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BASED ON THE FIELD EQUATION for the number density of voids and the expression
for the expansion of a spherical void in a perfectly plastic infinite body subjected to
a uniform hydrostatic tensile stress, an expression for the rate of dilatation of voids
is derived. Damage is defined as the volume density of voids. The flow stress of the
material is assumed to decrease affinely with an increase in the damage. It is used
to find the instability strain in a thermoviscoplastic body deformed in simple shear
and simultaneously subjected to a uniform hydrostatic tensile stress. The instabil-
ity strain is determined by two methods: (i) the Considére condition, i.e., when the
shearing traction becomes maximum, and (ii) by studying the stability of a slightly
perturbed homogeneous solution of equations governing thermomechanical deforma-
tions of a thermoviscoplastic body. Both techniques give essentially the same value
of the instability strain. Assuming that failure occurs when the accumulated damage
equals 0.3, the failure strain is computed. For a 4340 steel, values of the instability
and the failure strains as a function of the nominal strain rate and the hydrostatic
pressure are computed.

1. Introduction

TYPICAL DAMAGE MECHANISMS that have been studied are the development
of micro-cracks, micro-voids, and adiabatic shear localization. Many investiga-
tions [1-4] have revealed that the ductile failure of a body deformed at a high
strain rate generally involves the initiation and development of adiabatic shear
bands (ASBs), nucleation of micro-voids either within an ASB or by the separa-
tion of the matrix material from inclusions or both, growth and coalescence of
micro-voids to form micro-cracks, the coalescence of micro-cracks to form cracks,
and the propagation of cracks to the boundaries of the body. MCCLINTOCK [5]
has analyzed the expansion of a long circular cylindrical cavity embedded in a
non-hardening material that is pulled along the cavity axis and also subjected to
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transverse tensile stresses. He found that the relative void expansion per unit ap-
plied strain increment increases exponentially with the transverse normal stress.
RiICE and TRACEY [6] studied the effect of stress triaxiality on the growth of a
spherical void embedded in a perfectly plastic infinite body and found that the
relative void volume grows exponentially with the stress triaxiality. HANCOCK
and MACKENZIE [8] postulated that the failure process in ductile metals involved
the nucleation, growth and coalescence of voids. Thus the effective cross-sectional
area is gradually reduced and the load carrying capacity of the member is de-
creased. They did not incorporate the reduction in the elastic moduli and the
flow stress caused by the voids. GURSON [7] has proposed a plastic potential or
a yield criterion for an isotropic microporous solid that accounts for the decrease
in the flow stress of the material induced by voids. BATRA and JIN [9], BATRA
and JABER [10] and BATRA et al. [34] used Gurson’s flow potential coupled with
the reduction in the elastic moduli, caused by the porosity to study the devel-
opment of ASBs and the transition of the failure mode from brittle to ductile
in plane strain deformations of prenotched thermoviscoplastic plates. PERZYNA
and coworkers [11-13] have developed a theory of heat conducting microporous
thermoviscoplastic solids that accounts for various dissipative mechanisms. Con-
stitutive relations are derived by exploiting the Clausius-Duhem inequality. The
material moduli degrade with the damage evolved which is equated to the density
of voids.

A few models based on continuum damage mechanics (CDM) theory have
been developed to account for the nucleation, the coalescence, and the growth of
voids in a ductile body. In the CDM, these phenomena are generally represented
by a macroscopic damage variable whose growth rate is taken to be a function of
measurable macroscopic variables such as the stress triaxiality, effective plastic
strain etc. The material moduli are presumed to decrease with an increase in the
damage and the material is assumed to fail when the damage attains a critical
material-dependent value. LEMAITRE [14] has summarized damage mechanics
for elastoplastic deformations. Except for the degradation of material moduli,
the theory is similar to that of internal variables developed by COLEMAN and
GURTIN [15]. With the porosity regarded as the damage variable, PERZYNA and
coworker’s theory [11-13] and equations used by BATRA et al. (9, 10, 34] describe
CDM models.

Statistical approach has been employed, amongst others, by CURRAN et al.
[16] and BaA1 et al. [17] to derive macrolevel damage relations. From the conser-
vation law of micro-cracks in phase-space, BAI et al. [17-20] derived a damage
model for ideal cracks. L1 et al. [21] adopted this method to study the damage
due to void expansion in a ductile metal tube with the inner surface subjected
to explosive loads.
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Adiabatic shear banding is an important failure mechanism in dynamic defor-
mations of ductile materials. An ASB is a narrow region, usually a few microns
wide, of intense plastic deformation. TRESCA [22] observed these during the hot
forging of a platinum bar. The activity in the field grew rapidly subsequent to
their observations by ZENER and HOLLOMON (23] during the punching of a hole
in a low carbon steel plate. They proposed that ASBs form when thermal soft-
ening overcomes the combined hardening due to strain and strain rate effects.
Subsequent experimental [24] and numerical investigations [25] have revealed
that an ASB developes in earnest after the load has attained its peak value.
Whereas earlier investigations [1] employed the CONSIDERE criterion [26] to find
the instability strain, BA1 [27] used the perturbation method to find the strain
when the homogeneous solution upon perturbation will become unstable. BA-
TRA and CHEN [28] showed that these two techniques give essentially the same
value of the instability strain. Here we prove that this holds even when damage
evolution is considered and the effective stress required to deform the material
plastically decreases affinely with the damage evolved.

2. Damage evolution equation due to growth of voids

Following BAI et al’s work [17] on ideal microcracks, we make the follow-
ing simplifying assumptions: (i) microvoids are spherical and are sparsely dis-
tributed, thus the interaction among them is negligible, (ii) no new voids nu-
cleate but the volume of existing voids can change, (iii) the growth of a void is
governed by macroscopic deformations, and (iv) the material is rigid perfectly
plastic. Since voids of all shapes occur in a material, our assumption of voids be-
ing spherical will necessarily give us an approximate expression for the damage.
Let v represent the volume of a microvoid and n(v,t,0,,) the number density at
time ¢ of voids of volume v. Here o, is the effective or the von Mises stress in the
matrix surrounding a void. Then the number of microvoids at time ¢ in a unit
volume of physical space of volume between v and v + dv equals n(v,t, 0. )dv.
Thus the total volume, V,,, of microvoids is given by

o0
(2.1) Vi =/ﬂ»{v, t,oe)vdv.

0
The number density of voids of volume v changes with time according to the
relation [17-19]
on  d(no)
— -
ot dv

where a superimposed dot indicates the material time derivative. This equation
is analogous to the continuity equation for an incompressible body.

(2.2) =0,
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We define a damage variable, D, by

Vo YW
2. =— = L
(23) p=t=2_"",
where V and V,, equal, respectively, the total volume of the body and the matrix
or the solid phase. Assuming that the body as a whole is incompressible, Eq. (2.3)

gives

Vo
v

Assumptions V = 0 and V, # 0 imply that the mass density of the matrix will
change. However, in [9, 10] it was assumed that the matrix is incompressible and
thus its mass density does not change. Accordingly, the evolution equation for
V,, derived here differs from that used in Refs. 9 and 10. Substitution from (2.1)
and (2.2) into (2.4) yields

(2.4) D=

on 1 [ 8(nd)
nv
fa *V/ T
0 0
o0 o0
—-—1— m}voo-/m}dv —i/u}d'u
= ) Sy
0 0

since there are no voids of zero volume and no voids of infinite volume.

RICE and TRACEY [6] derived the following expression for the rate of change
of radius, r, of a spherical void in a rigid perfectly plastic infinite body subjected
to hydrostatic tension at infinity:

(2.6) = Cré, exp ( “‘)

20y
where €. equals the effective plastic strain rate, o;; is the Cauchy stress tensor,
a repeated index implies summation over the range of the index, oy is the static
yield stress of the material in simple tension and the value of the constant C
depends upon the loading conditions at infinity. Within about one per cent error,
C can be taken to be 0.279. For a spherical void, v = 4771'3/3. Thus

v _ kk
(2.7) e 0.837¢. exp (2%) ;
Equations (2.5) and (2.7) give
(2.8) D = 0.837¢,D exp ( "“) ,
20y

for the rate of evolution of the damage D.
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For a two-dimensional problem the damage variable, Dy, is usually deter-
mined in terms of the surface area of voids divided by the total area of cross-
section. Since for a spherical void of surface area s, /s = (2/3) v /v, therefore,
for a two-dimensional problem we take

(2.9) D, = 0.558¢, D, exp (%) :
20y
When okk/oy is independent of €, and Dgg = D,(0), we can integrate

Eq. (2.9) to obtain

(2.10) Dy = Dyoexp(kee),

where

(2.11) k = 0.558 exp (fﬂ) .
20y

Thus the failure strain, € ¢, corresponding to the critical value, Dy, of the damage
is given by

(2.12) £f = %ln (gﬂ)

It is clear that the failure strain decreases exponentially with an increase in the
hydrostatic tension. Damage given by (2.10) depends upon the effective plastic
strain €, and the hydrostatic tension. The only material parameter appearing
in (2.10) is the yield stress of the material in a quasistatic simple tension test
because the matrix material has been assumed to be rigid perfectly plastic.

For a thermoviscoplastic material JOHNSON and COOK [29] postulated that

(213) D= Z Ae, /(D1 + (Daexp(D3okk/30¢q) (1 + Dy In(ée/Eeo)) (1 + D56*°)

where Aeg, is the increment in the effective plastic strain which occurs at the
effective plastic strain rate é,, 0., the effective stress, * = (0 —6,)/(0;,—0,), 0 is
the current temperature, 6,, the melting temperature, 6, the room temperature,
and b, Dy, Dy, D3, Dy, D5 and €j are material parameters; .o is generally taken
to equal 1/s. For Dy = Dy = D5 = 0, the expression in the denominator of
(2.13) reduces to the expression for the failure strain proposed by HANCOCK
and MACKENZIE |[8].

In Secs. 3 and 4 we will use Eq. (2.10) with o, replaced by o., to ascer-
tain the instability strain in a thermoviscoplastic body. Since this equation has
been derived for mechanical deformations of a rigid perfectly plastic body, its
application to thermoviscoplastic deformations necessarily involves unproven ap-
proximations. Furthermore, okt /0, will not, in general, be independent of &.
Nevertheless, the instability strain derived in Secs. 3 and 4 highlights the impor-
tance of considering damage evolution.
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3. Instability strain derived from the Considére condition

We study locally adiabatic, simple shearing, and quasistatic thermomechan-
ical deformations of an isotropic and homogeneous thermoviscoplastic body also
subjected to uniform hydrostatic tensile tractions o, and assume that the shear
strain rate is constant. In the absence of body and inertia forces, the balance of
linear momentum requires that the shear stress, 7, be uniform throughout the
body. We assume that

(31) T T('T)'i‘)as DS)

where v is the plastic shear strain, and Dy the damage parameter. Here elastic
deformations have been neglected which is reasonable since at the onset of in-
stability, elastic shear strain will be very small as compared to the plastic shear
strain. Recall that the area of the face on which tangential tractions act does not
change, and uniform hydrostatic stresses do not cause any volume change. Thus
Considére’s condition, which states that a structure becomes unstable when the
load reaches a peak value, in this case implies that an instability will occur
when the shear stress given by Eq. (3.1) reaches a maximum value. That is, an
instability will occur when
dr 9t Ordy 09rdf Ot dD,
&y "oy " 9ydy " d8dy T aD, dy
In Eq. (3.2) 07 /9 represents work hardening or strain hardening of the material,
dt /07 its strain-rate hardening, d7/90 its thermal softening and 97/8D; its
softening due to the damage evolution.

For locally adiabatic simple shearing deformations, the balance of internal
energy gives

(3.2) =1

(3.3) 9 s pr
dy pe
where 3 is the Taylor-Quinney parameter that equals the fraction of the plastic
work converted to heat, p is the mass density and ¢ the specific heat.
For constant shear strain rate ¥, dy/dy = 0. Recalling that £, = v/v/3, and
substituting from (2.10) and (3.3) into (3.2), we conclude that an instability will

occur when

ar Br a e
(3.4) E*ae( ) BD,,D ok’e" T =0,

where k* = k/v/3. In terms of the effective stress o,, and the effective plastic
strain €., equation (3.4) becomes

00eq , 00eq POeq  O0¢q Dyokekée =0
s =0.

) de. 00 pc  OD,
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We now assume that the thermoviscoplastic behavior of the material is rep-
resented by the JOHNSON-COOK relation [30], viz.,

(3.6) Oeq = (1 — D;)(A + Be) (1 + Cln;—e) (1-0"m)
el
where A, B,n, C, €, and m are material parameters. For most materials, m ~ 1;

here we study materials for which m = 1. We substitute for o¢, from (3.6) into
(3.5) and obtain

(3.7) et Bl = Dsoek&) (

Ee
(A+ Ber)?2  npBc(fy, — ;) g Cln_—)

Eel
i kD,
nB(A + Be?)(e % — Dy,)’

For a given value of the prescribed strain rate, the hydrostatic tension and the
initial damage Dy,, equation (3.7) gives the value of the effective plastic shear
strain when the material will become unstable. In deriving (3.7), k = 0 /0¢q
has been assumed to be independent of v or &,. Thus the uniform hydrostatic
tension has been assumed to vary so that k is essentially constant during the
deformation process. The variation of k with 4 can be readily incorporated into
the analysis; it will make equation (3.7) more complicated.

4. Instability strain derived by the perturbation method

In the absence of body forces, the equations governing simple shearing defor-
mations of the thermoviscoplastic body are

i
(4.1) = B—y—zs

. 9% 1
(42) pcl) = h’.a—y.z- + A1,

. : V3T
(4.3) T=vy= V3 Ee0€XP (((1 “ DA+ Ber) (1 =6 - 1) /O) 3
(4.4) Dy = Dgpexp(k*y).

Here v is the velocity of a material particle in the direction of shearing, & is
the thermal conductivity, and y is the position of a material particle. Equations
(4.1) and (4.2) express, respectively, the balance of linear momentum and the
balance of internal energy. Equation (4.3) is the Johnson-Cook relation (3.6). As
in the previous section, we have neglected elastic deformations. Since we study
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the stability of an infinitesimally perturbed homogeneous solution of equations
(4.1)-(4.4), initial conditions are not specified.

Let the homogeneous solution, s? = [y°, 7 6° DY), of Egs. (4.1)-(4.4) at
time tp be given an infinitesimal perturbation

(4.5) ds(y, t,to) = 8%y, ¢ > ¢y,
where
(4.6) 6s° = [67°, &7°, 66°, aDOT

is a small disturbance, £ is the wave number and 7 the initial growth rate of the
perturbation. Implicit in equation (4.5) is the assumption that surface tractions
are prescribed on the bounding surfaces y = +const; otherwise only those pertur-
bations are admissible for which s°+ds satisfies the prescribed essential boundary
conditions. Re(n) > 0 implies that the homogeneous solution at time ¢y is un-
stable; otherwise it is stable. Substituting s = s° 4 ds into equations (4.1)-(4.4)
and linearizing the resulting equations in ds, we obtain A(s% &,7,%9)ds’ = 0
which has a nontrivial solution only if det(A) = 0. This gives the following cubic
equation for the growth rate 7:

(4.7) p*en® + p(BY°Po + K€ + cRo&*)n* + (—B° Py

+ pc(Qo — DYSp) + kRo€*)€%n + k(Qo — DY Sp)¢* =0,

where
or or
Py= —— : = — ; =
2 a0 s=s S d s=s0 e 87 s= s°
(4.8)
o 2o dD;
= oD, s:sU‘ Da - dy s=s0

and 4° is the nominal or the average shear strain rate. For materials exhibiting
strain hardening, strain-rate hardening and thermal softening, Py > 0, Qo > 0,
Ry > 0. We presume that the material softens because of the damage evolved
and the damage is a nondecreasing function of the plastic strain, i.e., Sop > 0
and f)f,' > 0. Hence if Py = 0 and f)? = (), then the homogeneous solution will
be always stable. For perturbations of the homogeneous solution to grow, the
material must soften either due to heating or due to damage evolution or both.
In terms of non-dimensional variables

_ KN Fe K€ Fe cRy P BT°Py + peDVS,
= Q0 ev/pQo’ K’ pco ’
(4.9) .
ﬁNPO'Y DDSQ
e E= =l
pc2Qo Qo
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equation (4.7) becomes
(4.10) 7+ [0+ 1+ DE7 + (I€ +1 - J)E%j+ EE* = 0.

For given values of ¢y and &, equation (4.10) has three roots. The root with the
largest real part will make the homogeneous solution most unstable; this root is
denoted by 7. For fixed to, 7jla depends upon £&. We seek the wave number &,
for which 74 assumes the maximum value #,,. Thus 7, and &, satisfy Eq. (4.10)
and

(4.11) D=2t

Equations (4.10) and (4.11) give
(J=1) = (1 +1)im

4.12 2 — @
g = T 3 U + E)
Since E?n > (0, therefore,

. kI=1
4.1 & Fig S
(418) 0<%m < 7))

Substitution for £ = &, from (4.12) into (4.10) yields
(4.14) 4(Ifjm + E)(fim +T) = [(J = 1) — (1 + D)fjm]*.

Thus, whenever

or

(4.15) J >1+2VET,
0 0
BroPy D28

| DUSy) prPoy? v

pcQo Qo Qo | pctQo ’

equation (4.10) will have a solution 7, with a positive real part. Equation (4.16)
generalizes BAI'S [27] criterion to materials in which the dependence of the flow
stress upon the damage is accounted for. If Dy is interpreted as an internal vari-
able and the dependence of 7 upon Dj is through the factor (1 — D), then
equation (4.16) can be deduced from equation (20) of BATRA and CHEN [28].
For f)f,? =0 or Sy = 0, equation (4.16) reduces to Bai’s instability criterion. For
isothermal deformations, Py = 0, and the instability will occur when the soften-
ing induced by damage evolution exceeds the strain hardening of the material.

(4.16) >1+2
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Dobbp and ATKINS [31] have shown that flow localization in shear is possible
under isothermal conditions if voids are present within the shear band. For plane
strain thermomechanical deformations of a typical steel studied by BATRA and
JIN [9], material softening due to void nucleation and growth was found to be
greater than that induced by the temperature rise.

For locally adiabatic deformations, & = 0, and the instability condition (4.16)
becomes

Br° Py
pc

Thus the material becomes unstable when the material softening due to the
combined effects of thermal heating and damage evolution exceeds the work
hardening of the material. For a unit increment in the shear strain -, the first
term on the left-hand side of (4.17) represents the magnitude of the decrease in
7 due to the thermal softening of the material, and the second term equals the
decrease in 7 due to the magnitude of the softening of the material caused by
the damage evolution, and the term on the right-hand side of (4.7) equals the
increase in 7 due to work hardening of the material. Even though strain rate
hardening does not explicitly appear in equations (4.16) and (4.17), it affects
the value of 70 and hence of Py, Qg and Sg. In the presence of heat conduction,
higher values of 1’)2 and Sy reduce the shear strain at instability but higher values
of the nominal strain rate 4° delay it. BATRA and CHEN [28] have delineated
the effect of strain rate on the instability strain.

Let

(4.18) 5oa (1 Diso) Brpoi®] ™
: Qo | pctQo '

In order to estimate the magnitude of § we use the following values, taken from
Batra and Kim [32], of material parameters for a 4340 steel and set

800 /20 =1, Dp=10" B=09, #=pP4:./pc, asp=A4A

(4.17) + DSy > Q.

Table 1. Values of material parameters for a 4340 steel.

A(MPa) | B(MPa) C n m | p(kg/m")
792.2 509.5 0.014 | 0.26 | 1.0 7,860

c(J/kg K) | &(W/m"K) | 8m(°C) | 6,(°C) | éeo(s™")
477 49.73 1520 25 0=

Figures la and 1b show, respectively, the variation of § with £° for €J = 0.4
and the variation of § with €2 for €2 = 10%/s. For the range of values of £0 and
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Fi1G. 1a. At an average effective strain of 0.4, variation of & defined by Eq. (4.18) with the
nominal effective strain rate.

101

0.8 |-

0.6 -

10008

0.4 -

0.2 | Effective Strain Rate=10°

0.0 R (PR S W e Bt ottt (S e
0.0 0.2 0.4 0.6 0.8 1.0

Effective Strain

FIG. 1b. For a nominal effective strain rate of 10®/s, variation of & defined by equation (4.18)
with the effective strain.

€0 considered, the maximum value 0.06 of § occurs for £2 = 107 /s and ep =04
Thus § < 1 for typical values of strains and strain rates within a shear band, and
the instability criterion (4.16) can be simplified to (4.17) even in the presence of
heat conduction. This is also supported by the numerical experiments of BATRA

and KiM [35] who found that thermal conductivity had a negligible effect on
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the onset of an ASB but influenced significantly the subsequent deformations.
Since the instability strain, 7;, equals the minimum value of the shear strain for
which inequality (4.17) holds, thus the value of 7; may be found by replacing
inequality in (4.17) by equality. A comparison of (4.17) with (3.5) reveals that
the perturbation analysis and the Considére condition give essentially identical
values of the instability strain. We note that for a homogeneous solution of
equations (4.1)-(4.4), heat conduction plays no role.

5. Results and Discussion

For the 4340 steel deformed in simple shear with a superimposed hydrostatic
tension, Fig. 2 shows the dependence of the effective instability strain £; upon
the nominal strain rate for three values of the initial damage. It is evident that
g; is an almost affinely decreasing function of log €,. Also, the initial value of the
damage significantly affects the instability strain; it is because the accumulated
damage is directly proportional to the initial damage. Figure 3 exhibits that the
instability strain decreases exponentially with an increase in the initial damage.
However, when the evolution of damage is neglected, then the instability strain
is an increasing affine function of the initial damage. To illucidate this we neglect
the third term on the left-hand side of (3.4) since it represents a contribution
from the damage evolution. For the 4340 steel, the instability strain is then given
by (e.g. cf. equation (3.7))

e—074

(IH;TE“)? = 10437ﬁ(l — -D.sD).
= 1

It is clear that a higher value of Dy results in a lower value of ¢;. A positive
value of Dy may be viewed as decreasing 8 which equals the fraction of plastic
working converted into heating. A lower heating rate reduces the temperature
rise and hence the thermal softening effect which in turn increases the instability
strain.

The effect of the hydrostatic tension on the instability strain £; and on the
failure strain € is shown in Fig. 4; €7 is computed from equation (2.12) by setting
Dy; = 0.3. It implies that the material ruptures when the surface area of voids
equals 30% of the area of cross-section of the specimen. Plate impact experiments
of SEAMAN et al. [33] suggest that copper specimens fail at a point where the
porosity equals 0.3. Results plotted in Fig. 4 show that log(es) decreases affinely
with an increase in the hydrostatic tension. However, log(e;) is insensitive to the
hydrostatic tension so long as it is small and below a certain value which depends
upon the initial damage. Beyond this value of the hydrostatic tension, log(e;)
decreases rather rapidly with an increase in the hydrostatic tension. Should the
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Fi1G. 2. For three values of the initial damage, variation of the effective instability strain
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FiG. 3. For nominal strain rate of 10° /s, variation of the effective instability strain with the
initial damage.
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10 | —D,=10°
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q

FIG. 4. For the effective nominal strain rate of 10*/s and a prescribed value of the initial
damage, variation of the instability and the failure strains with the normalized hydrostatic
tension.

plots of &; vs. ok /0eq and € vs. oxx/0eq intersect, then the material will fracture
before it becomes unstable. Results in Fig. 4 evince that for the steel studied
here and Dyy = 0.3 it will happen only for large values of ok /0eq.

6. Conclusions

For simple shearing deformations of a thermoviscoplastic body also subjected
to a uniform hydrostatic tension, we have computed the instability strain by us-
ing the Considére criterion and also by examining if a homogeneous solution when
perturbed will become unstable. The evolution of damage due to the growth of
existing spherical voids has been considered. The instability strain found by
the two methods is essentially the same. In the absence of thermal softening,
the softening induced by the void and hence the damage growth may make the
material unstable. The instability strain is not sensitive to small values of the
hydrostatic tension but for large values of the hydrostatic tension, the instabil-
ity strain decreases rather rapidly with an increase in the hydrostatic tension.
However, the logarithm of the failure strain decreases rapidly with an increase in
the hystrostatic tension. For the 4340 steel studied and assumed to fail when the
accumulated damage equals 0.3, the material becomes unstable before it fails.
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