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THE AM of this contribution is to formulate a macroscopic model for the analysis of
dynamic problems in micro-periodic composites made of elastic/viscoplastic and/or
linear viscoelastic materials. The proposed modelling approach is based on the con-
cept of tolerance averaging which so far was applied to the linear elastodynamics and
heat transfer in periodic materials and structures. The obtained model equations, in
contrast to homogenized equations, describe the effect of microstructure size on the
overall behaviour of a composite solid.

1. Introduction

THIS PAPER is devoted to macroscopic modelling of certain inelastic micro-
periodic composites. This modelling problem has been investigated for viscoelas-
tic and elastic-plastic materials in a series of papers [2,4,5,10-15]. In this con-
tribution we propose a unified method of macroscopic modelling for dynamic
problems in micro-periodic composites made of elastic/viscoplastic and /or linear
viscoelastic components. The motivation for writing this paper is an important
role which recently play elastic/viscoplastic materials both from the theoreti-
cal and engineering point of view; among the leading papers on this subject
we have to mention those by PERZYNA [6-9], to whom this work is dedicated.
An alternative approach to the concept of elastic/viscoplastic materials can be
found in [1] (cf. also [12] for the discussion of different models of viscoplastic-
ity). In contrast to macroscopic models derived by homogenization, we look for
models that make it possible to describe the effect of microstructure size on the
overall dynamic behaviour of a micro-periodic solid. To this end we extend the
tolerance averaging technique which so far has been applied to the problems
of elastodynamics and heat conduction, [17,18,19]. In order to make the paper
self-consistent, in the subsequent section, following [17], we outline some basic
concepts of the tolerance averaging.
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Throughout the paper we use the absolute tensor notation; by small bold
letters, a, b, v, w,... we denote vectors and vector fields and by capital boldface
letters S, D,... we denote the second order tensors and tensor fields. The block
letters A, B, C are reserved for the fourth order tensors and tensor fields. Sym-
bol sym(a ® b) stands for a symmetric part of the second order tensor a® b
and €(v) is a symmetrized gradient of an arbitrary differentiable vector field
v.Superscripts a,b,... and A, B, ... run over sequences 1,...,n and 1,..., N, re-
spectively; summation convention holds unless otherwise stated. It is assumed
that all introduced functions satisfy the smoothness conditions required in sub-
sequent considerations.

2. Preliminaries

In this section we recall some basic concepts and statements related to the
tolerance averaging, which will be used subsequently; for a detailed discussion
the reader is referred to [17] (see also [18,19]). We begin with the statement that
in the problem under consideration, every physical quantity (measured in a fixed
system of units) can be specified only to within a certain tolerance. It means that
the values F, F5 of this quantity will be not discerned provided that |F; — Fy| <
e, where gp is a certain positive constant which is referred to as a tolerance
parameter related to this quantity (cf. also [3], where ep is called “upper bound
for negligibles”). In this case we shall tacitly assume that ez is known and we
shall write £} = Fy. Hence = is a certain tolerance relation, i.e. a binary relation
defined on R which is symmetric and reflexive but not transitive. By a tolerance
system we shall mean a mapping 7' which assigns to every unknown field F
in the problem under consideration a tolerance parameter €. Subsequently, we
shall deal with fields which for every time t are defined in the region © in E?
occupied by the composite. Let A = (—=11/2,1,/2) x (=l2/2,12/2) x (=13/2,13/2)
be a unit cell of the periodic structure of the composite and let | = diamA.
Let us denote by ||x — y|| the distance between points x and y in E®, and by
B(x,l) - the ball in E* with a center x and a radius [. Setting A(x) = x+
A, Qa = {x € : A(x) C Q} we define the averaging operator of an arbitrary
integrable function f : 0 - R by means of

1
(N =157 [ F@dndmdyn, x €0,
A(x)
where |A| is the measure of A. If f(-) is a A-periodic function then (f) = const.
If f(-) depends also on time t then we shall write (f)(x,t). Let DF stand for

a function F as well as for all its derivatives (including time derivatives) which
occur in the problem under consideration.
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Function F : Q@ — R will be called slowly-varying, F € SVA(T), if for every
X,y € §2 condition |[x — y|| <! implies |[DF(x) — DF(y)| < epr.

Function G : 2 — R will be called periodic-like, G € PLA(T), if for ev-
ery x €9 there exists A-periodic function Gx(-) satisfying for every y € B(x,l)N
Q condition |G(y) — Gx(y)| < eg. Function Gx(-) will be called a A-periodic
approzimation of G(-) near A(x).

A periodic-like function will be called oscillating, G € PLL(T), if G €
PLA(T) and if condition (Gx)(x) = 0 holds for every x € Qa.

It can be shown that every periodic-like function G can be uniquely decom-
posed into a sum of slowly varying function G° and oscillating function G*, [17].
Under the aforementioned denotations, bearing in mind the meaning of the tol-
erance parameter and the corresponding tolerance relation, for every x € {25 we
obtain the following approximation formulae

(FF)(x) = (f)F(x), F e SVa(T),
(fG)(x) = (fGx)(x), G € PLA(T),

(2.1)

where f is an arbitrary integrable A-periodic function.

The tolerance averaging of equations with A-periodic functional coefficients
is based on the assumption that there exists a certain tolerance system 7T so
that formulae (2.1) can be used as approximations in the averaging procedure,
[17]. It has to be emphasized that a tolerance system 7" may be not specified
in the course of modelling; all we need is that this system exists. Moreover, the
tolerance parameters can be calculed a posteriori as certain residuals determin-
ing the degree of accuracy of obtained solutions to the special problem under
consideration.

3. Modelling approach

Let €2 stand for a region in E® occupied by a A-periodic elastic-viscoplastic
composite solid in its reference configuration. It is assumed that the diameter [ of
the periodicity cell A is sufficiently small when compared to the minimum char-
acteristic length dimension of 2. Denoting by u(x,t),S(x,t), the displacement
and stress fields, respectively, defined in € for every time ¢, by p(x) the mass
density field in €, and assuming that the body force b is constant, we obtain
the well known form of the equations of motion

(3.1) V-8 —pii +pb =0

which have to be satisfied in 2 for every time ¢ together with the known stress
continuity conditions on the interfaces between constituents.
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To simplify the subsequent considerations we shall restrict ourselves to mate-
rials subjected to small strains. The elastic/viscoplastic components are assumed
to obey the Huber-Mises yield condition. For the sake of simplicity we shall ne-
glect the hardening effect. Setting

- éu_rs, o(S) = %SD -

we introduce the concept of the yield surface in the form o(S) — k% = 0. Let us

denote
0 if a<0
H(a) =
1 if a>0

for every real a. Let p be a viscous parameter representing the relaxation time
and define

(3.2) D =H(o(S) - k“‘)———n‘g(s\/;(_;;cs”

as the viscoplastic strain rate. We shall also assume that viscoelastic compo-
nent materials are obeying the linear Maxwell’s law. Combining together the
constitutive equations of elasto/viscoplasticity with the equations of linear vis-
coelasticity, we obtain

(3.3) ei)=A:S+B:S + D

where A, B are the compliance tensors describing respectively the elastic and
viscous properties of the material. Neglecting in (3.3) the term B : S we shall
deal with the elastic/viscoplastic component materials. Setting in (3.3) D =0
we shall describe the behaviour of the linear viscoelastic components. For the
solid under consideration A, B, u, k are A-periodic functions of x which attain
constant values in every constituent of the composite.

The main aim of this contribution is to derive from Eqs. (3.1)-(3.3), which
describe the composite solid on the micro-level, a certain system of equations
with constant (averaged) coefficients. The derived equations will be interpreted
as describing the composite solid on the macroscopic level. To this end we apply
the tolerance averaging approach using the concepts outlined in Sec. 2.

The tolerance averaging is based on the heuristic assumption that in an
arbitrary periodicity cell A(x), x € Qa, which is located away from the boundary
of §, the displacement u(-,t) and stress S(-,¢) fields conform to the A-periodic
structure of the solid under consideration. The above conformability assumption
states that for every time ¢ fields u(-,t) and S(-,¢) are periodic-like functions:

(3.4) u(-,t) € PLA(T), S(-t) € PLA(T);
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the above condition may be violated only near the boundary of the solid. Let
us observe that the condition similar to that formulated above is also used in
homogenization, cf. [14], p. 204.

Following the results of Sec. 2 we conclude that (3.4) implies the decompo-
sition

(3.5) u(-,t) =w(-,t) +v(-,t), w(,t)eSVa(T), v(,t)e PLL(T),

where w(x, t) = (u)(x,t), x € Q, is the averaged displacement field and v(x, 1),
x € Q, will be referred to as the displacement fluctuation field. Denoting by
vx and Sy the A-periodic approximations near A(x) of v and S, respectively,
defining Dy by (3.2) for S = Sx and introducing ¥ and S, with (¥) =0, as
arbitrary A-periodic test functions, by means of (2.1) we obtain from (3.1) and
(3.5) the following variational conditions:

(V1 8x)(x,t) + (V) - W(x,1) + (0¥-¥x)(x,t) — (¢¥) - b =0,

(3.6) (S :e(Vx))(x,t) + (S) :e(W)(x,1)
=(S:A:S)(x,t) + (S:B: Sy)(x,t) + (8 : Dy)(x,¢)

which hold for every x € 24 provided that x is not situated near the boundary
o0 of Q.

In order to apply the second one of the conformability assumptions (3.4), we
introduce a partition of A into a set of n not intersecting elements (regions) Ag,
a=1,...n, A=UA,, so that every element A, is homogeneous, i.e., it consists
of only one constituent of the composite. Let (e;, ez, e3) be the orthonormal
basis in E3 and let us denote by A the Bravais lattice A = {z € E® : z =njle; +
nalaes + nalzes; ny = 0,+1,+2,...}. Define

Ef={yecls+z;2€A}, ®=E'NQ

and let n%(-) be the characteristic function of Z%,a = 1,...,n. Obviously, n%(-) is
a A-periodic function. Taking into account that S(-,¢) is a periodic-like function,
we shall introduce n sufficiently smooth functions S%(-, t) defined in §2 which are
slowly varying and every S%(z,t), z € AN§a, is a mean value of S(-,¢) in A(z)N
=% The subsequent considerations will be based on the extra modelling assump-
tion that in the course of averaging procedure we can use the approximations

Sx(y,t) = n*(y)S*(x,t); y € A(x), x € Qa,
where Sg(-, ) is a A-periodic approximation of S(-,t) near A(x). This approx-

imation holds with a sufficient accuracy provided that the partition of A into
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elements A,, a = 1,...,n, is sufficiently fine. Fields S%(-,t) describe the stresses
on the micro-level but, as slowly varying functions, they will also describe a be-
haviour of the composite in the framework of a proposed macroscopic model.
Following [14], p. 253, we recall that in modelling problems under considera-
tion it is not possible to eliminate entirely the microscopic description from the
ImMacroscopic one.

Fields S® will be referred to as the mean local stresses. Substituting into
(3.6) Sx(y,t) = n%(y)S%(x,t), y €A(x) and S =n®(y)C® where C? are arbitrary
constant second-order tensors, we obtain

(n*V¥) : 8%(x,t) + (o¥) - W(x,t) + (0V-Vx)(x,t) — (¢¥) - b =0,

(3.7)  (m°*n*A) : S(x,t) + (n*n"B) : S(x, 1) + (1°7")D’(x,1)
= (n")e(W)(x,t) + (n°e(Vx))(x, t)

where (no summation over b!)

(3.8) DP=H(o(S") — ky) YIE) —Fs ghyp

2pp+/0(S?)

and moduli ky, pp are related to the material components occupying part Q° of
the region Q. Fields D? will be referred to as the mean local viscoplastic strain
rates. Equation (3.7); represents the variational condition which has to hold
for every oscillating A-periodic test function ¥v. By means of the approximation
S =n%8® and after restricting the domain € of (3.1) to an arbitrary but fixed
cell A(x), x € 24, we obtain the averaged form of equations of motion

(3.9) (n*)V - 8%(x,t) — (o) - W(x,t) — (eVx)(x,t) + (¢)b = 0.

Equations (3.7)-(3.9) constitute the system of equations for averaged dis-
placements w, mean local stresses S* and displacement fluctuations v (which
in every A(x), x € 4, are represented by their local periodic approximations
vx). The above equations have a physical sense only if w(-,t), S*(-,) are slowly-
varying functions.

In order to obtain from (3.7)-(3.9) the macroscopic model of the composite
medium under consideration we apply the procedure used in [17]. To this end
we shall look for the approximate solution to the periodic variational problem
(3.7) for vy in the form

(3.10) va(y:t) = kA (y)vA(x.1), ¥ € Alx)
where h4(.) are the postulated a priori linear independent A-periodic shape

functions and v4(-) are new unknowns which will be referred to as fluctuation
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variables. Because v(-,t) € PL%(T), then v#(-,) have to be slowly varying
functions. It is assumed that the shape functions lead to the positive definite
matrix (oh? h®) and satisfy conditions (h?) = 0, h4 € O(l), IVhA € O(l). Let
us substitute the right-hand sides of (3.10) into (3.7), (3.9). Using the orthog-
onalization method we substitute ¥ =h"¢4 into (3.7);; here ¢? are arbitrary
independent constant vectors. After simple manipulations, we obtain finally

()W (x,t) + (oh™)¥*(x,t) — (n*)V - 8%(x,t) — (0)b = 0,

(oh*hB)VE (x, t)+(oh* )W (x, t) + (n®VAA) - 8%(x,t) — (oh*)b = 0,
(3.11)
(n°nPA) : 8" (x, 8) + (n°n"B) : S%(x, ¢) + (nn")D(x, t)

—(n")e(W)(x,t) — sym((n*Vh?) @ ¥*) = 0

where the mean local viscoplastic strain rates D® are defined by condition (3.8).
It has to be remembered that fields S%(-,¢), D%(-,t) are defined in 2 but have a
physical meaning only in 0°.

Formulae (3.11) together with (3.8) constitute a system of relations for un-
known averaged displacements w, fluctuation variables v# and mean local stresses
S®. The aforementioned equations have constant coefficients and can be treated
as representing a certain averaged (macroscopic) model of the composite made
of elastic/wiscoplastic and/or viscoelastic components. This model has a physical
sense if all unknowns for every instant ¢ are slowly-varying functions:

(3.12) w(-,t) € SVA(T), vA(-t) € SVA(T), S°C.t) € SVA(T).

The above conditions can be verified only a posteriori., i.e., after obtaining a
solution to the problem under consideration. In this way we can evaluate on the
basis of (3.12) the tolerance parameters related to functions w, v4, 8¢ and their
derivatives, and hence to determine residuals of approximation for the derived
solution. The characteristic feature of the derived model is that it describes the
effect of the microstructure size on the macroscopic dynamic behaviour of a solid
due to terms (phhB) € O(1?), (oh?) € O(1) in (3.11). It has to be remembered
that the length-scale effect for the problem under consideration is also due to
the presence of viscous parameters pj in (3.8).

The form and number of equations (3.11) depends on the form and number
of shape functions h” and on the partition of the cell A into elements A,. It
means that the derived model can be formulated on different levels of accuracy.
For a discussion of the problem of finding functions h® the reader is referred
to [17].
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4. Special cases

Setting pu, — 0 for @ = 1,...,n and neglecting in (3.11) the terms involving
B we obtain equations of a composite solid with elastic-perfectly plastic con-
stituents. In this case instead of (3.8) we obtain

D’=H(o(S®) — ky)D},

where Dg is a rate of the plastic strain in 2. Let us observe that, in contrast to
homogenization where we deal with one averaged yield condition for a macro-
scopic stress, [13,14], here we have separate yield conditions

o(S4(x,t)) — ko =0

for mean local stresses related to different parts 2% of Q2. Obviously, if parts ¢
and Q° are occupied by one elastic/viscoplastic constituent then k, = ky.

Let S%(x,t) < kq, @ = 1,...,n, hold for every x € € and every time {. In
this case the mean local viscoplastic strain rates D® disappear. For the time
being let us also neglect in (3.11)3 the terms involving B. Under notations (in
the definition of €* no summation over a!):

£ =n*n""", G*E = (PVh). (£°6°0) - (" VRP),

where C is a tensor of elastic moduli, we can eliminate from (3.11) mean local
stresses S%. After simple manipulations we obtain

(@)W + (oh)¥" — (n*)V - [(£°C) : e(w) + (£2€"C) : sym((n*Vh*) ® vA)]
_<9) b= 0,

(0h*hB)¥B + (ohA)yW+GAP . vB — (°VhA) . (€°C) : e(w) — (eh") b = 0.

It can be shown that the above equations, for a sufficiently fine partition of A
into A,, lead to the equations obtained in [16] for the macroscopic model of
A-periodic linear elastic composites.

For a homogeneous solid (oh?) = p(h?) = 0, (n'VhA) + (?VRA) + ... +
(n""Vh?) = (Vh4) = 0 and introducing a sufficiently small cell A (which for
a homogeneous 'solid may be taken as infinitesimal) we can also assume that
S = n°S8% and D = n*D*? are slowly-varying functions. In this case from equa-
tions (3.11)1, (3.11)3 we derive equations (3.1) and (3.3), respectively, and under
homogeneous initial conditions equations (3.11), yield v# = 0.
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5. Illustrative example

The general model equations (3.11) with conditions (3.8) will be now illus-
trated and discussed on a simple example of the uniaxial stress in a rod made
of two periodically distributed materials, see Fig. 1. In this case equations (3.1),
(3.3), after neglecting body forces and denoting (-)' = d(-)/0z, can be reduced
to the form

s'(z,t) — o(z)ii(z, t) = 0,

(5.1) g
u(z,t) = @) §(z,t) + B(z)s(z,t) + d(z,1)

A, / L
A

Fic. 1. Scheme of the rod and diagram of the shape function.

and equation (3.2) yields

(5.2) d=(H(|s| - \/_k(:r) (5— V3k(z)sgn s)

(

The mass density o(z), Young’s modulus E(z) and moduli B(z), k(z), u(z) are
assumed to attain the constant values py, F1, B, k1, p1 and o0y, Eq, Bo, ko, ps,
respectively, in the intervals of the z-axis with lengths [, [2, see Fig. 1. The cell A
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now reduces to the interval (—0/2,1/2), | =1; + l3. Let us introduce a partition
of this cell into two elements Ay = (—1/2,—1/2 + L1), &g = (—=1/2 + 11,1/2).
Following [17] we introduce only one shape function h = h(z), the diagram of
which is shown on the right-hand side of Fig. 1. In this case we deal with one
fluctuation variable v = v(z,t). Let us also define v; = [, /I, v, = I3/l and denote
by s1, 82 the mean local stresses. Under the above notation, the model equations
(3.11) will take the form

(o) (z,t) — 18] (z,t) — vash(z,t) =0,

12(0)i(z,t) + 2V3[s1(z,t) — s2(z,t)] =0

(5.3) %—Sl(ﬂ:)t} + 1 Bysi(z,t) + vidi(z,t) — v’ (z,t) 2\/_1J (z,t)
1

%2'52{331 t) + v Basa(z,t) + vada(z, t) — vo (z, t) + 2v30(z,t) =0
2
and condition (3.8) for the uniaxial stress will be given by
(5.4) do = rHﬂsa[ V3ke)(8a — V3ka sgnsa), a=1,2.
O

Equations (5.3), (5,4) constitute the proposed macroscopic model for problems
described by equations (5.1), (5.2) provided that Bd,(-,t) = 0, Bada(:,t) = 0.
Bearing in mind (3.5), the total displacements u(z,t) are now described by the
formula u(z,t) = w(z,t) + h(z)v(z,t). We have to remember that by means
of (4.1), the solutions to equations (5.3), (5.4) have the physical sense only if
conditions

w(':t)'sU{'tt)’sl('!t)r's?('&t) € SVA(T)

hold for every time ¢. We have stated in Sec. 4 that the proposed model describes
the effect of the microstructure cell size on the overall solid behaviour due to the
presence of the length parameter [ in equation (5.3)2. Neglecting the microstruc-
tural term 12(p)® we obtain from (5.3) a simplified model in which s; = s = s.
For this simplified model, equation (5.3); takes the form

(5.5) (o) (z,t) — §'(z,t) = 0.

After denotations

-1
Eeﬁ=(;_ll+%) . (BY=wBi+mB,, a=E"(B)

we obtain the following equation for the stress field

(5.6) i(z,t) + as(z, t) + B [v1d) (2, 1) + woda(z, t)]) = B0 (z,¢)
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where
d = LH’ (Is] = V/3k1)(s — V/3k; sgns),
(5.7) oy
dy = 3—H |s| — V/3ka)(s — V3ky sgns);
142

and constant ET in (5.6) is the well-known effective value of the Young modulus
in the uniaxial stress. In this case we have arrived at the system of equations (5.5),
(5.6) for w(-) and s(-), where the partial viscoplastic strain rates are given by
conditions (5.7). Neglecting in (5.6) the term involving a we pass to the simplified
macroscopic model of the problem under consideration for an elastic/viscoplastic
material. This problem is governed by equation (5.5) and

$(z,t) — BT/ (z,t) + B [vidy (2, 1) + voda(z,1)] = 0
together with conditions (5.7). For viscoelastic composites dy = d; = 0 and
equation (5.6) yields

(58) s(z,t) — s(z,0) = B [w'(z,t) — w'(z,0) — ae™* /t w'(z, 7)e"dT).
0

Substituting the right-hand side of (5.8) into (5.5) we obtain the equation for
the averaged displacement field w(:). The above results hold only under the
assumption that the microstructural term [2(p)i(z,t) in (5.3) is neglected.

If the microstructural term [2(p)i)(z,t) in (5.3) is not neglected then s; # s,
and for viscoelastic composites, under notations

=E\B,, ay=EB;,
we obtain from (5.3):

31(:‘:& t) £ 51(:“-!0) == El [wj(za ) (fB 0) T & ( t) e ¥U( 0)

t
+ale_‘“‘/ (w'(z,7) + 2U—\/§v{z,r))e“”dr],
0 1

(5.9)
52(1:: t) = 32(2"!0} = E?[w’(mat) = w’(:.r:, 0) B i ( ) %U(Z’“O)
+a2e_°2‘/0£(w’(:c, T) — %v(m, 'r))e"‘”d’r].

Substituting the right-hand sides of equations (5.9) into equations (5.3); and
(5.3)2 we arrive at the system of two governing equations for w(-) and v(-). For
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elastic materials a; = as = 0 and the aforementioned system of equation can be
reduced to the form

(@)ti(z,t) — (E)w" (z,t) — 2V3(Ep — Ey)v(z,t) =0,

2(o)v(z,t) + 2\/’5(% + if—l)'u - 2V3(Ey — Ey)w'(z,t) =0
1

which coincides with the known result obtained in [16].

6. Conclusions

We close the paper with a summary of new results and information on the
macroscopic modelling of micro-periodic elastic/viscoplastic and linear viscoelas-
tic composites.

1.

o

The proposed macroscopic model of the micro-periodic composites made
of elastic/viscoplastic and/or linear viscoelastic components was obtained
in the form of equations (3.11) together with conditions (3.8). The above
equations involve exclusively constant coefficients. The characteristic fea-
ture of the proposed model is that it describes the effect of microstructure
size on the dynamic overall behaviour of a composite solid (the microstruc-
ture length-scale effect).

The aforementioned microstructure length-scale effect takes place only in
dynamic problems, i.e., terms describing this effect for the quasi-stationary
problems drop out from the governing equations (3.11) of the macroscopic
model.

The proposed model introduces the concept of mean local stresses and
mean local viscoplastic strain rates into the macroscopic description of
a micro-periodic composite and hence makes it possible to formulate consti-
tutive equations on the macroscopic level independently for every material
constituent, see equations (3.11)3, together with condition (3.8).

The proposed modelling approach leads to certain a posteriori estimates
of solutions which can be derived in every special problem from conditions
(3.12).

For the sake of simplicity all considerations have been based on the simplest
form (3.2), (3.3) of constitutive equations for elastic/viscoplastic materi-
als. However, the modelling approach outlined in the paper can be easily
extended to general constitutive equations proposed by PERZYNA in [6-9].

The main drawback of the proposed model lies in a possibly large number of
unknown fields v"‘(-), A=1,..,N,and S$%(-),a = 1,...,n, involved in the macro-
scopic description of the problem in the framework of the model equations (3.11).
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