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Planar frictional motion of highly elastic bodies
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THE PROBLEM OF MOTION of a beam-like elastic body along a horizontal plane in
terms of friction, large displacements and finite strains will be considered. The equa-
tions of motion are derived using GIBBS-APPELL approach. Deformations of the
body and sliding velocity distribution are presented.

1. Introduction

THE MAJORITY of problems considered in dynamics of flexible and movable
objects have been solved by using the finite-dimensional approach (systems with
finite number of degrees of freedom) and analytical mechanics methods. On the
other hand, the strain and stress analysis of flexible elements is based on infinite-
dimensional formalism of elastic and inelastic continua. Many flexible dynamical
systems considered in structural mechanics, robotics, biomechanics etc. need
application of both these descriptons.

In the present paper a problem of planar motion of a highly deformable elastic
body resting on a flat, rough and rigid foundation will be considered. The body
in form of a beam treated as a three-dimensional continuum (the dimensions of
the body are assumed to be arbitrary, thus assumption of the beam theory are
neglected) is loaded by its own weight and then, due to application of control
torques, starts to move along the plane. We assume very large displacements
(movable object) and finite strains (in-plane self-contact may occur). The prob-
lem under consideration corresponds to snake-like motion of biologically inspired
manipulators. A simplification of this model in the form of a multilink lumped
mass system was considered by CHERNOUSKO[1]. The planar contact of beams
resting on a rough surface was discussed also by FISCHER and RAMMERSTOR-
FER [2], NIKITIN [7][8], NIKITIN et al. [9], MOGILEVSKY and NIKITIN [6] and
further by STUuPKIEWICZ and MROZ [10].

The paper is organized as follows: we begin with a finite-dimensional descrip-
tion of continua using an analytical mechanics approach based on the GIBBS-
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APPELL equations, rather seldom applied in continuum mechanics. This will
be given in Sec. 2. Next, in Sec. 3, we pass to the statement and solution of the
snake-like motion of the beam. Figures with deformations and sliding velocities
illustrate the results of the paper.

2. GIBBS-APPELL equations for discretized continua

Consider a deformable body B which, under action of external body forces
with density b and prescribed surface traction pg starts to move from its refer-
ence configuration Bg, producing contact stresses t¢ . Assuming large displace-
ments and finite strains let us denote by u(X,f) the displacement, its gradient
by H(X,?), by E(X,t) the Green strain tensor and by S(X,¢) the second Piola-
Kirchhoff stress tensor. Here X and t stands for the particle and time instant,
respectively. Assume that there is a common global reference system {OXX},
{O#} i, K=1,2,3 for the material as well as for the spatial coordinates, respec-
tively. Assume furthermore that, because of the complexity of the problem we
want to pose and solve, a space discretization is preferred. Therefore let us ex-
press the function of motion u(X*t) approximatively in terms of generalized
coordinates g,(t), @ = 1,2,..., N (being the nodal displacements in the Finite
Element Technique or time dependent coefficient in series expansion) as follows
[4,5]):

(21)  u=[ux (X,0)] = [fj Nka (X) da (t)} = [Nka) [4a] = Na,
a=1

where N (X) are the shape or basic functions, respectively.
Thus, the necessary kinematical quantities of the displacement gradient H
and strain tensor E are of the form:

H = Vu = [uk, L] = [Nka,L] [¢a] = VNq, VN = [Nka,L],

E = [ExL] = -;- [H+HT + HTH]

_ | Nka,L + Npa,k
i [ :

To derive the equations of motion for a discretized continuum, the GIBBS-
APPELL equations will be used [3].This approach, seldom used in continuum
mechanics, is very well known and useful in analytical mechanics, especially in
dynamics of nonholonomic systems. The derivation of equations of motion for dis-
cretized continua is very simple. Thus introducing the acceleration functional [3]

(22) Gt)= f or (i5)2dVa,

Vr

|| 0ol + 5 Vo Nav )
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the principle of motion reads

oG
2, — = =l N
where Qo (q) denotes the generalized forces. For a discretized continuum these

quantities take the form [12]

du du du
24) Q=[0Q,]= i d
(24) Q =[Qa] /,OnbaquR+/pnaq -S'R+ tc 34

R Sr

/S 1+H): —dVR

Here is
Vg - the volume domain of the body in Bp
Sg - the boundary surface
I'c - the contact zone.
The left-hand side of (2.3) gives

G ou

2. — = i—dVg = NNTdVzg = Mg

(2.5) %4 /PﬂuaquR /,OR R4 q
Vg Vr

where M = /pRNNTdVR ~ the positive definite mass matrix. Introducing then

Vi
(2.1) into the right-hand side of (2.3) and denoting by

Fe<t () = / pgbg—:dVR + / pﬁg—:dsn = / NbdVi + / NpdSg

Vi Sr
(2.6) — the external force vector,
du
Fcl(t) = tcéaf‘ — the contact force vector
I'e

one obtains a nonlinear equation

(2.7) Mg = Fe< (¢) + Fc () - / S(1+ H) : VNdVg.

The integral term is nonlinear even if the material is linear elastic. Therefore
to omit computational difficulties, the incremental approach will be introduced.
Thus considering the sequence of configurations By = Bg, By, ..., By, BN+1, By =
By which correspond to partition of the prescribed loads
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byt1=by +Ab, ppt'=p} +Apr, N=0,1,..,M,
one obtains
uyt+1=uy +Au, Au=NAq, Hpy41=Hy +AH, AH=VNAgq,

EV*' =EN + AE, AE= % (AH+ AH” + H'AH + AH'H) ,

(2.8) SN+l =8N 4+ AS, AS=CAE,
to ! =t& + Atc.

Writing (2.7) for the configuration By, and using formula (2.8) we obtain

(2.9) MAG = AF®** + AFc - /[AS (1+H)+ SAH] : VNdVp.
Vg

To compute the integral it is worth to note that all the terms after simple calcu-
lations lead to a symmetric matrix. This fact results immediately when we de-
compose the matrices VN and H into their symmetric and skew-symetric parts,
and when we use the known result that the product of symmetric and skew-
symmetric matrices is equal to zero. Thus, considering the respective members
by using (2.8) it will be:

NyaN + NNam 5t Nia,mNgy,N + Niy,MNRa,N
2 2

[A ga) [Nk ] = [Ckrmn] [BYNa + BMNaydy] [Aga] [Bi14]

= B°CB%Aq + BC (B'q) Aq.

AS-1:VN = [Ckrun]

Here for simplicity the symmetric matrices

Nua,n + Nnam
B°=[B§,,Nn]=[ o : . ]

(2.10)

Nga,mMNRry,N + Ny M NRa,N
B! = [BL‘NQT] = [ = E 2 = S 3

have been introduced. It is next

AS -H : VN = [Ckimn) [BYna + BiNaydy] [Dda] [Nis k] [g5] [Nig,]

= B°CB (B%q) Aq + B°C (B'q) (B%q) Aq,
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SAH : VN = SVUNAQVN = [Sk1] [Niax] [Ada] [Nis.r] = B°SB%Aq.

Finally, the integral yields

/[As (1+H) + SAH] : VNdVy = f [B°CB + BC (Blq)
Vg Vg
+B°CB° (B%q) + B°C (B'q) (B%q) + BYSB®] dVzAq.
Denoting the matrices
K= /B“CB“dVR = [Kq4g] = / [B?"Lg] [CkLmN] [BRJNQ] dVg,

VR ""‘R
Knw (q) = / [B°C (B'q) + B°CB® (B%q) + B°C (B'q) (B%q)] dVx

Vi

= [Kas ]

211) = /{ [Bks) [CkLmn] [BMnes) [a,]

Vi

+ [BYnal [CkLmn] [BSk,)] [ay] [BSis)

+ [B3La] [Cemn] [Blansy] [Bdxs) [ay] las }dvﬂ,

A f BS (q) BOdVy = [K5;] = / [BYkal 1Sk [BYws] dVi
Vi Vg

we obtain finally the equation of motion
(2.12) MAG + (K + Ky + Ks) Aq = AF®™* + AF¢,

which coincides with the form obtained by other methods, e.g. by means of the
virtual work principle or by using the Lagrangian equations of second kind. In
our opinion, the method based on the GIBBS-APPELL equations seems to be
especially preferred in case of very complex systems, e.g. systems composed of
rods, beams, plates or shells and three-dimensional blocks. The contact term
AF ¢ (following (2.6)2) requires separate and careful considerations. This will be
the subject of the next section.
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3. Snake-like motion of a beam

The following problem is under consideration: a highly elastic beam-like body
with density pg in the reference configuration, rests on a fixed, rough and rigid
plane (Fig.1). Due to in-plane torques M;(t) and M;(t) applied to the beam,
the body starts to move. Since the dead weight presses the beam onto the rough
surface, planar friction occurs. As mentioned in the introduction, a multilink
lumped mass system in snake-like motion was considered by CHERNOUSKO [1].
A continuous highly-elastic description (also in discretized version) in terms of
large displacements and finite strains is still open. The aim of this chapter is to
fill this gap and to show, that by using suitable torques such kind of motion of
beam is possible. To realize the motion of the beam in a demanded direction
(e.g. a longitudinal or lateral motion of the centre of mass), a control problem
must be stated. This will be the subject of a separate paper.

Fig. 1. Scheme of the beam
Consider the contact stress vector tc. Decomposing it into the sum of normal
and tangential components we obtain

ar

(3.1) tc =tan+tr =t,n — utpepr, er= ms
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where
n - the outward unit vector, normal to the plane,
i — the friction coefficient,

ur - the sliding velocity.
The contact force (2.6); takes the form

Fc = au“dI‘+ ftTa—quT

Here the notations are used

un = un = Ngqn = Nj_qani,

(3.2) ur =u-—u,n = (1 —n®n)u = [ —nnjju,

= [Bjmius) = Pu=PNa,

where P=1—-n®n is the second order projection tensor which maps any vector
u onto its projection on the plane. Thus it will be further

(3.3) Fc = /tnNnaT+ fPNtTdF
e

The corresponding increments take the form

AF¢ = / At,Nndl + / PNAtdl,
(3.4) Te Fe

where for computational reasons, the regulatization of the friction law by using
the function

U _lpNg  ar] <e
(3.5) B (=1 B ® ;
er [ar| >e€

has been introduced. Symbol € denotes a positive, sufficiently small number.
Hence

Aar 1
=T — ZPNAG lar| <e
(3.6) AR, ={ € ¢
Aer |l:lT| -
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where from (3.1)2 it follows that

Rl A( ur ) _ Aug |ar| —ar |Adr|

lar|) a7

Au ur AuarAuar Auay , epAur Aurp
_ e iy Mirddy My erfr L g Alr
lar|  |ap|® |or] [ [ar| |G|

The first term of Aer demonstrates the local change of the sliding velocity,
whereas the second one shows the change of its direction.
Taking (2.1) into account it is generally

ir = PNg, At = PNAG,

PN¢
lar| = VPNG - PNg, 4a

°T = /PNg.PNg’
and then

1 . 1 2
(3.7) Aer= o] [1-er®er]PNAgq= a7l [0ik — erierk] PrjNjaAda-

Thus finally the regularization function ®, and its increment A®, yields

1
= |i17| <&,
(38)  ®.(4) =PNag, where ¢.={
|.— |ﬁT1 > &,
ar|
1 lar| <
= ur| s g,
(3.9) A®. (Aq) = PNAQy. where 9, = E : "
e ﬁTW lar| > e.
T

Substituting these expressions into (3.4) we obtain finally the incrememt of
the contact force

(3.10)  AF¢ = f [AtnNn _ PN (uAt, . PNG + utn;{JEPNAQ)]dI‘.

I'e
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Introducing now the matrices

AF, = /AtﬂNndl" = /ﬂtnNigﬂidF,
I'c I'c

(3.11) AFur =ﬂ¢£/AtnPN (PNq)dI’ zﬁés-/ﬂtnp,;kaaPiijgtjng,
o I'e

Kt = . f t,PN (PN) dLAq = uthe / tn Pk Po; NeaN;gdl Adp,
e I'e

and substituting it into (3.10) and next into (2.12), one obtains the final form
of the incremental equation

(3.12) MA§+KrAq+ (K + Ky, + Ks) Aq = AF®™t + AF,, + AF,r

It is worth making the following remarks:
e In the case of planar motion along a flat and fixed foundation it is Pa =
u for any 0. Hence the increment (3.7) yields
Aer = “1— l1-er®er]Au= L [0ij — erierj] NjalOGa, 1,5 =1,2.
[ar| |ar|
e In our case the contact area I'c is known
e The normal contact stresses t, resulting from the own weight of the beam
are known and are equal to pg — where g means the gravity acceleration.
Thus Aty is also known and is distributed uniformly
e In a general case the increments At, = A(Tnn)= A(T:n®n) (where T is
the Cauchy stress tensor) are unknown and depend on Aq. Thus instead
of the column matrices AF,, and AF, 7 suitable matrices Koy and K, p
appears, being additional terms of the stiffness matrix. The matrix K, 7 is
then non-symmetric (see [11]). These circumstances should be taken into
account when the beam has dimensions of a slab or of a block.
® Because the only loads applied to the beam consist of normal pressure and
in-plane torques producing lateral in-plane bending with planar friction
(sliding along the axis of the beam is excluded) — a loss of contact does not
appear. It means that the body moves in terms of bilateral contact with
the plane.
To illustrate the behaviour of the considered system, numerical examples for a
linear elastic isotropic material with the following data are presented (numerical
calculations were performed by M. Sci. D. Kedzior of the Institute of Struc-
tural Mechanics, CUT): pp=1.7*10%kg/m?, Young’s modulus E=1.7*108N/m?2,
v=0.48, coeflicient of friction u=1.0, cross-section of the beam b x h = 0.005 x
0.005m and its length 1=0.1m. The torques M, and M, are modelled as couple
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forces with a time program given in Fig. 2. The respective deformation pictures at
considered time instants are shown in Fig. 3. Figure 4 shows lateral displacement
of the centre of mass of the beam whereas Fig. 5 illustrates its longitudinal mo-
tion (in z direction). The diagram u, versus u, presented in Fig. 6 illustrates the
trajectory of the mass centre. The second example concerns the case M; = M,
with the time program given in Fig. 7. The corresponding deformation pictures
with visible snake-like character of motion are given in Figs.8 and 9.

- -

By o anar:

'.‘1-‘_-\\." N

FiG. 3. Deformations caused by Program I.
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Fi1G. 4. Lateral displacement of the centre of mass.
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Fi1G. 5. Longitudinal displacement of the centre of mass.
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FiG. 6. Trajectory of the centre of mass.
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F1G. 7. Time Program II of the torques.
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FiG. 9. Deformations caused by Program II.
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Fi1c. 10. Sliding velocities for Program II.

4. Conclusions

Equations of motion of a discretized continuum by using the GIBBS-APPELL
formalism of analytical mechanics has been derived. As one can see, this pro-
posal is one of the simplest ways to construct equations of motion of discretized
continua. A dynamic problem of motion in terms of planar friction was consid-
ered. It has been shown that, owing to friction, a high elastic beam can move
along a plane under the action of programmable torques perpendicular to the
plane of motion. The Figs.4-6 show the movement of the centre of mass. This
kind of motion of the body undergoing in-plane bending and being all the time
in contact with the plane, enables us to find such a programme of the control
torques, that the centre of mass of the body will be moved in a given direction.
Thus an optimal control problem can be formulated.
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