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THE PAPER is devoted to the analysis of nonlinear elastic two-component models of
saturated porous media, which in a linear form, reproduce as closely as possible the
classical Biot's model [1]. We present a full evaluation of the second law of thermo-
dynamics for four classes of nonlinear models, It is proven that two of them in which
there is no dependence on higher gradients cannot lead to the Biot’s model. On the
other hand, two other models in which a dependence on the gradient of porosity is
introduced, yield linear constitutive relations but not the field equations appearing
in the Biot's model. However, a recombination of partial stresses and momentum
sources leads to Biot's equations. This analysis together with earlier publications on
the subject exhausts the discussion of the question of thermodynamical admissibility
of the Biot’s model.

1. Introduction

Continuous models of porous and granular materials which account for the
relative motion of components (diffusion) rely on the theory of two-component
immiscible mixtures in which one of the components is a solid. The first linear
model of this type has been developed by M. A. Biot in early 40ies (see: [1] for
the full account of Biot’s papers on this subject). This model had an enormous
success among engineers and geophysicists who applied it in soil mechanics,
mechanics of sediments on the see bottom, propagation of waves in porous and
granular materials, experimental testing of such materials etc. Many phenomena
of practical importance such as tortuosity which did not appear in the original
model of Biot, have been added ad hoc to the model mostly by reinterpretation
of original contributions.

Unfortunately, the attempts to verify foundations of the Biot’s model and to
develop such models in the spirit of modern continuum thermodynamics have
been vehemently criticized by admirers of the Biot’s model, since such attempts
were a blasphemy in the holy shrine of infallibility. It is, certainly, true that the
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710 K. WILMANSKI

Biot’s model provides an explanation of many important observations in porous
materials such as the existence of the second sound called Biot’s slow wave or
the structure of surface waves (existence of additional modes of propagation).
Simultaneously it is rather easy to observe that the Biot’s field equations violate
fundamental laws of thermodynamics: the second law of thermodynamics and
the principle of material objectivity.

The classical Biot’s model relies on two partial momentum balance equations

av® aovlF )
Pgﬁ + pm-—gt— = divT® + (VP - VS) a
(1.1)
avF avs o5 .
P -5 toeg = divT? — 7 (vF = v7),

with the following constitutive relations for stresses (e.g. [2])

TS = Ael + 2Ge5 + Qel,
(1.2)
TF=¢l, o= —pF=Qe+Re,

where we use the following notations appearing also further in this work: pg, p§’
are constant partial mass densities of the solid component (skeleton) and of the
fluid component, respectively, p2 is the acceleration coupling constant ("added
mass”), v9, vF are macroscopic velocities of components, A, G, @, R, w are mate-
rial parameters, e describes small deformations of the skeleton (Almansi-Hamel
deformation tensor), and € descibes volume changes of the fluid component!)

In my earlier works on this subject (e.g. [3], [4]) 1 have presented a rather
immediate proof that the Biot's model indeed violates the principle of material
objectivity. This is related to the coupling through accelerations, i.e. to the
existence of the added mass p)».

The thermodynamical admissibility is a more subtle issue. It will be presented
in this work and it concerns the coupling constant Q.

One should distinguish two cases. The first one appears when changes of
porosity are described by an additional field equation. It may be a second order
equation proposed in the model of GOODMANN and COWIN [5], a first order
evolution equation proposed by BOWEN [6] or a balance equation proposed in

Y'Within the frame of macroscopical description, all these fields must possess a purely macro-
scopical interpretation. In our case the volume changes of the skeleton are described by the third
invariant of the deformation tensor of the skeleton. This reduces to tre® for small deformations.
For the fluid, the mass € of volume changes are related to changes of partial (smeared-out)
mass densities » -
- Po. =P

3
We return to other quanities describing volume changes further in this paper (e.g. Subsec. 2. 3).

€
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my own papers (e.g. [7]). In these models the coupling between partial stresses
cannot have the form proposed by Biot due to identities following from the second
law of thermodynamics. The second case appears when changes of porosity are
described by a constitutive law (see: [8]). This case has not been systematically
investigated and it is the subject of this work.

We prove that a nonlinear poroelastic model without contributions of higher
gradients cannot produce the Biot’s model. We mean by higher gradients of
constitutive variables a gradient of porosity n, a gradient of the deformation
gradient of skeleton F¥, or a gradient of one of the partial velocities. A model in
which the gradient of the deformation gradient F¥ appears leads to the necessity
of introducing couple stresses and it becomes a Cosserat-type continuum. On
the other hand, the gradients of velocities introduce viscous effects which in
turn destroy the hyperbolicity of field equations. This is not desired in the wave
analysis. In addition, none of these effects appears in the case of Biot’s model.
Consequently it remains the gradient of porosity as a reasonable possibility. We
shall prove that a correction of a dependence on the gradient of porosity is
sufficient for thermodynamical admissibility of Biot’s stress relations. However
such a correction yields automatically additional contributions to momentum
balance equations. They must contain a term with the gradient of porosity as
well and this is not the case in the Biot’s model.

These considerations seem to exhaust the available possibilities and yield
the conclusion that only constitutive relations for stresses in the Biot’s model
can be constructed in a thermodynamically admissible way provided a classical
multicomponent model is extended to higher gradients. Field equations must be
different.

We complete the paper with a remark on acoustic waves. We show that linear
models constructed in Subsection 2.3 yield the existence of bulk acoustic P1-,
S-, and P2-waves as predicted by Biot’s model but their speeds of propagation
are different.

2. Thermodynamic construction of models
2.1. Fields and field equations

In order to appreciate couplings between partial stresses of a poroelastic
saturated medium we consider the two following two-component prototypes of
the “Biot’s” model for large deformations.

For the first class of models labeled (I) we assume that the real fluid in pores is
incompressible. This assumption means that we have two possibilities to control
changes of the geometry of the medium. On the one hand we can macroscopi-
cally deform the skeleton, and we measure this deformation by the macroscopic
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deformation gradient F¥. Doing so we keep the porosity constant, i.e. the frac-
tion n of the volume of the representative volume element (REV) corresponding
to the fluid component does not change (“undrained conditions”). We can also
deform pores by drainage and in this way change the porosity n. Simultaneously
we keep unchanged the macroscopic geometry, i.e. FS = const. Under the in-
compressibility assumption the latter deformation is solely related to changes of
mass densities. For the fluid component these changes are given by the relation

(2.1) pt =npfl,  pFR = const,

where pf® is the so-called true mass density. The incompressibility assumption
yields this quantity to be constant. The index t means that the mass density
refers to the unit volume of the mixture in the current configuration.

In the second class of models labeled (C) we allow for arbitrary changes of
mass densities p] , p; but the porosity is assumed to be given by a “constitutive”
relation. It has been shown [9] that in thermodynamical equilibria such a relation

must have the form n = n (is) In the simplest case which we consider in this

Pt
work we assume this relation to have the following form
(2.2) n="nyg—x—g

where p}, p§,no denote reference constant values of partial mass densities and
of the porosity. The above relation is assumed to hold also in thermodynamical
nonequilibrium.

Let us note that in general the porosity n may change as well without ac-
companying changes of macroscopic mass densities pf , pf. This happens when
changes of n are compensated by changes of real mass densities p*'®, p°® in such
a way that their products np®®, (1 — n) p# remain constant. Such changes are
not controllable on the macroscopic level. They must proceed spontaneously.
Consequently they yield a relaxation of porosity characteristic for microstruc-
tural variables. Relaxation properties are always dissipative and do not appear
in thermodynamical equilibria. These phenomena require a source term in an
equation describing changes of porosity. Such a general model was discussed
elsewhere (e.g. [7]).

We shall discuss further properties of the relation (2.2) when we linearize the
model.

For technical reasons it is easier to work in a so-called Lagrangian description
(e.g. [7],[8]). In this description we refer all quantities to a chosen reference
configuration By of the skeleton for which F¥ = 1.
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Fields which describe mechanical processes in such a system are as follows:
1. The reference partial mass density of the fluid component

(23) pF =pF (X,t) =pFJ5 =nJ5pFR, J5:=detF°, X €B,.

2. The field of partial velocity of the skeleton %% (X,t) on the macroscopic
level of description.

3. The field of partial velocity of the fluid %/ (X, ) on the macroscopic level
of description.

4. The macroscopic deformation gradient of the skeleton F* (X, ¢).

By means of the velocity fields one can define the macroscopic filter velocity
w (X, t), and its corresponding Lagrangian image X* (X, t) appearing in balance
equations

(2.4) w:=%F —#5, XF=F"lw.

The reference partial mass density of the skeleton p° = pg does not appear
among those fields because it is constant in time if we assume that there is no
mass exchange between components. Its current value is given by the relation

(2.5) i =ppd”

which satisfies identically the partial mass conservation law in Eulerian descrip-
tion.

Summing up we can write the following relations for the porosity in the two
above classes of the models

F
(2.6) (I)-models : n=J5"! {%, pF'R = const,
F F
P FR _ Po
& d . = — = = .
(C)-models n P Po 0 const

The fields must fulfil the following balance equations in Lagrangian descrip-
tion
1. Mass conservation of the fluid component

ap* . FgFY _
(2.7 W+Dw (p X )-—0.

2. Momentum balance for the skeleton

%S :
(2.8) psw = DiwP® + p.
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3. Momentum balance for the fluid

oxF
(2.9) pF (W +XF . Grad ﬁF) = DivPF — p.
In addition, the deformation gradient F must fulfil integrability condi-
tions yielding the existence of the field of motion of the skeleton. They consist
of two parts.
4. Kinematic compatibility condition relates the time derivative and the gra-
dient of velocity

2.1 = P
(2.10) pr Grad %

The second part — a geometrical compatibility condition is a symmetry rela-
tion
) 23
(2.11) Grad F® = (Grad F5)",
or, in Cartesian coordinates
OF, N OF,
XL  9xXK’

where the small index refers to Eulerian coordinates, and the capital index to
Lagrangian coordinates.

(2.12)

Obviously, all operators Grad, Div, _qu{" refer to Lagrangian variables.

As we have mentioned conditions (2.10),(2.11) yield the existence of the field
of motion of skeleton, say x° (X, t), whose derivatives give the deformation gra-
dient and the partial velocity, vis.

s
(2.13) FS = Grad x5, %5= ‘%.

Momentum balance equations contain partial Piola-Kirchhoff stresses PS, P¥

which are related to the usual Cauchy stresses by the following transformation
rules

(2.14) P = gipS At R = JiSIpPpdt,

Momentum equations contain as well the source p which is the diffusion force.
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We have to perform a closure in order to obtain field equations from the
above balance relations. For poroelastic materials we consider further two models
following from two choices of constitutive variables. Namely we choose either

(2.15) ¢ = {pF,FS,J'CF},
or
(2.16) c? = {pF,FS,ﬁF,Gradn }

The porosity n does not appear among these variables because it is either given
by the relation (2.2) or by the relation (2.3). Consequently it can be eliminated
from the set of independent constitutive variables.

The following functions must be given in terms of constitutive relations:

(2.17) F={P5 PF py° ¢"},

where ¢ 9" denote partial Helmholtz free energies appearing further in the
second law of thermodynamics.

For reasons of material objectivity we should choose not only the relative
velocity as the variable but also one of the objective measures of deformation.
We shall do so further in this note. However the exploitation of the second law
of thermodynamics is easier if we impose the objectivity after the exploitation
of the entropy inequality.

For any of the choices of constitutive variables, the constitutive relations are
assumed to have the form of the relation

(2.18) f:f(c(‘*}), a=12,

which is sufficiently smooth for all operations which we perform in the sequel.

Let us make two methodological remarks. Our interest in comparison with
the Biot's model as well as in the analysis of acoustic waves is limited to linear
models. Consequently the above presented nonlinear models are an overkilling.
We do so on purpose because the exploitation of the second law of thermody-
namics for a model with linear constitutive laws cannot be made consistent with
explicit nonlinear contributions to field equations. This yields serious flaws of
the thermodynamical analysis known in all nonlinear field theories.

Secondly we should point out that the restriction to incompressible real flu-
ids in the class (I) of models does not lead to any constraints. This may
be simply interpreted as a change of variables: changes of the partial mass den-
sity of the fluid are replaced by corresponding changes of the porosity. There is
no reaction force on such a “constraint”. This is different from the cases which
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were considered previously (e.g. [10], [9]). In those cases the model possesses
an additional equation for porosity which, in turn, is considered to be a real
microstructural variable with spontaneous relaxation properties. In such models
the incompressibility assumption yields the existence of the reaction pressure,
and it requires a special structure of constitutive relations. We shall not discuss
this problem in this work.

Let us mention in passing that the above change of variables may lead to some
mathematical problems due to the restriction 0 < n < 1. As we are primarily
interested in a linear model changes of porosity with respect to its initial value
ng are small. The choice of a real value of ng, say between 0.1 and 0.6, guarantees
that this restriction is indeed fulfilled. In addition thermodynamical restrictions
are derived by means of the partial mass density for which such a restriction
does not appear.

2.2. Thermodynamic admissibility

2.2.1. Second law of thermodynamics. We present here solely the second law
of thermodynamics for two-component systems for which the temperature is
constant. If this is the case it may be formulated as follows (e.g. [11]). For any
solution of field equations (i.e. for any thermodynamaical process) the following
inequality
oS F o

2-19 S___ F Ly S Xf‘ P’ F
(2.19) p 5 P (at + Grad ¢

—PS. _?Fj

5 —PF.Gradt" - p-w <0,

must be satisfied identically.

The main technical problem with the exploitation of this inequality is the
limitation to solutions of field equations. This can be eliminated by means of
Lagrange multipliers introduced to thermodynamics by I-SHin Liu ([7]). Namely
it can be shown that the following inequality

(2.20) s +pF (&'I’ + XF - Grad¢)

P 5t ot
5
=B 3;; —PF.Grad%" - p-w
5
— A" {%+Dw(ppxp)}—AF-{3;; — Grad, % }
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.S
g -4 {52 DS - fJ}

-
— AYF. {pF (3; +XF-GradiP) - DivPF +1‘5} <0,
must hold for any fields and not only for solutions of field equations. The mul-
tipliers A™, AF, A¥S, AYF are functions of constitutive variables C(®) for a equal
either to 1 or to 2. We proceed to discuss the consequences of the above condition
for these two different models.

2.2.2. €"Y-models. We consider the model with constitutive variables given by
the relation (2.15). It is not necessary to distinguish between (I)-models and
(C)-models because the only difference appears in the final results due to the
substitution of either (2.6); or (2.6).

It is easy to check that the chain rule of differentiation in the inequality (2. 21)
yields the linearity of this inequality with respect to the following derivatives

apF OFS 9% oxF
52t {8:’8:’&‘&}’
as well as
(2.22) {Grad p¥, Grad ¥, Grad %, Grad %" } .

Consequently, as the inequality must hold for all fields, the coefficients of
these derivatives have to vanish. We obtain from the contributions of time deriva-
tives (2.21) the following relations:

oS Oy
S F

A" =p g T g
PS+AF Sad; F?w_‘v

=P 5Fs TP BFs

—p (FS Taip) ®}‘{F p (FS I’a;ﬁF) ®)'(F1

(2.23)

oS ot
S AvS F pAvF S F
A = — A — - = e
P P P OXF P O%XF
On the other hand, the coefficients of spatial derivatives (2.22) lead to the
following identities:

opF s oPST GpPFT
F A F vS vl
(p BoF A )X o et SPEE R, apF ol iy 0,
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F
52 (3‘*’ mpw) oXF =0,

oFS T

(2.24) AF = PF = _pFAnPS-T,
It remains the residual inequality
(2.25) p-w20,

which defines the dissipation density of the system.
For technical reasons we make the following simplifying assumption:

s _ ok _
aXrF  9XF
One could proceed also without this simplification but we aim at the construction
of a linear model for which such contributions would be neglected anyway.
Combination of relations (2.23); and (2.24), yields now
awt oy’
2.27 A" =pf = = =0.
The second part of this relation has the most important bearing on the structure
of interactions described by the model. Namely the partial free energy of the
skeleton does not react on changes of the porosity. We see in a moment what
is the reaction of partial stresses on this property. Such a conclusion would be
impossible if we performed the exploitation of the second law for a linear model.
Relation (2.24), leads after easy calculations to the relation

oyp"
OFs

Hence relations (2.23); and (2.24); yield the following relations for partial
Piola-Kirchhoff stresses:

(2.26)

(2.28) = AT

S a0 F
PS S Saw PF — _pFZdwFFS‘—T‘

=P GFs ap

or, after the transformation to partial Cauchy stresses, described by (2.14)
B,wS S awF

2.29 TS = pf —=FT, TF=-p"1, p:=p{’—.

(2.29) P 5Fs FLE e oy

These are classical thermodynamical relations for elastic materials and ideal
fluids, respectively. The most important property of these relations is the fact
that identities (2.27), and (2.28) yield

(2.30) T =T2 (¥9), »F=2"(F).
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The latter requires an assumption on isotropy and it shall be proven in the
next subsection.

Consequently one cannot obtain Biot’s model by linearization of the
above model. Couplings between partial stresses which are appearing in the
original Biot’s model with the material constant  would have to violate the
second law of thermodynamics. This property seems to be common for all mul-
ticomponent models of poroelastic materials which do not contain higher gra-
dients among constitutive variables (see also remarks in [4]). It is also a known
property of miscible mixtures of fluids. In the latter case the lack of constitutive
dependence on gradients of partial mass densities leads to a model called simple
mixtures in which partial stresses are not coupled in a constitutive way [12].

Obviously the model contains coupling due to the relative motion of compo-
nents and described by the source p. For this reason, solutions of the boundary
- initial value problems and consequently local values of partial stresses follow
from the coupled field equations.

We should also mention that the similarity of the relation for p* for in-
compressible real fluids ((I)-models) to the relation for compressible fluids ((C)-
models) is misleading. This relation has an entirely different physical interpre-
tation. For compressible fluids the relation (2.29), yields the following linear
form of the constitutive relation for the partial pressure

(2.31) pF=pf +r(p" —n5),

where p{’ is the reference pressure and pf - the corresponding reference partial
mass density. In such a case the compressibility coefficient & describes elastic
properties of the fluid. Simultaneously its square root specifies the speed of the
longitudinal wave in the fluid. This is not the case for the model with the incom-
pressibility assumption. Since the real fluid in this case is incompressible, it has
no elastic properties. Consequently the relation for p¥ describes its dependence
on changes of porosity which are due to microscopical morphological changes
of the skeleton such as a redistribution of grains. Hence the acoustic properties
related to such a constitutive relation for the pressure cannot be extracted from
microscopic properties of the real fluid component.

Incidentally such a model supports the views advocated by W. G. GRAY (e.g.
see: [13]) that macroscopic constitutive relations of components in the macro-
scopic model cannot be directly related to constitutive properties of real com-
ponents, and even less, they can be derived by any averaging procedure for a
single real microscopic component. Macroscopic constitutive properties reflect
for each component microscopic properties of both real components as well as
microscopic interactions between them.
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In the next subsection we consider a higher gradient model which allows for
interactions in constitutitve relations for partial stresses.

2.2.3. ¥ -models. We proceed to consider the model based on constitutive vari-
ables (2.16). However we limit the attention to the simplest case in which the
model is linear with respect to the gradient of porosity. In such a case it may
appear solely in the constitutive relation for the source p because this is the
only vectorial constitutive function. We simplify the model even further and as-
sume linearity of the source with respect to both the filter velocity w and gradn.
Consequently

(2.32) p =nw — Ngradn,

where material parameters 7 and N may still depend on pf" and F°. We have
left out a possible nonlinear contribution proportional to the vector product
w X gradn which would appear in a general nonlinear isotropic model. In contrast
to linear contributions, such a term would be nondissipative. The minus sign in
(2.32) is related to the property of incompressible models (e.g. [10]) in which
N coincides with the pore pressure. In general it may not be the case. This
parameter seems to be always positive. However, such a property does not follow
from the second law of thermodynamics. We assume also the relation (2.26) to
hold.

Bearing the relation (2.6) in mind we obtain the following contribution of the
source to the inequality (2.20):

(I) —models : p-w

(2.33) = ﬂw-w—Nfﬁ {Gra.dpF - pFF5TDiv Fs_l} XF

(C) —models : p-w = 7w - w—N%Grad e, T T <
Po

Contributions appearing with the parameter N in these relations change the
identities of the previous subsection following from coefficients of spatial deriva-
tives. Namely relations (2.24), and (2.24) will be influenced. We collect all these
results of the second law of thermodynamics in the juxtaposition.

After easy manipulations we obtain the following relations for the partial
Piola-Kirchhoff stresses in both classes of models
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(I)-models :
(2.34)
(C)-models :
(2.35) (I)-models and (C)-

sY°

PS = p’ o5 +nNF T,
S
s _ s9¥°
P = 5Fs
models: PF = F26¢

(o

S-T
BpF +nN)F :

as well as the following identities for partial free energy functions

A s A 8 s&pS N
I) —models: —¢ F ;
o M aFs ~ P BpF P 9pF = FRJS
' | L oF (e 0y sr 500 _ N
(C)-—models.a—Fg— 8pF+ﬁ | i iy = R
Table 1.
(I)-models (C)-models
n_ s poypt saws FOp"
A P app +P apps A =°p ap +P app!
sy oy* ays ayF
P* = ¢ gps +" gps — P P*=p’aps +¢ gps P
PF — _PFANFS—T‘ PF i _pFAnFS-—T‘
e N .o WS N
SapF_pP_RJS ‘=0, PPR—CO‘DSt. sapp_ﬁii[“,:‘_}l:u,
W pdy’ sor " (Faw N)sr_
IFS + E."pFF =0, 3FS +\p pF + P F 0.
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Then for the partial Cauchy stresses follow the relations of the form

(I)-models :

TS_ SJS—lawSFST NJS_I']. TF__ F].
—‘p BFS e ] = p ]
L 0pF :
, = pF‘_-pFQJSlapF-l- NJS ]‘
il (C)-models :
oS
TS s pSJS—la:?S FST, TF = —pFl,
F
pF = ,ch2.}’5"16’\l F+BaNT*,

ap*F

It is seen that both models contain couplings of stresses which may lead to
Biot’s constitutive relations for stresses (e.g. [2]) of the linear model. We proceed
to investigate this question. J

In order to simplify the construction of the linear model we evaluate the
above nonlinear relations for isotropic materials. In such a case free energies
S, ¢F satisfying the principle of material objectivity depend on the deformation
gradient F5 solely through the invariants of its symmetric part. For instance we
can choose the invariants of the right Cauchy - Green deformation tensor C®

CP:=FH P, I=uC®
(2.38)

II = = (I’ -txC%%), III=J% :=detC".

B3| =

Then
(2.39) ' =5 (I, 11, 111,p7), F =oF (I,11,111, ).

Let us exploit the identity (2.36); under the above assumption. Bearing the
following relation in mind

a,‘pF " SawF
(2.40) JFS = 2F 3G’
we obtain
W er _ (W ns W s W e OF
(2.41) 8F3F 3 2( al Boew all = 3HB & EHIIH” 2

BY s FOROT, ERT P,
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where the symmetric tensor B® is called the left Cauchy-Green deformation
tensor. Now we can write (2.36); in the form

(I)-models :

(wngfi; +pF33iﬁ;) 142 (%L; - %1) 3 L 2%—‘?—;332 =),
(2.42) (C)-models :

(21113}{’; + ng‘ﬁi + g—ﬂ) 1+2 (a;b—: 1 ?T;I) B

- 2%’?;332 =0,

These relations must hold for arbitrary deformations BS. Consequently, accord-
ing to the corollaries of the Cayley-Hamilton theorem in the tensor analysis,
coefficients of tensors 1, B, B5? have to vanish independently. Hence in both
cases the free energy 1! must be independent of invariants I, 11, and, conse-
quently (comp. relations for N in Table. 1) N must be independent of these two
invariants in (C)-models but not necessarily in (I)-models. In addition we have

. 8YF SuF
(2.43) (I)-models : ¥ =yF (JS,pF), J“’% +pF% =0;
; ; ot pr N
9 . L 57 I F _ 4 F (1S F BRI o =
(2.44) (C)-models v =y (I%p), J 35 P 57 pa

N = N7 pF).

The differential equation (2.43), for (I)-models can be easily solved by the
method of characteristics. If we denote the variable along the characteristic by
£ then we can write this equation in the characteristic form

d o F F
(2.45) .._{_zJS, fdf'_zpf‘”} dl=g,
dg d¢ 3

Consequently % is constant along the characteristics, and these are labelled
by the following initial values

(2.46) pF 571 = const,

which follows from (2.45),2. It means that the solution of the identity (2.36);
for isotropic materials with incompressible real fluid is of the form

(2.47) (I)-models: ¥ = ¢¥ (pf) .
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The problem is more complicated for compressible materials. However we can
simplify the equation (2.44), if we change the variables in a way suggested by
the above solution for the (I)-model. Namely we obtain

(2.48) (C)-models : (‘pF,Js) - (pf,JS) = oF =yF (of, %)

and

wr_ N 1 [P N(pf.€)
1) S =y = ¥ =l o) - [ =G

It is instructive to apply the relation (2.36)s in the formulae (2.37) for Cauchy
stresses. For isotropic materials we obtain immediately

(I)-models:
i 3¢.5 a,ws a¢5' aws :
S _ S 35— s F S
T = o F {(J 6‘J5+pap)1+2(af +IaH)B
W 5o
2.50
&) 7
F 5
TF = _pF J5-1 (ppg%+ps%) 1.
(C)-models:
o H® ayp®
pSJS-13 g8 _ 9% 52
e s i {J 3J31+2( 31 -E-IaH)B 26HB
' 2 ouF 5
TFz—pFJS l(pFawF_{_pSng)l

Let us discuss first the structure of stress relations for (I)-models. As indi-
cated by (2.47), the first contribution to the partial stress T cannot contain any
coupling to the deformation of the skeleton. Consequently it is the derivative of
the partial Helmholtz free energy 1%° with respect to pf’ which relates T¥ to the
deformation of the skeleton. According to the relation (2.36), for the existence
of this coupling, the coefficient N must be different from zero. For the symmetry
required in the Biot’s model it is necessary to introduce a rather complicated

dependence of the partial free energy function %° on the mass density p® which
S 3

would create a term in psﬁg— canceling out the contribution ppf J5-1 Bi to

apr
the stress T (the wrong sign!) and simultaneously produces another one intro-
ducing the coupling to the deformation of the fluid. Even though it is possible
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in principle, such a model does not seem to be very plausible and we do not
investigate it any further.

Let us mention in passing that in a particular case of the constant partial

F

free energy ¥, the relation (2.37)y for incompressible real fluids yields N = En_

which is the pore pressure of classical models. Hence in this particular case the
coefficient in the diffusion force (2.32) coincides with that of classical models of
consolidation. This structure has been indicated in the work [14] on nonlinear
sources.

The structure of stress relations for (C)-models is simpler. As thermodynam-
ical requirements do not lead to any restrictions of the free energy %° on pf
and the free energy %" on J°, we may produce as a particular case a desired
dependence and symmetry. We shall do so for the linear model.

Concluding the above thermodynamical considerations we see that the Biot's
constitutive relations for stresses can be derived from nonlinear C(?)-models by
a specific choice of partial free energies. It means that such a transition requires
a higher gradient model as a background.

2.3. Linear models

The relations derived in the previous subsection yield immediately the con-
stitutive relations of the fully linear model. Let us introduce the Almansi-Hamel
deformation measure €% commonly used in the linear theory of elasticity (e.g.

[71)

(2.52) e := % (1-B51).

The linearity follows from the assumption that deformations of the skeleton
are small, and that changes of porosity are small

(2.53) max {|,\(°J

} < 1, det (e —A@1) =0,
a=1,23

n—n
]l € 1, <= 2
no

where A(®) are eigenvalues of e°, and they are called principal deformations while
ng denotes the reference constant value of porosity.

We construct the linear version of the (C)-model. In this model, also in its
fully nonlinear version, the porosity is related to the mass density by the relation
(2.9)2, i.e.

pt JS

2.54 o
(263 P
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The variable ¢ can be now coupled to changes of the partial mass density pf
and to volume changes of the skeleton J® =~ 1+ tre®. We have

n —_
(2.55) ¢=——-1= u-H;re p§ = nops B

o pﬁ

The first contribution describes the macroscopic volume changes of the fluid
component, i.e it is the (macroscopic) negative fluid dilation € while the second
contribution describes changes of the macroscopic volume e. Hence

Pt = 90
Pa

(2.56) cxe—¢€ e:=tred, e:=—

Let us note that the macroscopic model constructed in this way does not
require any reference to the microscopic description.

Before we proceed with the linearization of constitutive relations it is con-
venient to change the variables in (2.51) from (p%,J%) to (pf,J®). Bearing
identities of the previous section in mind we obtain

o’ oS o’ 311)
i o [ s
T = p; {J 8J9+2(—+I—)B BIIB Npul

al oII
F
TF — (pf‘z&p +71[|Npt )
anf 0

(2.57)

Obviously the stress tensor in the skeleton possesses already the structure
desired in the comparison to Biot’s model. The last contribution can be written
in terms of the variable € which reflects the coupling with the fluid. Such a
contribution does not appear in the stress tensor for the fluid. However the free
energy ¥ may be still dependent on both variables (pf?, JS). Consequently we
can choose this dependence in such a way that the symmetry required by the
Biot’s model remains preserved. It is easy to check that the following choice:

(258)  ¢F = ¢fiu (o) +ﬂoN%, N =const, JS=1+e,

t
indeed yields the desired coupling and it is compatible with the relation (2.49)
provided the coupling coefficient N in the fully nonlinear model possesses a
specific dependence on volume changes of the skeleton J°

Ny

(2.59) N =73,

Ny = const.

This yields indeed the relation (2.58) because in the linear model we do not have
to distinguish between N and Ny in the above relation. Such a dependence is
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solely motivated by the requirement of the linear model and cannot be derived
from any thermodynamical relations.

Let us make an important observation that the coupling in the partial stress
tensor T cannot be corrected any more because the contribution '-f’i{;eat is in-
dependent of volume changes of the skeleton. Hence the coupling constant must
be of the order of the constant N.

The standard linearization procedure leads now to the following linear con-
stitutive relations for partial stresses:

TS = T§ + ASel + 2G%e5 + ngNel,
(2.60)
TF = —pF1, p¥ :=pf — (Re +noNe),

where T5,pf’ are initial values of the stress in the skeleton: F¥ = 1, or equiva-
lently e = 0, as well as € = 0, and of the partial pressure in the fluid, respec-
tively. The material parameters A%, G®, R, N may depend solely on the initial
porosity 7.

In order to obtain Biot's stress relations (1.2) we have to identify A5 =
A, G% =G, Q= ngN and to assume that initial stresses are zero (stresses
in Biot’s relations are the so-called excess stresses):

In contrast to customary macroscopic thermodynamical models of multi-
component systems, the deformation measures % and € appearing in the Biot’s
model do not have the meaning of macroscopic quantities. They represent some
macroscopic averages of real microscopic deformations which are not clearly
specified for the Biot’s model. One can solely presume their interpretation from
Gedankenexperiments provided by BioT and WILLIS |2] and quoted later on in
many works on this subject. Some rather vague remarks?) about the effect of mi-
croscopic interactions on such an interpretation do not influence the construction
of the Biot’s model.

Let us mention that the physical interpretation of Biot’s displacement fields
u for the skeleton and U for the fluid which define the variables €5 and e do
not clear the interpretation of the latter either. The reason is that they were
introduced for small deformations of the skeleton, again without any clear dis-
tinction between real microscopic deformations and macroscopic deformations.
Simultaneously, a motion of the fluid component has never been considered in
a manner similar to that which is customary in the fluid mechanics. Such a

Ye.g.: “... It should be pointed out that this expression (i.e. defining ¢ by the divergence of
the fluid displacement U; K.W.) is not the actual strain in the fluid but simply the divergence
of the fluid-displacement field which itself is derived from the average volume flow through the
pores...” or “... the dry specimen may not exhibit the same properties as the saturated one. As
an example of this we may cite the case where the elastic properties result from surface forces
of a capillary nature at the interface of the fluid and the solid” ( [2], p. 595).
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quantity as the displacement of the fluid U can be solely introduced localy in

time by integrating the ordinary differential equation o v (x,t) wits an

initial condition x (¢t = tg) = x¢ and U = x — xg. ¢y should not be too far Tom
the present instant of time ¢. This is an unnecessary complication of the msdel.
In addition, the microstructural variable ¢ in the Biot’s model is sometime: de-
fined in a different way than this presented above. It may be introduced by the
following definition (e.g. [15])

(2.61) ¢ := nodiv (u — U),

where u, U denote microscopic average displacements of the skeleton anc the
fluid, respectively. Even though a motivation of this formula and an inteppre-
tation of u and U is missing it seems to be based on the argument that the
following relations hold true:

(2.62) e = tre’ =divu, e=divU = ¢= i
1o

Using these deformation measures, Biot and Willis introduce an alternative de-

scription by conjugate dynamical quantities: the bulk stress tensor T and the

pore pressure p for which the constitutive relations (1.2) transform as follovs:

T: =T+ TF = (A + &®M) e1+2Ge’ — aM(1,

(2.63) F

D= 2 — —aMe + M,

ng
where®)
Q? ;
(2.64) S e G=G5 A=), Q=nN,
R Q+R
M = ;g, ai=ng 7

In the literature on Biot’s model it is not always clear which stresses and
variables are being used.

*1In [15] the following notation is used
H:=A+a’M +2G, C:=aM.

It is rather common for the literature on Biot’s model that the notation varies from paper
to paper.
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We have considered in this section the simplest version of a linear higher
gradient model but it is almost obvious that neither the contributions of rela-
tive velocities to free energies nor the nonlinear contributions of the gradient of
porosity can change anything in the structure of a linearized model.

Field equations of the model follow from partial balance equations of mass
and momentum. For the linear model considered in this section they have the
form

dpy ave
e s +p3divw® =0, p°—— =divT® +n (vF - vS) —ngoNgradg,
ot ot
(2.65)
g"ﬁ BaicoF pdV . F_ Fi g8
5t + po divv” =0, p, e divT” —w (v —v ) + noNgrads.

These equations differ from the equations used in the Biot’s model due to the
presence of the source term with the gradient of porosity. However in the linear
model in which the coefficient N is constant and the relation (2.54) holds true,
the contribution of the source can be formally incorporated into the constitutive
relations for partial stresses. After the transformation

(2.66) TSP —naNel, TF 5 T 2agNa,

we obtain new constitutive laws similar to the relations derived by CIESZKO and
KuBIK in [18], and repeated in [19], which possess the same symmetry as the
original Biot relations and the field equations do not contain sources. Instead
of the coupling coefficient ngN we have then 2ngN and, of course, the elastic
coefficients AS and R must be corrected on —ngN. We investigate in the next
section the influence of these relations on the propagation of sound waves in
porelastic materials.

3. Fundamentals of acoustic waves in linear poroelastic media
3.1. Wave front

Let us remind a few elementary properties of the description of wave fronts
in continua. Acoustic waves in continua are related to the propagation of a
nonmaterial singular surface — the wave front ¢ — on which acceleration fields
are discontinuous but the velocity fields remain continuous. If the latter does not
hold, we deal either with shock waves or with vortex sheets.

Let us assume that the instantaneous geometry of the front o is given by the
following equation

(3.1) f(x,t)=0, xeB,CR® teT,
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which is at least of the class C? with respect to x, and of the class C' with respect
to time t. B; denotes the current configuration of the skeleton. The smoothness
requirements mean that changes of the normal vector to the surface are differ-
entiable, and changes of curvatures are continuous. Simultaneously there exists
a smooth speed of propagation of the surface. In order to see these properties
we use the identity

9 _

ot =4

(3.2) df = dx-grad f + dt

As the gradient of f is orthogonal to the surface (f is constant along the surface,
i.e. the vector grad f may possess solely an orthogonal component), we can define
a unit normal vector by the relation

. Bredf
|grad f|
The second gradient of f, i.e. a quantity proportional to gradn is related

to curvatures. Bearing the relation (3.2) in mind we obtain for the speed of
propagation

(3.3)

of
. Y
(3.4) iy I= oy M= Zrad |’

It is easy to see that the relation (3.1) does not impose any conditions on the
tangential component of the velocity of the surface. This means that kinematics
of slip motions cannot be described by such a relation. However this is immaterial
in the theory of waves.

If the speed of propagation v, is given then the relation (3.4) is the nonlinear
differential equation for the funcion f
(3.5) of + vy, |grad f| = 0.

at

With an appropriate initial condition for the position of the front (i.e. f (x,t =

— given) this equation forms a nonlinear Cauchy problem.

3.2. Kinematic and dynamic compatibility conditions, speeds of propagation

The behaviour of various kinematic quantities on singular surfaces has been
studied since 150 years and the modern theory follows the way proposed by
Hadamard. An excellent presentation of this subject can be found in the classical
book of C. TRUESDELL and R. A. TourIN [16] (Chapter IV). We use here a
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particular case of these kinematic compatibility conditions following under the
assumption of continuity of both motions and velocities.
We have for the skeleton

(el =0, [[*]]1=0, [[]]=0,

[..]] =0T lim(...) — ¢ lim(...),

(3.6)

where limits are evaluated on the positive and negative sides of the front.
Introducing the notation

o e[ e [f])

we arrive at the following relations for discontinuities of various derivatives ap-
pearing in field equations of the linear model.
]

[[gra.dpf]] = —ULRSn, [[gradvs]] = —v—AS®n,
n T

(3.8) .
lerde®)] = - || 5-]] e

Un

It follows from the kinematic relation between v° and e® (compare (2.10)
for such a relation in the nonlinear model)

oe’ 1 T
3. i ) S 8
(3.9) 5t 5 (gradv + (grad v°) ),
and this yields
(3.10) ([grade’]] = 52y (AS@m+n 0 A) O
Similarly we have on the wave front o for the fluid component
(3.11) [Pl =0, [[]]=0 = [s=0.
With the following notation
apf avF
12 Fo= || Fom || —
512 = 5] A=)

we obtain the kinematic compatibility conditions for the fluid component in the
form

(leradpf]] = ——R"n, [[gradv"]] =-—A"@n =
(3.13) 5
RFn.

grad ] = (-

1 1
—R" + ;i—AS . n) n, [[grade]] =

0 Un n pv

0vn
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These relations yield the following relations for jumps of partial stress gradi-
ents implied by constitutive relations (2.60)

[[grad T5]] = ,\51% (A°-n)1®@n+ Gsvl2 (A®n+n®A%)®@n

n

1
(3.14) +noN — RF1®n,
Po Un

1 1
[[grad TF]] = Rpt_;r—vnRF1®n+noNE (A® -n)1@®n,

where material constants A5, G, N, R are assumed to be continuous across the
front o.

We use these relations in the balance equations of the linear model (2.65).
Evaluation of jumps of these equations on the wave front o gives rise to the
conditions

(3.15) RS = pslAS .n, RF= p{,‘“iAF i,

Un Un

S8 _ s
v2AS = ('\ re ﬂGN) (A% . n) n-!-G—SAS g (A .n)n,

3 3
(3.16) pR b Z 1, &
vZAF = % (AF -n)n+ n(}" (AS. n) n.
Po Po

Relations (3.15) imply that neither mass density of the skeleton p{ nor mass
density of the fluid p/ yield their own modes of propagation. Rather their am-
plitudes RS, R are determined by the normal component of the acceleration
discontinuity in the skeleton A® -n, and by the normal component of the corre-
sponding acceleration in the fluid A - n, respectively.

The second relation (3. 16) shows that the amplitude A possesses solely the
component in the direction of propagation n. It means that this is related to a
longitudinal wave.

The amplitude AS possesses both the normal component as well as the
transversal component. Separating these contributions we can write (3.16) in
the the following form:

A +2G5 —ngN 2ngN
3.17 ps s pS AS.n =
(3.17) 2N R-mnN _, || AF.n =0,
s oy i
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S 4
(3.18) (u;i - %) Af =0, A =A%—(AS:n)n, ie A -n=0

Relation (3.18) means that the discontinuity Af_ may be different from zero
solely on the front o which propagates with the speed

}GS

Certainly, this is the classical relation for the transversal wave in a solid. The
corresponding wave is called S-wave in geophysics. Obviously in the model we
consider in this section this speed of propagation of the S-wave witch is not
influenced by the presence of the fluid component.

Relation (3.17) forms the eigenvalue problem typical for problems of wave
propagations. It yields the following dispersion relation for the speeds of propa-
gation:

(3.20) (

A5 4+ 2GS —mgN _Ug) (R—noN 3

) _4njN? 0
PS n pg n .

pSpg
Eigenvalues v? determine the speeds of propagation, and the eigenvectors — am-

plitudes of the corresponding modes of propagation. We obtain two solutions of
this problem:

v ) 2 N2
(3.21) Urzz — l (C‘SZ + CF2) :l: (CSQ = cl‘ 2)2 + lﬁng = ,
2 P
s 5 _ =
@2) & : = \/ Nk 36 =il < igtm fE=T0l,
p° Po

The first one — v’ — corresponds to the P1 longitudinal wave, while the second

one - vF? - to the P2 longitudinal wave (Biot’s wave).
A5 +2G%

In the limit case N = 0 the speed of the P1-wave is equal to ¢¥ = e
o

| R .
and the speed of the P2-wave is equal to ¢f = —- These are the relations
Po

which follow from the linearized C(!)-model without contributions of porosity
gradient (comp. [17]).

Let us mention that in spite of constitutive relations identical with those of
Biot the relations (3.21), (3.22) are different from the results of Biot’s propaga-
tion condition due to the influence of the gradient of porosity on the source of
momentum.
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The above presented analysis of propagation of wave fronts may deviate con-
siderably from the observations of waves in soils. Apart from flaws of the model,
the discrepancies may result from the fact that in situ measurements are made
usually in the range of low frequencies (a few Hz) where the attenuation of
waves is relatively small. In addition, one measures the phase velocities rather
than speeds of propagation which correspond to phase velocities in the limit of
very high (theoretically infinite) frequencies. These may differ by 5-10%.

4. Conclusion

The thermodynamical analysis presented in this work seems to close the issue
of thermodynamical admissibility of the classical Biot’s model of saturated poroe-
lastic materials. We conclude in general that Biot’s field equations violate the
second law of thermodynamics. A part of the model — constitutive relations for
stresses — may contain a coupling between deformations of components described
by the material parameter () provided we introduce a constitutive dependence
on higher gradients. However this correction yields a change in the structure of
momentum source appearing in partial momentum balance equations which has
been ignored by Biot.

Simultaneously we have shown that the original Biot’s model as well as a
corrected version with the gradient of porosity lead to the same modes of propa-
gation of acoustic bulk waves. There appear numerical discrepancies in the values
of speeds of propagations which may be of the order of accuracy of the in situ
measurements.

The subject which has not been discussed in any details in this work but
seems to worry people working on granular materials is the structure of the speed
of propagation of shear waves. Both the Biot’s model and the model discussed
in this paper yield the speed of shear waves given by the formula (3.19). This
is questioned by experimentalists investigating S-waves in soils. This seems to
be the main issue requiring a correction of a linear model independently of its
thermodynamical admissibility.
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