— > ohtiy 2| kb
j=1 j=1

3 3
- . t;
C16) Gu=- ol Ll Dl LR
( ) M 2(F11F22—F12F21){(§7j) 1 (; ]> 1D}

where

sj = djFy — ljFy,
(C.17) T ’

t; = de12 —_ ljFu.

The energy density factor are expressible in the forms

(C.18) S =Sm+ SE,
where
1
(C.19) Sm = =(B1k} + Bokikp + Bskp),

8(F11Fa2 — Fi2Fy1)

1 2 \
8(F11Fay — Fi2F5)? (Baki + Bskikp + Bekp),

(C.20) Sgi=
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(€2
fisi 3. si(ajy? +1)
B = Zm,s, evl)zajsJ 01)+2Z LIRS (8 27—7R2(01)
= =1 Vi b

g=1

w

3
= gisiRE(61) D s RS(6
j=1

J=1

fiti 3 7?2 +1)
ijt] BI)Za]sJRC 61) —22 ! JRS Z ail Rs-(91)
J=1 j=1

3 3 3 3
+ 2 9t B5(00) D i R5(0) = 0 mis;R5(61) 3 astiR5(61)
j=1 j=1 j=1

j=1

3 3 2 3 3
iS; tj(a;y; +1)
-2y ﬁ%R;(ol) YL R0+ D gsiRA01) D tRE(B),
=1 = W i=1 i=1

f] ’ 3 a]'yj +1)
Bs = Zm]tj (61) ZaJt R(61) +2Z LI Rs(9 Z P 41 )
J=1 Jj=1 = =1
3 3
— Zgjthj(()l) thRj(Ol)
j=1 7j=1
3. n, 3. b;s,
Bi=Y ;%Sij(91) > %Rﬁ(f’ Zh s R;j(61) Zb s R
j=1 " j=1 H
3 n; 3. b;s; i 2
Bs == Lt;R5(0:1) Y ZLR3(61) + D hyt;R5(61) D bss;R5(61)
=1 Vi j=1 i j=1 j=1

3
- Z —sJRs(o Z J]’R’ (61) + Zh s;jR 91)ijth§(91)
j=1 j=1 Jj=1

3

TN ST TN Zh S 01>Zb LES(6).

j=1 1 j=1
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