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THE AIM of this paper is to derive extremum and saddle-point principles for a class of
nonpotential and initial-value problems.The procedure used is based on an extension
of the procedure primarily used by BrRezis and EKELAND [7, 8] to classical parabolic
equations. In essence, this approach exploits some fundamental notions of convex
analysis.

1. Introduction

CONSIDER AN OPERATOR equation, not necessarily linear,
(1.1) N(u) = f.
One can distinguish, grosso modo, three possible approaches to variational for-
mulation of (1.1):

(i) The weak formulation, being a rather general form of the virtual work
principle
(1.2) < N(u),v >=< f.0.> YveV.

Here < -,- > stands for the duality pairing on V* x V. The space V is a prop-
erly chosen function space, like a Lebesgue or Sobolev space, whilst V* stands
for its dual.

(ii) Stronger is the stationary principle
(1.3) J(u) — stationary over V.
Then necessarily

6J =<N(u) - f,0u>=0 = N(u)=].
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664 J.J. TELEGA

(iii) The strongest are extremum principles (minimum or maximum principles
and min-max principles or saddle-point principles).
For instance,

(1.4) J(u) — min over V
where
{15) J=J + Ic.

Here C is a set of constraints and I denotes its indicator function [16, 32, 33|:

0 if veC(C,
(1.6) Ic(v) =
+0o0 otherwise.

Min-max principle is formulated as follows:

(L.7) minmax Lu,p) = L(#,7).
Here Y is another function space. The point (u%,p) may be a saddle-point, see
the next section.

It is commonly believed that no general approach allowing for the derivation
of extremum principles in the case of nonpotential and initial-value problems is
available. For the available results the reader is referred to [5, 17, 19,20, 34, 35, 37,
38,40, 41,42,48] and the references therein. On the other hand in a series of pa-
pers [9-13], extremum and saddle-points principle have been derived in an ad hoc
manner for a class of nonpotential and initial-value problems of solid mechan-
ics. In fact, these new principles can be derived by using the general approach
developed in the present paper. At the root of our method to the formulation of
minimum and saddle-points principles lie the pioneering papers by BREZIS and
EKELAND [7,8]. These authors formulated extremum principles for parabolic
heat equation. The approach used exploits fundamental notions of convex anal-
ysis. Similar approach was used by NAYROLES [27] and R10s [29, 31]. Afterwards
these papers seem to have been forgotten. Fortunately, AUCHMUTY [3, 4] recalled
the ideas due to BREZIS and EKELAND [7,8] and developed the general frame-
work enabling to derive extremum principles for nonpotential operator equations
and parabolic-type problems. Hyperbolic-type (second order in time) equations
have not been considered.

The aim of the present paper is threefold. First, inspired by solid mechanics,
the approach used by Auchmuty [3,4] is extended to more general differential
inclusions.
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EXTREMUM PRINCIPLES. . . 665

Second, having at our disposal the general framework allowing for the for-
mulation of extremum principles of operator and parabolic-type equations, we
derive extremum and saddle-points principles for nonlinear, nonconservative
and nonpotential elasticity, stationary and nonstationary quasi-linear heat equa-
tion.Comments on non-associated plasticity and GAO’S papers [23,24] are also
provided.

Third, a general extremum and saddle-points principles are derived for hy-
perbolic abstract differential inclusion. This general formulations enables one to
derive extremum principles for the Lagrange equations in two important cases: (i)
the system studied is subject to conservative forces yet the initial-value problem
is to be solved. Usually the boundary value problems are investigated provided
that variational principles are used; (ii) the system is subject to nonconservative
forces. Extremum principles for the dynamic linear elasticity are also derived.

The approach develop allows for further generalization. For instance, one
can develop extremum principle for a coupled system of abstract parabolic-
hyperbolic differential inclusion. Then one can derive extremum principles for
the nonstationary equations of thermoelasticity. Such coupled problems will be
investigated in a separate paper [47]. Thermopiezoelectricity requires still a more
general framework: a coupled hyperbolic-parabolic-elliptic differential inclusion,
cf. [47].

To facilitate the reading of the paper, in Sec. 2 we introduce the indispens-
able notions of convex analysis. The approach developed in the present paper
or its variants and modifications can likewise be used to the formulation of ex-
tremum principles in contact and structural mechanics. We have in mind contact
problems with frictions, and beams, plates and shells subject to nonconservating
loadings or this type of structures in the dynamic case.

2. Elements of convex analysis

For details the reader is referred to [16,32,33]. Let V be a function space
and
f:V —R=RU{+o0}
a functional. For instance, in the case of finite-dimensional problems V = R™.
In the case of continuous systems V' is a suitably chosen function space like the

Lebesgue space LP or Sobolev space W™P.
The conjugate of f is defined by

(2.1) ff(v*) =sup{<v*,v>—f(v) |veV}v*' e V"
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Here V* denotes the dual space of V, see [16,32,33,49]. For instance, if A is
a linear self-adjoint operator and

(2.2) Ie>0WweV,< Av,u>>clv]|?

then A is invertible. If

(2.3) f(v)=%<Av,v >veEV
then
(2.4) )= % <A W, v'>, VeV

Let us introduce the subdifferential. An element u* € V* is said to be a
subgradient of f at a point u € V if

(2.5) f(w) = f(u) ><u* v —u> VeV

We denote
df(u) = {the set of all subgradients of fat u}.

The multivalued mapping

af :v— 3f(v)

is called the subdifferential of f. The standard example is the subdifferential of
the function
f(z)=|z]|, zeR

It can easily be shown that
-1 if: <0,
af(z) ={[-1,1] if z=0,
- | i >0

The notions of convex and concave functions are elementary and their definitions
are well - known, cf. [16,32, 33].
A convex function f is said to be proper if f # +oo and

f(o) >—-00 WveV.
The definition (2.1) of f* implies that if f is proper then one has

(2.6) f(v) + f*(v*) >2< v, 0>
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for each v € V and each »* € V*. Just this inequality will play an essential role
in the derivation of minimum principles. In (2.6) the equality holds if and only
if v* € @f(v), or equivalently if and only if v € 8f*(v*).

Let us pass now to concave functions, since the above notions are typical for
convex funcrions.

The conjugate of a concave function g is defined by

(2.7) g'(v*) =inf{<v*,v> —g(v) |veV}, v eV
Caution: in general
g' #—(-9").
For the convex function f = —g, one has not g*(v*) = —f*(v*), but

g'(v*) = - f*(-v").
The set dg(u) consists, by definition, of the elements u* such that
gv) <glu)+ <u*yv—u> WYwveW

We shall call such elements u* subgradients of g at u, and the mapping u —
dg(u) the subdifferential of g, for simplicity, even though terms like “supergra-
dients” and “superdifferential” might be more appropriate.

One has

9g(u) = —9(~g)(u).
If g is proper, i. e. if (—g) is proper, one has

(2.8) g(v) +g*(v*) << v*',v >,Vv e V,V* € V*,

with equality holding if and only if v* € dg(v).
Let A: V — Y be a linear operator, let g be a function on Y, and let f be a
function on V. The functions gA and Af defined by

(2.9) (9A)(v) = g(Av),

(2.10) (Af)(y) = inf{f(v)| v € V, Av =y}

are called the inverse image of the function g and the image of the function f
under the mapping A, respectively [25,32,33).

Let us pass to dual functions. The following theorem was proved in IOFFE
and TIHOMIROV [25].
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THEOREM 1. Let A : V — Y be a continuous linear operator. If g is a
function on V, and f f is a function on Y then

(Ag)" = g"A%, (fA)" < A™f".

If f is a convez function continuous at a point of the set ImA, then

(FA)* = A*f*
Moreover, for every v* € dom(fA)*, there exists a vector y* € Y* such that
v =A%, (FA)(v°) = f(¥°) 0

The operator A* is defined by
(2.11) (A*y",v)vexv = (¥*,Av)y-xy forall y*€Y* andall veV.

We recall that A* : Y* — V* stands for the operator adjoint to the operator
A,ImA is the image of A and domf is the effective domain of the function f;
domf = {v € V| f(v) < +o0}.

We proceed now to saddle-functions. Let C and C; be subsets of V' and
Y, respectively, and let L be a function from C x C; to [—o0,+0o0]. We say
that L is a convez - concave function if L(u,z) is a convex function of u € C
for each z € €] and a concave function of z € C; for each u € C. Concave -
convex functions are defined similarly. Both kinds of functions are called saddle-
functions.

A point (4, 2) is said to be a saddle-point of L on C x C; if

(2.12) L(a,z) < L(@,2) < L(u,2) ¥(u,z) € C x C.

Particularly we may have C = V, C), = Y. We observe that saddle - functions
are naturally appropriate for piezoelectricity [47].
Given any convex - concave function on V x Y, we define

o1 L(u, z) = 0y L(u, 2)

to be the set of all subgradients of the convex function L(-,2) at u, i.e. the set
of all u* € V* such that

L(u',z) = L(u,z) ><u* v ' —u> V' eV.
Similarly, we define
62L(u1 Z) R azL(u! z)
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to be the set of all subgradients of the concave function L(u,-) at z, i. e. the
set of all z* € Y such that

L(u,2') — L(u,2) << 2*,2' — 2> V€Y.
The elements (u*,2*) of the set
OL(u,z) = 01 L(u,z) x 2L (u, z)

are then defined to be the subgradients of L at (u,z), and the multivalued

mapping
AL : (u,z) — 9L(u,z)

is called the subdifferential of L.
The last notion we need is that of conjugate saddle-functions. We define the
lower conjugate L* of L by

L*(u*,2*) = sup inf {< u*,u > + < 2*,2 > —L(u, 2)}
ueV 2€Y

and the upper conjugate L of L by

L*(u*,2*) = inf sup{< u*,u > + < z*,z > —L(u,2)}
- 2€Y yev

We have L* < L, ¢t [32,33]. Both these functions are convex-concave. Under
rather weak assumptions, specified in Corollary 37.1.2 by ROCKAFELLAR [32],
we have

(2.13) L*(u*,2") =T '(u',2").

For the initial-boundary value problems studied in the paper [47] the prop-
erty (2.13) holds true since the saddle-functionals assume only finite values on
appropriately defined spaces.

Define now the functional G : V. — R by

(2.14) G(u) = sup L(u, 2)
zeY

where £ : V x Y — R is not necessarily a convex-concave functional. A point
(41, 2) is a min-maz point for £ on V x Y provided % minimizes G on V and

(2.15) G(4) = L(4, 2) = sup L(%, 2)
zeY

holds. Consequently, when (i, 2) is a min-max point of £ on V x Y, then

(2.16) L(i,2) < L(4,2) = G(a) < G(u)
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for all (u,z) € V x Z. Since G(u) > L(u, z) for each u € V, a saddle-point will
be a min-max point of £. The converse need not hold. Indeed, take the function
L : R? — R defined by, cf. [4]

I N

L(z,y) = zy — 55'-" = iy :

Then G(z) = l:c:2 and (0,0) is a min-max point of £. It is not a saddle-point in
the sense of (2.12) since

£(0,y) < £(0,0) and L(z,0) < £(0,0)

for all (z,y).

3. Minimum principle for nonpotential operator equations

In this section we shall derive minimum principles for a class of boundary-
value problems of solid mechanics.

To this end we follow the approach primarily used for the parabolic heat
equation by BREZIS and EKELAND (7, 8].

3.1. Abstract framework

It seems that the first attempt to exploit the idea due to Brezis and Ekeland
[7,8] to elliptic-type problems should be attributed to Auchmuty [3|, cf. also
[4]. Now we shall briefly summarize his results and propose also an extended
framework, more suitable to problems of continuum mechanics.

Let V be a locally convex topological space and V* be its dual space with
respect to bilinear pairing (., )v-xv, usually denoted by (.,.).

Auchmuty (3, 4] confines his considerations to V being a Banach space.

Suppose F : V — V* is a continuous map and ® : V — R = RU {400}
be a proper functional on V. Consider the problem of solving the differential
inclusion

(3.1) F(u) + f € 09(u)

with f € V*.
We recall that when @ is proper, its conjugate function ®* is convex and l.s.c.
(lower semi-continuous) in the weak, weak-* or strong topologies on V* [16].
Define now the functional J on V' by

(3.2) J(u) = ®(u) + @*(F(u) + f) — (F(u) + f,u).
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The minimum principle associated with (3.1) means evaluating
(3.3) a=inf{J(u)| ue V} (P)

An element % € V is said to be a minimizer of J on V if J(i) = a.
The following theorem has been formulated in [3].

THEOREM 2. Assume that V,®, F and f as above and J defined by (3.2) is
a proper functional. Then a > 0 and J(t) = 0 if and only if G is a solution of

(8.1).
P r oo f. The definition of J* yields

O(u) + " (u*) > (u*,u) YueV, Vu' e V"

Equality holds if and only if u* € 9®(u), cf. [16].

Setting now u* = F(u) + f we conclude that J(u) > 0 for all u € V, and
J(u) = 0 if and only if (3.1) holds. O

Relation (3.2) yields
J(u) = ®(u)—(F(u)+f, u)+sup{(F(u)+f,v)—®(v) |v € V} = sup{L(u,v) |v € V},
where L : V x V — R is defined by
(3.4) L(u,v) = (F(u) + f,v — u) + ®(u) — &(v).

We observe that L is a Lagrangian of type I for problem (P), cf. [3,21,44]. The
standard dual principle is to find

(3.5) o' =sup{H(v) |ve V}, (P*)
where H :— R is defined by
(3.6) H(v) = inf{L(u,v) | u e V}.

It is worth noting that the Lagrangian L given by Eq. (3.4) is defined on V x V.
Thus its two arguments are of “the same” type.
A point (4,9) € V x V is a saddle point of L if, cf. Sec. 2,

(3.7) L(4,v) < L(%,9) < L(u,9) for all u,v in V.
It can easily be shown that:

(i) If (P) and (P*) are nontrivial, then @ and a* are finite with a* < a. If
a* > 0, then (3.1) does not possess a solution.

(ii) If there exists a solution # in V of (P*) with H(?) = 0 and a @ in V such
that (1,9) is a saddle point of L, then u will be a solution of (3.1).

(iii) If (@, ) is a saddle point of L, then

0 = H(d) = L(i, 9).
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3.2. Generalized framework

Consider now the following differential inclusion
(3.8) Fi(N(u)) + f € 09;(Au)

where A : V — Y is a continuous linear operator, Y is another locally convex
topological space, Y* denotes its dual, N : V' — V] is continuous operator, not
necessarily linear, and Fj : V; — V* is a continuous mapping. Once again, V] is
a locally convex topological space.

In applications the operator A may be a gradient, the linear strain tensor
e(u) or A(u) = (e(u), Vu) in the case of the Green strain tensor Ej;j(u) =

5(8&;(“) + i g ).
The minimum principle associated with (3.8) means evaluating

(3.9) B=inf{K(u) |ueV} (Q)
where, cf. Theorem 2,

K(u) = @,

(Au) + (21A)"[F(N(u)) + f] = (F(N(u)) + f,u)

Py (Au) + (A"®])[F(N(u) + f] — (F(N(u)) + f,u)
Dy (Au) +inf{21(¢") | ¢" € Y*,A’¢" = F(N(u)) + f}
— (F(N(u)) + f,u).

Now the conjugate functional ®] is defined by

H

(3.10)

ll

®7(¢") =sup{< ¢*,¢ >y-xy —®1(q) | g€ Y}
REMARK 1. Formally, the setting of Sec. 3.1 is recovered provided that
F(u) = Fi(N(u)), @(u)= ®1(Au).

However, in many applications the form (3.9) is more convenient. For instance,
as we shall see below, in the case where ®(u) is a quadratic functional in order
to find * we have to calculate an inverse operator.

The minimum principle (Q) can be reformulated as follows

Find (Q1)
inf{K1(u,q*) |u €V, ¢* €Y*, A*¢* = F(N(u)) + f}

where

(3.11) Ki(u,q%) = ®1(Au) + ®1(¢") — (F(N(u)) + f,u).
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We observe that the last principle involves the adjoint operator A* which usually
can easily be calculated.

A theorem similar to Theorem 2 can readily be formulated and proved by
the reader.

Let us pass to the formulation of Lagrangian functional, now denoted by L:

(3-12) Li(u,q";q) = ®1(Au) = @1(q) + (g7, @)yxy — (F(N(u)) + fw)v-xv.

We have
K\ (u,q") = sup{L(u,q¢";q) | g€ Y}.

The dual problem means evaluating
sup{Hi(q) | g€ Y},
where
(3.13)  Hi(q) = inf{L,(u,q";q) |u€V, ¢* €Y*, A*¢" =F(N(u)) + f}.

One can now readily formulate a counterpart of inequalities (3.7) and properties
corresponding to (i)-(iii) formulated in Sec. 3.2.

3.3. Applications

The abstract framework presented in Secs. 3.1 and 3.2 can be applied to a
wide range of elliptic-type problems of continuum mechanics. Due to limitation
of space only selected applications are studied.

3.3.1. Non-self-adjoint linear elliptic equation. In my paper [39], cf. also [15, 35,
the following non-self-adjoint equation was considered

(3.14) Qu=Lu+ Ru=f,
where L = L*, R = —R. Moreover, it is assumed that
(3.15) Lu=PCPu, R=0Q-L
with C* =C

We take two real Hilbert spaces H; and H. Let P be a linear operator P :
H — H,, with the domain D(P) of P dense in H. We assume that N'(P), the
null space of P, is N(P) = {0}, 0 being the zero element in H. Suppose that
C : Hy — H; is linear bounded and self-adjoint, and C* = C, (Cuy,ui)n, >0
for all u; € Hy, uy; # 0. We have D(CP) = D(P). Furthemore we assume that
the adjoint P* : H; — H of P exists with a domain D(P*) dense in H;. Then
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the operator L = P*CP : H — H is a positive self-adjoint operator with D(L)
dense in H.

In [39] a pair of dual extremum principles for Egs. (3.15), (3.16) was derived.
In essence, the basic idea consists in considering the pair of operator equations

Lu+Ru=f
(3.16)
Qv=Lv—Rv=gyg

with f,g € H. Next we set

(3.17) wy = %(u +v), wp= %(u — )
3.18) F = - G= !
(3. =5(f+9), G=3(f-9)

Thus (3.16) becomes

=7
(3.19) {Lw; + Rwy

Lw; + Rwy = G.

Such a formulation was used in [39] to derive dual extremum principles for
non-associated plasticity.

Let us briefly show that the formulation proposed in [39] is a specific case of
our general setting.

Consider now this setting in the particular case of linear, non-self-adjoint
equation (3.14). Any equation of the form

(3.20) Qu=f
can be written in the form (3.14). It suffices to set
1
(3.21) L=3@Q+Q), R=Q-L

We assume that L is positive definite.
We define the functional ¢ by

(3.22) D) = %(Lu,u)

where (-, ) denotes the scalar product in the space H. Then Eq. (3.20) can be
written in the form

(3.23) f — Ru € % (u)
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where 0®(u) = {Lu}. The functional J defined by (3.2) becomes

(324)  J(w) = B(u) + @ (f ~ R) ~ (fu) = 5(L7(Qu~ ), Qu~ 1),

Since the operator L is positive therefore J is convex. Theorem 2 implies that
J(4) = 0 if and only if 4 solves (3.20).
From (3.24) we conclude that

(3:25) QL™ (Qu~— f)=0.
The Lagrangian is now given by
(3.26) L(u,v) = ®(u) — ®(v) + (f — Ru,v — u).

This Lagrangian is obviously a convex-concave functional. Its saddle-point (%, 7)
obeys

(3.27) GuL(u,9) = GyL(4,9) =0,
where G, and G, denote partial Gateux derivatives.
Hence
Lii D =
(3.28) 1‘;+R1‘; f
Li+Ru=f

Since L is positive therefore 4 = 0.
The extremum principles derived in [39] are recovered provided that g = f.
The conjugate (dual) functional (3.6) now becomes

(3.29) H(v) = (v, f) — B(v) + ®*(f — Rv).

REMARK 2. The dual extremum principles derived in [15,39] are based, ab
initio, on the study of Eq. (3.16); and the adjoint equation (3.16). It means
that the following system was considered:

f— Ru € 0%(u)
g+ Rv € 09(v),

(3.30)

or equivalently

(3.31) {f — Ru,g + Rv} € 0¥(u,v)
where
(3.32) U(u,v) = ®(u) + ¢(v).

The functional (3.2) becomes
J(u,v) = ¥(u,v) + ¥*(f — Ru,g + Rv) — (f — Ru,u) — (g + Rv,v)
= ®(u) + ®(v) + ®*(f — Ru) + *(9 + Rv) — (f,u) — (g, u).
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3.3.2. Stationary quasi-linear transport equation. We shall now derive a mini-
mum principle for the following transport equation:

{~&ﬂdmu@ﬂVMﬂ]=f in Q,

u=0 on .

(3.33)

Here Q is a bounded domain in R® and T' = 9 its boundary. For the sake
of simplicity only the homogeneous boundary condition is considered. Mixed
~boundary condition can also be taken into account.

The problem of solutions to (3.33) was studied by ArRTOLA and DuvaurT [1].

I |
For f € W~14(Q), p > 2,- + — = 1, a solution exists in the space WUI”’(Q}.

In [1] it is assumed that a;j(z,7) = aji(z,7). No such symmetry condition is
required in our setting.

Suppose that
(3.34) aij(z,7) = aj;(z) + ajj(z,7), af; =al;,
where a?j is positive definite for almost every z € §). We assume that a?j €
L>(Q2). The conditions to be specified by a! are specified in [1,22]. Taking ac-
count of Eq. (3.31), problem (3.30) is written as follows

(3.35) f + div(al(z,u)Vu) € 09(u)
where
1 ;
(3.36) ®(u) = 5 (=diva’(@) Vi, u)yy (o (o)
L[ o L, o
= E/a,-j(:r)u',:u‘jdz = 5(& (z)Vu, Vu).
0

For a mixed-boundary value problem a boundary term in the functional J(u)
will appear. Here u ; = du/dz; and the summation convention has been applied.
The functional (3.2) becomes

(3.37)  J(u) = ®(u) + *[f + div(a' (z,u)Vu)] — (f + div(a' (z,u)Vu),u),
where @ is defined by Eq. (3.36), the duality pairing is defined on W~—19(Q) x
WyP(Q) and

(3.38) @°(v*) = sup{(v*,v) — ®(v) | v € Wy "(Q)}

1 ~1 . * %
= §(L v, )W‘;"[Q]xw—l-‘?(ﬂ]‘

where L~! = (—divaV) L.
Employing the Lagrangian of type (3.4) we increase the number of variables
twice but avoid calculating the inverse operator L™!.
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3.3.3. Nonconservative finite elasticity. Let B denote a hyperelastic solid occupy-
ing in its undeformed state the closure Q of a bounded domain 2 C R®. Consider
the following static problem:

divT + f(z,u,F) =0 inQ,
(3.39)

u=0 onTl.

with det F > 0.

Here T denotes the first Piola-Kirchhoff stress tensor and F = Vu is the
deformation gradient [14,26,28]. We recall that detF > 0, where det denotes
the determinant. The hyperelastic constitutive equation is given by

_ow
~ OF’

The stored energy function W (z, F) is nonconvex in F, cf. [14, 26| for a detailed
discussion.

The problem of finding a deformation u € Wg‘p(ﬂ):’, with p sufficiently large
[14,26], such that (3.39) and (3.40) are formally satisfied, is equivalent to

(3.40) T

(3.41) N(u,Vu) € 09;(Vu) with det Vu > 0,
' u=0 onl,
where
(3.42) ®,(Vu) =/W(:r, Vu)dz
Q0

and N(u,Vu) = f(z,u, Vu) stands for Nemytskii operator, cf. [14, 18].

One could use the variational approach developed in Sec. 3.2 with A = V.
However, the functional @] is always convex and this facts leads to the conclusion
that the broad class of loadings is precluded, cf. [6,21, 44]. Therefore we propose
a different, quite general approach, similar to the one used for the transport
equation. Let

3.4 =
( 3) T 9F + T,

where ¢ is a convez function, for instance a quadratic one. ¢ may depend on
z € Q. If T is given by (3.40) then

oW 8¢
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Then (3.41); is rewritten as follows:

(3.45) div (%) +divT; + f(z,u,Vu) =0 in (,
u=0 onl.

We set

Then (3.35) is written as follows:
(3.46) N(u,Vu) +divT; € 0®(u), detVu >0
and the functional (3.2) becomes
(3.47) J(u) = ®(u) + ®*[N(u, Vu) + divT] — (N(u, Vu) + divT,, u).
The minimization problem (3.3) now takes the form
inf{J(u) | u € Wy?(Q)%, detVu(z) > 0}.
REMARK 3.

(i) One can formulate the extremum principle of type (3.9).

(i) In the case of Cauchy elasticity there exists a response function T(z, F)
such that [14, 26]

(3.48) T = T(z,F), detF >0.

Such a law is in general nonpotential. Employing the results of Secs. 3.1, 3.2,
one can formulate extremum principles for Cauchy elastic solids subject to non-
conservative forces. The study is left to the reader.

(ili) The minimum and min-max principles proposed by CARINI [11] fall
within the general framework considered in Sec. 3.1. This author considered the
following nonlinear behaviour:

oij(z,t) = Diju(z, t)e;j(u(z,t)) + vii(e(z, t)).
The inverse relation has the form
eij = Bijki(z, t)ow(z, t) + @}5(o(z,t)).
Here e denotes the small strain tensor, o is the stress tensor ¢, stands for time

(quasi-static evolution), and B = BT, D = DT the subscript T' denotes the
p
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transposition. The response function @;‘J— and ], are not necessarily derivable
from potential functions.
In the case of nonassociated plasticity we have, cf. [39, 40],

6ij = Eijriér, Eijkt # Ekiij-
Here & denotes the strain rate tensor and
n
Eijkt = Dijkt — cDijj

with

(3.49)

c=1if f=0 endf=0
¢c=0if f<0 or f=0and f <0.

By f(o, &) < 0 we denote the yield condition where & stands for a set of internal
variables.

The formulation of minimum and saddle point principles for both small de-
formation and finite nonassociated plasticity deserves a separate study.

REMARK 4. GAO [24] claims to have solved the problem of duality for finite
elasticity. Such statement can hardly be taken seriously since his formulation of
the primal problem does not take into account the most significant constraint
like det F > 0, where F stands for the gradient of deformation, cf. [14,26, 28].

Also in [23] the same author claims that my approach to duality, used in [43] is
erroneous. Such a statement is false. It is shown in many papers published mostly
with my coworkers that one can use the Rockafellar theory of duality to noncon-
vex problems, cf. [6,21,44,46| and the references therein. It amounts to finding
the dual problem to the convexified or bidual to the primal one. Then, however,
additional constraints appear. For instance, in the case of von Karman plates the
membrane forces tensor has to be semi-positive. Otherwise a duality gap arises.
It seems that a new framework to coping with nonconvex duality has been pro-
posed in [46]. There an approach developed by ROCKAFELLAR and WETS [33]
for finite-dimensional problems has been extended to infinite-dimensional set-
ting. In essence, the approach used exploits augmented Lagrangian method. The
study of specific cases has shown that other approaches to nonconvex duality
always lead to restrictions on applicability. For instance, Auchmuty’s approach
to nonconvex duality is not as general as the author believes, cf. [21,44]. The
same pertains to Gao’s [24] uncritical statements.
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4. Parabolic differential inclusions and extremum principles

4.1. General setting

The aim of this section is to provide a general extremum and saddle point
principles for the following problem:

i) u(t) + 00(t,u(t)) 2 F(t,u(t)) on0<t<T,
- u(0) = ug € X.

. . 0 “ By : .
Here u = d_[: and B is a real Banach space which is dense in X, being also a
Banach space.

The procedure which follows extends the original approach due to BREZIS
and EKELAND (7, 8] and is more general than the one studied by AuCHMUTY [3].
We make the following assumptions:
(a) For each t € [0,T], ®(t,) : B — R is a proper, convex and weakly lower
semicontinuous function,
(b) F:[0,T] x B — B* is a Nemytskii operator.
Let Y = LP(0,T;B) be the Lebesgue space of measurable functions u :
[0,7] — B endowed with the norm

d fy
lull§ = /Hu(t)||§3dt.
0

The dual space Y* of Y is L9(0,T; B*), cf. [18]. As usual, - + Lp)

q
Let V be the space of all functions v in Y with © € Y*. We recall that v is
the time derivative of v defined in the distributional sense [18]. V is a Banach
space under the norm [18|

T 1/p T
[Jully = (fllu(t)fl’gdt) - /||1’;(t)||“'.dt
0 0

Consequently, v is a continuous function from [0, T'] to X and the initial condition
(4.1)2 is meaningful.
Let

1/q

(4.2) K = {u € V§u(0) =uy € X}.

K is obviously a closed manifold of V.
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Generalizing the variational functional introduced by Auchmuty we define
J:K—=Rby

(4.3) J(v)
T
bt / [B(t, v(2)) + @* [(t, F(t, v(t)) — 9(t)] — (F(t, v() — 6(t), v(t)) e 5] dL-
0

Usually in applications X is a Hilbert space, cf. [18]. The minimum principle
associated with problem (4.1) means evaluating

(4.4) a=inf{J(v)|v e K} (Py).

The functional J assumes either finite or positively infinite values provided
that, cf. [3],

(i) ifve Y, v* € Y* then ®(-,v(-)) and ®*(-,v(-)) are Lebesgue measurable
on [OaT];

(i) there exist finite constants ¢y, ¢z, not necessarily positive, such that ®(t,v) >
¢1 and ®*(t,v*) > ¢z on [0,T] x B and [0,T] x B* respectively;

(i) v in K implies that F(-,v(-)) is in Y.

Now we can formulate a counterpart of Theorem 2.

THEOREM 3. Let J, V and K be as above and (i)-(211) hold. Then a > 0 and
J(u) =0 if and only if u is a solution to (4.1).

P r o o f. The proof is similar to the elliptic-type problem (3.1). The defini-
tion of the conjugate functional yields

D(t,v(t)) + D" (¢, 0% (t)) 2 (v*(t), (1))

for all v*(¢t) € B, v* € B* and t € [0, 7.
Integrating over [0, T] we get

/4

T
(4.5) / (®(t, v(t)) + B° (¢, v° (1))] dt > f (v (£), (t)) dt
0

0

forallv e Y, v*(t) € Y*. In (4.5) equality holds if and only if

v(t) € 9P(t,v(t))

http://rcin.org.pl



682 J.J. TELEGA

for almost everywhere (a.e.) t € [0,7]. Setting v*(t) = F(¢,v(t)) —9(t) we obtain

T T
(4.6) /{@(t,v(t)) + ®*[F(t,v(t)) — 0(t)]} dt > f(F(t,v(t)) —0(t),v(t)) dt
0 0

Moreover, in (4.6) equality holds if and only if v = u obeys (4.1) a.e. on [0, 7).
If p =2 and X is a Hilbert space with the norm || - ||x induced by the scalar
product then we additionally have

T T { )
[ @00 dt = F@IF| =3l - IvO)]
0

0

In this specific, practically important case, the functional J takes the form

T

(4.7) J{v}=/{¢(t,u(t)) + @ [t, F(t,v(t))

0
(8] = (F(t,v(e)),v(e)) Jat+ 5 (DI ~ llually) -

DO

REMARK 5. The functional J involves the conjugate function ®*. Similarly
to Secs. 3.1 and 3.2 one can formulate Lagrangian and saddle-point principles.

4.2. Applications

Some illustrative examples of application of the extremum principle (F) in
the case where p = 2 and X is a suitably chosen Hilbert space were provided
by AucHmMUTY [2,3], cf. also Ri0s [29-31]. An alternative approach was used
by NAYROLES [27]. More precisely, in [2] an autonomous, nonlinear ordinary
differential equation with periodic boundary condition was studied. A general
setting for linear initial value problems was elaborated in [3].

The general approach presented in Sec. 4.1 offers many possibilities of finding
minimum principles for boundary-initial value problems of solid and fluid me-
chanics or heat transfer. Particularly, one can formulate minimum and saddle-
point principles for heat transfer of biomechanics [36,45]. To mention but a
few other possibilities, we think of applications to quasi-static contact problems
with friction, adaptive elasticity (biomechanics), nonassociated plasticity and
viscoplasticity, linear and nonlinear heat equations and Navier-Stokes equations.
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4.2.1. Nonstationary quasi-linear heat equation. We recall that the stationary
transport equation has been investigated in Sec. 3.3.2. Consider now the following
parabolic equation:

n% — div[a(z,t,0)V0] = f(z,t), inQx (0,T),

(4.8) 0(z,t) =0 onT x (0,7),
0(z,0) =8%z), €.

Here 0(z,t) denotes the temperature.
Now we set

X=L%R), B=W,P(), Y =L*0,T;W,"Q)).

Hence 11
X*=X=F), B'=Ww49), sl

We assume that 8° € L?(). The assumptions on the material coefficients are
similar to those specified in [1,22], except that now they hold for all ¢ € [0, T
and the function a;;(z, -, 8) is continuous (in the second argument). Consider two
cases.

Casg 1. The coefficients a;; have the form similar to (3.34):
(4.9) asi(z,1,0) = a?j (z,t) + a}j(:r, t,0)
and the matrix a°(z, t) is symmetric and positive definite. Then we set, cf. (3.36),

F(t,0) = f +div (a'V#),

P(t,0) = %(—div (a"V9),0) = %(a”VG, Vo).

Here we use the notation which is normally used in the study of evolution partial
differential equations:

0(t) = {6(z,t) |z € Q}.
The minimum principle takes now the form
| Find inf{J(0) |60 € K }.

The variational function J has now the form (4.7) with v = 6 and 9, ug being
replaced by k6, 8° respectively.
Moreover we have

K= {9 € L*(0,T; Wy P(2) |6 € L*(0,T; W~14(2),0(0) = 9“} 3

We observe that the coefficient k¥ may be a function of z € Q.
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REMARK 6. One can consider a slightly more general equation than (4.1):

la(u(t) + 9%(t,u(t)) 3 F(t,u(0)

Then the last differential inclusion is written as follows
a(t)u(t) + 0®(t,u(t)) 3 Fi(t, u(t))

where Fi(t,u(t)) = F(t,u(t)) — a(t)u(t).
CASE 2. A positive definite, symmetric matrix b;;(z,t) is introduced and

we set
F(t,0) = f —div (bVB) + div (aV#),

®(t,0) = = (bV9 Vo).
For instance, we may take b,-j(a:,t) = b(z,t)d;; where (;;) is the Kronecker
delta.
5. Second-order differential inclusion

5.1. General setting

Consider the problem of solving

di2
u(0) =% 4(0) = ul.

(5.1) {dgu(t] + 0®(t,u(t)) 3 F(t,u(t),u(t))

Here we confine our considerations to the case where B is a real Banach space
which is dense in H, a Hilbert space with the scalar product denoted by (-,-).
The space Y is defined by, cf. Sec. 4.1,

Y = L?(0,T; B).

Now the space V' is chosen as follows

(5.2) V={veY|ve L*0,T;H),i €Y*}.
We recall that Y* = L%(0,T; B*). Fhe set K, of admissible fields is defined by
(5.3) Kn={veV|v(0)=u"€B,i0)=u' € H}.

The functions ®, ®*, F satisfy assumptions similar to assumptions (i)—(iii)
specified in Sec. 4. 1.
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We introduce the variational functional

T
(5.4) J(v) = / {8(t, u(t) + °[t, F(t, v(¢), 5(8)) — 6(0)
0

T
= (F(t,0(t),0(t)),v(t)) p- < B }dt—fllﬂ(t)lﬁ,rdw (6(T),v(T)) = (u',u).
0

The minimum principle associated with (5. 1) means evaluating
a = inf{J(v) |v € K }.

THEOREM 4. Assume that J, V,®,®* F and K, are as above. Then a > 0
and J(0) = 0 if, and only if © ts a solution to (5.1).
Proof We have

B(t, v(t)) + @*(2,0%(2)) 2 (v*(2),v(2))

for all v(t) € B; v*(t) € B* and t € [0, T]. Integrate over [0,T] and take v*(t) =
F(t,v(t),v(t)) — 9(t), then

;
(5.5) /{¢(t,v(t)) + [, F(t, v(t), 5(t)) — #(t)]} dt

0
.
> [ (Bt 0(e),5(0) - 5(0), o(0) .
0

Equality holds here if and only if ¥ obeys (5.1) a.e. on (0,7"). Moreover, we have

T T
(5.6) /(ﬁ(t),v(t))dt = (5(T),v(T)) - (u',u’) - /(‘fl'(t),i’(ﬂ)dt-
0 0
Substituting (5.6) into (5.5) we get (5.4). 0
REMARK 7.

(i) Lagrangian formulation is likewise possible.
(i) The formulation similar to that presented in Sec. 3.2 will be presented

elsewhere both for the parabolic and
hyperbolic inclusions.
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5.2. Applications

The variational formulation presented in Sec. 5.1 offers a possibility of many
applications in analytical, solid and structural mechanics. To mention but a few,
we think of linear and nonlinear dynamic elasticity, Lagrange equations in the
nonconservative case, vibrating structures like beams, plates and shells.

5.2.1. Dynamic linear elasticity. To provide a nontrivial, illustrative example
consider the following system of dynamic elasticity:

pi — div [C(z, t)e(u(z,t))] = f(z,t) inQ x[0,T],
(5.7) u=0 on I x[0,7T],

u(z,0) = u’(z), u(z,0) =u'(z) in

Here u(z,t) denotes the displacement vector, e(u) is the small strain tensor, p

denotes the density, not necessarily constant, and Cj; are components of the

elasticity tensor satisfying usual symmetry and coercivity requirements [14, 26].
We set

(58) ®(t,u)= %(—div C(z, t)e(u), u)

- %/Cijkt(x,t)ev‘(u(m,t))ekt(u(w,t))dz..
1

The functional spaces are

B = H)(Q)3, B* = H ()3, H = L}(R)?,
(5.9) = {v € L2(0,T; HL () |v € L(0,T; LA())?
Ve Lz(O,T;H‘l(Q):")}.
Then the variational functional (5.4) becomes

T

(510) J(u) = / (®(t, u(t)) + [, £(2)

0
—pia(t)] = (£(t), u(t)) -1 oy x (s |

T
- [[ pista, it et + | pista, Tyia(z, Tz - [ i@l @i
00 Q 11
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6. Final remarks

We have developed a general procedure for finding extremum and saddle-
point principles applicable to nonpotential and nonconservative problems of me-
chanics as well as to first- and second-order differential inclusions. Illustrative
examples show the flexibility and versatility of the approach used. This approach
allows for: (i) finding minimum and saddle point principles for problems usually
believed to possess no such principles, (ii) the study of existence of solutions, cf.
R10s [29-31], (iii) the development of new approximation schemes.

In a separate paper extremum principles for dynamic thermoelasticity and
piezoelectricity and thermopiezoelectricity will be derived. Our approach offers
also a possibility of the derivation of extremum principles for bio-heat equations,
cf. [36]. This problem will be studied in [45]. The papers [45,47] will offer a fur-
ther development of the general variational approach used in the present paper.
Particularly, extremum principles for coupled parabolic-hyperbolic differential
inclusion will be derived.

Another field of possible applications is the fluid mechanics, thermodynamics
and mechanics of porous media.

I would like to stress that it has not been possible to present in a single
paper as many comprehensive examples as I would like to. Also, theoretical
considerations have been shortened.
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