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THE GOVERNING EQUATION for viscoplastic simultaneous torsion and bending of
a prismatic bar is derived. Then a certain particular closed-form solution of this
equation is found; it corresponds to an elliptic cross-section with the ratio of semi-
axes depending on the bending-to-torsion ratio. This solution proves to be optimal
if the optimization constraint is imposed on initiation (nucleation) and growth of
material damage and if the material properties conform to the Huber-Mises-Hencky
failure hypothesis.

1. Introduction

THERE EXISTS a great variety of formulations of optimal design problems of
viscoplastic structures. Viscoplasticity - giving the most adequate description of
mechanical properties of many materials, particularly under dynamic loadings —
brings together the difficulties of the theory of plasticity and of creep mechan-
ics: effective time factor and necessity of separation of plastically-active and
plastically-passive processes, not always described by unique and experimentally
verified criteria for various viscoplastic materials. Further problems pertain to
quasi-static or dynamic loadings, a great variety of constitutive equations, var-
ious approaches to damage, their evolution and final rupture. A comprehensive
treatment of various aspects of viscoplasticity has been given by Perzyna and his
collaborators as a result of his over forty years research, initiated by the most
often quoted fundamental papers [27], [29] and his early monograph [30].
Particularly much attention to optimal design of viscoplastic structures, both
under quasi-static and dynamic loadings, has been paid by CEGIELSKI (partly
with ZyczkowsKl). In most cases the minimal volume served as the design
objective, whereas the optimization constraints were divided into global and
local ones. In the first group the following quantities were classified: the total
energy dissipated during the process, the norm of residual displacements (e.g.
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the maximal residual deflection of a beam), the norm of displacements maximal
in time under impact etc. Local constraints were imposed on the unit dissipated
energy, maximal (in time) reduced stress at individual points of the body, the
minimal or maximal dimension of the cross-section, and similar.

In particular, quasi-static loadings were investigated by CEGIELSKI [5], where
optimal shapes of a cantilever beam were considered as an example. The author
analyzed the dependence of optimal shapes on constitutive equations, on distri-
bution of loading in space and in time, and on the type of constraints adopted.
The remaining papers were devoted to dynamic loadings: CEGIELSKI and ZY-
CZKOWSKI [8] determined optimal shapes of bars under axial impact, CEGIELSKI
[4] considered optimal beams for various impulse shapes, CEGIELSKI and ZY-
CZKOWSKI [9] found optimal thickness distribution in circular cylindrical shells
under dynamic combined loadings, and ZyczKowskl and CEGIELSKI [47] op-
timized beams under transverse impact. CEGIELSKI and ZYCZKOWSKI [10] dis-
cussed optimal bars under dynamic axial loading in the range of finite strains,
CEGIELSK! [6] optimized non-prismatic circular bars under dynamic twisting
loadings, and finally, CEGIELSK1 [7] considered optimal beams under dynamic
bending and axial forces.

We mention also several other papers devoted to optimization of viscoplas-
tic structures, based mainly on sensitivity analysis. ARORA et al. [1] compared
material derivative and control volume approach in the case of the geometrically
non-linear viscoplasticity. ZHANG et al. [41] derived design sensitivity coeffi-
cients by the boundary element method. ARORA et al. [2| LEE et al. [19] used
a Lagrangian description and discussed in detail various constitutive equations
of viscoplasticity. JAO and ARORA [14] considered optimization of viscoplastic
structures described by an endochronic model. LEU and MUKHERJEE [22,23]
discussed sensitivity in finite-strain viscoplasticity. KULKARNI and NOOR [17]
considered two-dimensional viscoplastic structures under dynamic loadings. A
detailed review of optimization of viscoplastic structures is given in the survey
paper by ZYCZKOWSKI [43].

The present paper deals with optimal design of viscoplastic bars under si-
multaneous quasi-static torsion with bending. In view of the neglected dynamic
effects it is assumed that both the twisting and bending moments are constant
along the axis of the bar, hence optimal design is reduced to optimization of the
cross-sectional shape. First the governing equation for viscoplastic torsion with
bending for bars of arbitrary cross-section will be derived. Then a particular
closed—form solution will be found; it corresponds to an elliptic cross section and
generalizes that found by OBERWEIS and ZYCzZKOWSKI [26] for perfectly plastic
materials. Then, following the paper by ZyCczKOWsKI [44] who proved that this
elliptic section satisfies the Drucker-Shield necessary condition of optimal plas-
tic design, we are going to analyze the attributes of optimality of this section in
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viscoplasticity. In particular we shall prove that according to some approaches to
damage mechanics, the initiation (nucleation) of damage starts uniformly along
the whole contour line, hence the shape obtained may be called the ,shape of
uniform viscoplastic strength”.

From among the related papers we mention here those by PIECHNIK [35] who
solved the problem of simultaneous bending with torsion of a circular bar subject
to nonlinear creep, by MEGUID et al. [24] on viscoplastic combined tension with
torsion, by LAU and LISTVINSKY [18] (bending with torsion of a circular cylinder
under creep conditions), finally by Rysz and Zyczkowski [37], who optimized
a thin-walled cross—section under bending with torsion for a given creep rupture
time (the ,shape of uniform creep strength”).

The present paper is based on the following assumptions:

1. A straight prismatic bar is subject to twisting moment M, and bending
moment Mp, changing slowly in time ¢ (quasi-static loading). At the be-
ginning no relation is assumed between the moments, but the solution
obtained will be valid only for proportional changes of these moments.

2. The supports of the bar allow for free warping of all cross-sections. A par-
ticular example of the supports will be described below.

3. The material is viscoplastic and isotropic; in general, elastic strains and
plastic hardening are allowed for, but in the first part of the paper a re-
striction to rigid-perfectly viscoplastic materials will be introduced.

4. The material is incompressible both in elastic and viscoplastic range. It is
governed by the Huber—Mises—Hencky (HMH) failure hypothesis.

5. The analysis is confined to small strains.

2. Governing equations for torsion with bending

Consider a prismatic bar of arbitrary solid bisymmetric cross-section with
the axis z, subject to simultaneous torsion and bending in the principal plane
yz. The twisting and the bending moments are assumed to be constant along
the axis. For example, it will be assumed that the cross-section z = 0 is clamped
(but allowing for free warping), and the cross-section z = [ is free (Fig.1). The
signs of the moments shown in Fig.l are assumed to be compatible with the
paper [44]. Then the distribution of velocities in engineering notation is given by

(Hill [13])

1 .
u = ——nzy + Yyz,
(2.1) 9 = —Zk(—z2+y2+2zz) — dzz,
w = xyz + 'é'?wu(z, Y),

http://rcin.org.pl



754 M. Zyczkowski, E. CEGIELSKI

A Y
7y,

Fi1G. 1. Scheme of the bar.

for any constitutive equation under the assumption of incompressibility and small
strains. In these equations dots denote derivatives with respect to the time t, and
namely s the rate of curvature, ¥ — the rate of unit angle of twist, and wq(z,y)
— the warping function. The strain rates are as follows:

: : | : :
Ex =Ey = _§xy= €z = Yy,

: = s o 31110 3 =g BtU[)
'Yzy'—'os 'Yzy-ﬂ(ay x)) Tzz—ﬂ(aI +y)'

The equilibrium equations are in this case reduced to one equation

(2:2)

0T,z | 0Ty
2, —t+ =
(2.3) p - By 0
with the relevant boundary condition
(2.4) Tzzdy — Tyydz = 0.

The constitutive equations of viscoplasticity are assumed in the form proposed
by PERZYNA (27,28, 30] under additional restriction to the Huber-Mises-Hencky
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hypothesis. In tensorial notation they have the form (with slightly changed no-
tation)

(2.5) éij = Léij + o & VSkiSkl 1 8¢5 ’
e Tm #h V/SkISkl

where s;;, $;;, and é;; denote, in turn, the deviatoric stress, deviatoric stress
rate, and the deviatoric strain rate components, ® is the empirical overstress
function, s, — the isotropic workhardening function, T;, — the relaxation time,
G - Kirchhoff’s modulus and ( ) denotes the Macauley bracket (ramp function).
In our case (2. 5) yields three scalar equations, hence together with (2. 3) we have
four equations for four unknowns o, 7.z, 7.y, and wyg; all these functions depend
on two spatial variables, z and y, and on the time t.

3. A certain exact solution for rigid-visco-perfectly plastic materials

First we restrict our considerations to rigid-visco-perfectly plastic materials.
Then the constitutive equations (2.5) are simplified to the form

v SkiSkl Sij
(31) B‘J = Tm< ([ 1) >_3\/;—f.8_“’

where o denotes the yield-point stress in uniaxial tension. Since the strain rate
distribution is given here by (2.2), we are interested in an inverse form of (3. 1),
in order to calculate the stress components. To this aim we multiply each side
of (3.1) by itself and after contraction obtain

o el

Introducing the strain rate intensity €. and the stress intensity o, by the formulae

. P 3
(3.3) €e = \[gliiéii  Oe=\[5%iSii

we rewrite (3.2) in the form

o i)

The symbol €. should not be confused with the time derivative of the strain
intensity €,; they are equal to each other just in a simple loading processes.
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For plastically active processes (loading) we may invert (3.4) to the form

(3.5) Te = 09 ll 55 T (\/ngée)] :

where the symbol ®~! denotes the function inverse with respect to ®. Equation
(3.1) expresses similarity of deviators, hence, taking (3. 3) into account, we may

write
(. (\/ngée)

Now we define the function ¥ (£2) as follows:

(3.7) % [1 + ¢! (@Tmse)} =V (53) )

hence
(38) Sij = v (Ei) é,‘j.

The argument 2 is here more convenient than ¢,. Returning to engineering
notation and making use of (2.2) we obtain

2 Te . 20{]

(36} S,'J' = §E;eij - Eé—e 51]

O — illjxyﬁ
1_.[ow
(3.9) Tzx, = 511’19 (3_; oE y) :
_ 1. duy

The argument 2 of the function ¥ equals

P Jw ? ow 4
g 0.9, Lo 0 s [
(3.10) € =Y +319 {( g +y) +(8y I) ]

Substituting (3.9) and (3. 10) into the equilibrium equation (2. 3) we obtain the
equation for the warping function (final governing equation of the problem)

: dw, 9w, dw, 0*w, ) [ 0w, -
o1 v{[(Fe-<) (5 1) + (G o) 58] (G2 )9
b (Bwo = 0w, i ow, e (8211.'0 o 1) (awo o a:) 2
Ay ay? oz Y Oxdy oy

ow, .9 8w, ngo) T
+3y(a—y—x)x }4—‘1’(63:2 + 92 =10

http://rcin.org.pl




ON THE OPTIMAL DESIGN OF VISCOPLASTIC. . . 757

where W' denotes the derivative of ¥ with respect to its argument €2, In linear
elasticity we have obviously ¥' = 0, in (3.11) just the last term remains, and
the warping wg is a harmonic function (HUBER [13]).

The nonlinear second-order Eq. (3. 11) is rather complicated and its solutions
depend, in general, on the shape of the function ¥ = ¥(£2%), but it may be easily
checked that the harmonic function, well-known in elasticity,

(3.12) w, = Czy

may satisfy (3.11) for any ¥. Indeed, substituting (3.12) into (3.11) we find
that the last term vanishes, and all the remaining terms may be divided by
¥'zy. Then we obtain the following algebraic equation:

(3.13) 2C(C + 1)9% + 3562 = 0,

and C may be evaluated for a given ratio 92 /3¢%. In this case the shearing stresses
are equal

JAIE
(3.14) 1@
so their effective values depend on the function W. Nevertheless, substituting
(3.14) into the boundary condition (2.4) we realize that the final shape of the

cross-section does not depend on ¥, namely
(3.15) (C+1)ydy—(C—1)z dz =0.

This equation determines an ellipse, since from (3. 13) it is seen that —1 < C' < 0.
If we write equation of this ellipse in the classical form

22 42
(316) ;;2* + 55 =1
we find

b‘Z Loa 2
L0 Com = om

and (3.13) results in

492 (a2 +?)?

B8 332 = (B —a?)’

Equation (3.18) restricts our considerations to simple loading/unloading pro-
cesses (the strain rates remain proportional to each other at any point of the
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body). It coincides with Eq. (13) of the paper by OBERWEIS and ZYCZKOWSKI
[26], where a certain exact solution for combined bending with torsion of a per-
fectly plastic bar was found. Indeed, if (3.12) is valid for any function ¥, then
it must also be valid for perfect plasticity. Later, ZyCZKOWSKI [44] proved that
the ellipse (3.16) combined with (3.18) determines the optimal shape of the
cross-section and in [45] he applied this relation to determine optimal shapes of
the beams under the variable bending moment M}, = M,(z).

For the given ratio 19/x we can find from (3.18) the relevant ratio a/b, it
means the shape of the elliptical cross-section. Equation (3.18) is biquadratic
with respect to a/b and we obtain

a? 1 2 §2 49% 8492
i ﬁ‘w(m‘li m“s;;f)-
14 =5
3 5?2

The radical in (3.19) must be non-negative, hence 1_5'32/;?2 = 6. For 192/11(2 =6

we obtain one solution a/b = 1/,/3, whereas for ¥2/5* > 6 formula (3.19)

determines two elliptic sections for which the solution (3. 12) holds.
Substituting (3.12) and (3.17) into (3.10) we may write

b4 .782 yz
=2 __ 2
(320) E, = w (? - b—z) ey
or making use of (3.18),
4  a’b! 22 y*\ ;
S NG R Jg 19'2_
i e = 3@+ )2 (a2 B b?)

4. Evaluation of external loadings

The bar under consideration is subject to twisting moment M; and bending
moment M. They are expressed in terms of stresses as follows:

(4.1) M, = // (Tzz Yy — Tzy ) dA,
A
(4.2) M, =2 // o, ydA,
A/2

where A is the cross-sectional area. Substituting (3. 14) we may write

(4.3) M, = Eﬁﬁ J // W (eﬁ) (a2y2 + b?a:?) dz dy.
A
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It is convenient to introduce the variables p and ¢ by the substitution

(4.4) z=apcosyp, y=bpsing, dA=abpdp de,
then
2ma®h’
4. 9 2
&3 T a2+ b2 j p'dp.

We call the (non-orthogonal) system of coordinates p, @ the “polar-elliptic coor-
dinates” since the name “elliptic coordinates” is ascribed to some other, orthog-
onal system (MORSE and FESHBACH [25]). Stress and strain components are
retained in Cartesian system. The normal stresses o, are given by (3.9), hence

(4.6) - ~1rabs /‘IJ 3dp

Introduce the ratio of the moments squared, like in the papers by BOCHENEK
at al. |3] and by ZyCzZKOWSKI [44]

2

Substituting (4.5), (4.6) and (3.18), we obtain for any function ¥(£?)

3 b* — a2

(48) =4

and hence the ratio of semi-axes of the ellipse may be expressed in terms of
external loadings as follows:

(4.9) - =4/1+= 7

This result coincides with that obtained by Zyczkowski for perfect plasticity
[44]. In contradistinction to (3.19), it gives one and only one solution for any
value of 7.

As an example we consider the power law, being an extension of Norton’s
creep law to viscoplasticity (PERZYNA [30]).

P}
b, Lo 3 /SkiSki Sy
10 B Tm< (\[2 %% I) >\/m
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Then (3.5) and (3.7) take the form

(4.11) 1+ \/gT b | 5| i
. Oe = O, T — p|3 ;
gim R — a2 P

(4.12) g0l —af) |, \/gzr = A |5¢| &
' 3b2p| x| 2 "R -

(or a similar form expressed in terms of ), and the moments are equal to

1/6
36 3 b?
4.13) M, ——ab\/bz—aza 14+ —— \/:T ——F signse,
{ b 0 ( 2 mml | g

30+1

2r o 30 a? N\l .
_ = = —— signd.
(4.14) My= = a®b o, ll+36+1(vf2_i”ma2+b2|ﬂ|) sign

Of course, in view of (3.18) the square brackets are identical to each other and
(4.8) holds, but it is more natural to present My in terms of s¢ and M, in terms
of 19 and hence the notation used. For § — 0 we obtain the formulae derived in
[44] under the assumption of perfect plasticity. Inversion of (4.13) and (4. 14) so
as to determine the functions 3¢ = 3¢(M;) and d = ﬂ(M;) does not present any
difficulties.

5. Extension to additional elastic strains and plastic hardening

In Sec.3 we derived an exact solution for the problem under consideration
but under additional restrictions to perfect plasticity and ommision of elastic
strains. The solution is explicit and analytical if the function ®~! in the formula
for ¥ (3.7) may be determined analytically. Now we return to the more general
constitutive equation (2.5) and prove that also in this case a similar solution
holds, but ¥ must be evaluated numerically.

We make use of the polar-elliptic coordinates (4.4), and assume the warping
function w, in the form (3.12) with C determined by (3.17). Hence Egs. (2.2)
look now as follows:

€z = €y = —= xpbsiny, €, = 3epbsinp,
2
(5.1) 2 ' .
- 0 ) 3 2a Saind. 4 J 2b
Yy s Yzz R 5P sin Yzy 2+ a2 pa cos .
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where 3¢ and ¢ are interrelated by (3.18). Now we assume the solution in the
form (3.9) with substituted (3.12)

3 .
oy = ~2~l]?}'fpb sin @,
2

. (i ;
(5.2) Tiz = \Dﬁmpbsm 0,
g2
Tay, = _q“ﬂ—""bz T a2 pa cos .

Equations (5.2) are regarded as a hypothesis: it will be shown that they can
satisfy all the governing equations, and the equation for ¥, generalizing (3.7),
will be derived.

In general, ¥ = ¥(p, ¢, t), but the equilibrium Eq. (2.3) results in 0¥ /0p =
0, hence we assume ¥ = W(p,t). First we discuss plastically passive processes.
Neglecting the bracket in (2.5) we realize that all the three independent equa-
tions for £,, %z, and ¥,,, are satisfied if

(5.3) Sem g S (S,

We used here the symbol of ordinary derivative, since the spatial variable p is
not present. Integrating (5.3) we find
W sc

In the elastic range preceding v1sc0plastt(‘ deformations the constant C' vanishes,
and hence
2G5«

*

(5.5) U =

Further we prove that the plastic hardening depends only on the coordinate
p, and does not depend on ¢. It will be sufficient to restrict our considerations
to isotropic hardening: in simple loading/unloading processes enforced by (3.18)
other types of hardening (kinematic, distortional, etc.) do not bring any effects.
Isotropic hardening is usually expressed in terms of the Odqvist parameter I,
(strain-hardening) or of the plastic work W7 (work—hardening). Here we consider
only strain-hardening in view of simpler final expressions, but principal conclu-
sions remain valid for work-hardening without change. The Odqvist parameter
is defined as the length of the trajectory in the plastic strain space:

t

t
e lieass, I 2
(5.6) Ip = / ehier; d /\/eijes'j — g4i%u t ggztiti di
0 0
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where £ is the variable of integration. Making use of (5.1), (5.2) and (3.18) we
calculate the invariants appearing in (5.6):

Y - L :
(5.7) €ij €ij = 55"2—'_—;5»02”29
e 3 & 2
{58) €ij Sij = 262 agp xdt(‘llx),
oo B b gl s T
(59) b b= g 0]
and hence

(5.10) fs,,_\fm”x-ﬁdt )| dF

or after integration, for monotonically increasing ||,

t

(5.11) = Iy(p,?).

26

2R — o2

It is seen from (5.5) that in the elastic range the bracket vanishes, hence the
integration starts in the viscoplastic range, and we may simply omit the limits
of integration 0,t. The most important conclusion is that I, depends on p and
t, but does not depend on .

In order to have notation similar to (3. 1) we present now the strain-hardening
function in the form

(0.12) | o= cro\/g[l + fo (Zep)]
Wi
N \[ ”f*'(\[m 26 )]

where fj, is a function to be determined experimentally. In applications, fj is
often assumed as a linear function. Now we return to (2.5), substitute (5.1),
(5.2), (5.12) and the expression resulting from (5.2) for the stress intensity

3 I

(513) Teg = ES,:J'S;'J' = Ev/b—w\yp |xl
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and realise, that all three equations for the components €;, .., and 4., cancelled,
in turn, by sin g, siny and cos ¢, may simultaneously be satisfied. It takes place
if the function ¥ = ¥(p, t) satisfies the nonlinear ordinary differential equation

3 b :
\/’m< Em@‘ﬂ}f—l >
3 -

(5.14) 5=

G d Tmb?p o[l + fa(lep)]
The symbol of partial derivative was not introduced into (5.13) since the variable
p may be regarded as a parameter and the differentiation with respect to p does
not appear.

The elastic-viscoplastic interface is determined by vanishing of the bracket
in (5.14). We obtain the equation

3 b2 , \/5 b2p W e
5.15 AR - G R SR
SRR W b ”f“( = zal)]

4

viscoplastic

elastic

Fic. 2. The elastic and viscoplastic zones in the cross—section.

Considering the first plastification we substitute ¥ determined for the elastic
range (5.5), hence the elastic-viscoplastic interface is an ellipse, geometrically
similar to the contour, and is described by the coordinate p = p,

(5.16) _FF cwa,
' =08 G

(Fig.2). Of course, this ellipse decreases with increasing .
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6. Attributes of optimality of the solution obtained

In the introduction we pointed out the variety of optimization problems in
viscoplasticity. Now we are going to prove that the solution obtained, namely
the elliptic shape (3.16) satisfying the conditions (3.19) or (4.9), is indeed an
optimal solution if we impose constraints on damage evolution and restrict the
class of materials under consideration.

Strength of a viscoplastic structure is usually determined by reaching by the
upper bound of the damage parameter a certain prescribed value, regarded as
critical. There exist many various approaches to the concepts of damage and to
relevant evolution equations. For our purposes any of them may be employed,
provided the material of the structure (of the bar under torsion with bending)
is governed exclusively by the HMH failure hypothesis. Indeed, from (5.13) it is
seen that the stress intensity o, = oy g is constant along the contour p =1 at
any time ¢, hence the elliptic shape is the “shape of uniform viscoplastic strength”.
Though the shapes of uniform strength are not always optimal (for example, if
the geometry changes are taken into account, SWISTERSKI at al. [40]), but in
the case under consideration nothing like that takes place.

First we consider Kachanov's approach who introduced the damage param-
eter D connected with formation of microcracks. He described the damage evo-
lution under uniaxial tension by the equation

(6.1) D:E(lfD)“,

where C and p are temperature-dependent material constants. Several general-
izations of (6.1) for multiaxial states were introduced. HAYHURST [12] proposed
to replace o by the following stress invariant o,.4 (reduced stress)

(62) Ored = aoy + BJig + Y0,

with @ 4+ 8+ v = 1; in this equation o7 denotes the maximal principal stress
(Galileo’s hypothesis), and Jy, = ok — the first stress invariant. Some particular
cases of (6.2) were considered eariler by SDOBYRIEV [38] with 3 =0, =y = —,
and by RaBoTnNov [36] with 8 = 0. a4+ v = 1. It is seen that (6.1) with
substituted (6.2) gives constant damage rate at the boundary of the elliptic cross-
section under consideration if @« = § = 0, v = 1. This takes place for example,
for aluminium alloys Al-Mg-Si [12], and then the ellipse may be regarded as
optimal.

In a series of papers Perzyna considered the damage as nucleation and growth
of microvoids (porosity). In the papers [31, 32| he proposed to describe nucleation
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of the porosity parameter £ by the evolution equation

m* (9)|In — (&, 9, Lep)|
ki

(6'3) (E)nua = -Tl-h"‘(i, J) [&Kp

m

_1,

where 9 denotes temperature (not to be confused with the notation introduced
in Sec. 2 for the unit angle of twist), k£ — the Boltzmann constant, h*(&,d) is
a material function describing the microvoid interaction, m*(+) is a temperature-
dependent coefficient, 7, is the threshold stress for microvoid nucleation, and I,
denotes the following stress invariant, similar to (6.2),

(6.4) I, = ayJis + 620, + a3(Jaq) '3,

a; (2 = 1,2,3) are the material constants, and Js4 is the third invariant of the
stress deviator. Further, in a paper with DRABIK [34], the following evolution
equation for the growth mechanism of £ was postulated:
(6.5) @ orow = 7L 221, e, 6, L),
m Lo

where T),z, denotes dynamic viscosity of the material, g*(£,9) - the function
describing the microvoid interaction, I, - the stress invariant like (6.4) with
some other coefficients b;, and 7.4, the void growth threshold stress. Finally, the
evolution equation for £ is determined by the sum of (6.3) and (6.5). The details
are presented by PERZYNA [33] in his contribution to the Handbook of Materials
Behaviour Models [21]. It is seen that in the case a; = ap = 0 the microvoid
nucleation is governed by the HMH hypothesis, and then the elliptic contour is
optimal with respect to nucleation. Moreover, if by = by = 0, then the optimality
pertains also to the microvoids growth. Unfortunately, not too many values of
material constants a; and b; are available. Paper [33] quotes the relevant values
for the AISI 4340 steel. The constant b3 = 0 and b; is smaller than by, but by
is different from zero and for that steel the optimality of (3.16) does not take
place.

In [46] ZYCZKOWSKI proposed to express the damage evolution equations in
terms of the unit dissipated power ¥, namely

: 1 b
(6.6) D=aﬂ/1——b_’

where Cy is called the damage modulus. In the case of Perzyna's Eq. (2.5), for
viscoplastic materials we obtain

(6.7) T = sy éfj=%<@ (_____‘/S‘"S“_l) >\/su—s,J

Mh
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and hence
T | 1 V/SkiSkl —
(6.8) D = e\ =D, <¢I> ( S 1) >‘/sus,3.

It is seen that in this case D depends only on the second deviatoric stress invari-
ant and hence the shape (3.16) is optimal. The hypothesis (6.6) was relatively well
confirmed for various materials subject to nonlinear creep in uniaxial tension,
but a similar confirmation for viscoplastic materials is lacking, and undoubtedly
it may take place for a certain restricted class of materials only.

Extensive reviews of damage evolution equations are given by LEMAITRE [20],
KRAJCINOVIC [16], SKRZYPEK and GANCZARSKI [39]. Many of them are ex-
pressed just in terms of the stress intensity o, and then the shape (3.16) is opti-
mal for viscoplastic bars under simultaneous torsion with bending if the strength
expressed by damage evolution is assumed as the optimization constraint.

7. Conclusions

1.

The paper gives a simple closed-form solution to the complicated non-
linear governing equation of viscoplastic bars under torsion with bending
(3.11). It corresponds to an elliptic cross-section with the ratio of semi-
axes depending on the ratio of twist to curvature, (3.19), or on the ratio
of bending to twisting moment (4.9). This solution may be regarded as
a bench mark to verify numerical methods applied for other shapes of the
cross-section.

. In his habilitation thesis GAJEWSKI [11] considered the dependence of op-

timal shapes on the constitutive equations adopted. In general, the optimal
shapes depend on them, but Gajewski separated many cases of structural
elements, loadings and constraints in which the final shape does not de-
pend on constitutive equations. The present paper shows probably the first
case of optimal design under combined loadings in which the solution also
does not depend on constitutive equations.

The solution obtained is shown to be optimal if the constraints are imposed
on initiation and growth of damage, considered as responsible for strength
of the bar. Optimality takes place if the constitutive equations and the
damage evolution equations are based on the HMH failure hypothesis, it
means on the second deviatoric stress invariant.

. Extension to linear combination with other stress invariants, like (6.2) or

(6.4), is not possible. However, ZYCzZKOWSKI [42] considered general, non-
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linear functions of the basic invariants leading to the “ad hoc” elliptic yield
condition, namely, in the case under consideration,

(7.1) ol +c (t3 +7125) = a2,

with arbitrary positive constant ¢. Then the chances of deriving similar
formulae as in the present paper are quite realistic.

5. Optimization of the viscoplastic bars subjected to torsion with bending
with the constraints imposed on stiffness is undoubtedly much more dif-
ficult. However, if we express that stiffness (or rather compliance) by the
total dissipated power, then one may expect that (3.16) with (3.19) or (4.9)
gives also in this case the optimal solution, since we proved in Sec. 6 that
the unit dissipated power is constant along any line p =const. The proof
of such a statement should be based on the general Eq. (3.11) and hence
it seems rather complicated.
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