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WE CONSIDER PHASE transitions in solids due to heat propagating through crys-
talline materials at low temperatures. These are considered in a steady state context
where, at the transition temperature, the specific heat becomes singular and the heat
conductivity has a maximum. Several consequences are found for the heat capacity
having finite or infinite jump discontinuities.

1. Introduction

IN THIS INTRODUCTION, we outline the main features of the low-temperature
heat propagation model found in [6,12] and [13]. An important aspect of the
model is a hyperbolic to parabolic change of type which occurs at the tempera-
ture of maximum heat conductivity, 9. This is associated with the appearance
(as temperature decreases) of an internal variable acting as an order parameter.
In the steady state limit this change of type disappears, however a second order
phase transition takes place, with the specific heat of the material undergoing
an abrupt change at 9. The model is based strongly on experimental results
of [4,5,9] and [10] in the context of thermodynamics with internal state vari-
ables, [13]. The experimental results give evidence of second sound - hyperbolic
or wavelike thermal effects - in crystals of sodium fluoride and bismuth, as has
been observed previously in liquid helium, [1]. Significantly, these features are
only present at temperatures below which the materials reach their peak thermal
conductivities (approximately 18.5 K and 4.5 K for NaF and Bi, respectively).
Wavelike thermal phenomena are not seen at higher temperatures, where only
diffusive heat propagation is found. We represent this as follows.
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Heat conduction in rigid solids is governed by balance of energy
(1.1) ex+q: =0, () =cy(9)

where € is the internal energy per unit volume, ¢, is the specific heat at constant
volume and ¢ is the heat flux. In the region Uy in (z,t) € R x R* where 9 >
7y, heat propagation is understood using (1.1) together with the constitutive
relation

(1.2) = k(9)d,,

while in the region U_ where ¥ < 9,, heat propagation is instead controlled by
(1.1) together with the system

(1.3) Pt = g1 ()02 + g2(9)p,

(1.4) q=—a(d)p.

Here ¥ and 9, are absolute temperatures, p is the internal state variable,
g, a, k, g1 and g, are constitutive functions with a, k, g; : Rt — RTU{0}, g2 :
Rt - R™.

Let ¢ = & — nd where 3 and 7 represent the Helmholtz free energy and the
entropy density per unit volume. We will assume that the Helmholtz free energy
function takes the form

(1.5) Y(9,p) = $1(9) + b

The constitutive functions a, g1, g2, k are then subject to restrictions arising from
the second law of thermodynamics,

(1.6) e+ (g/9)z > 0.
These are found to be
(1.7) a(d) = a??g1(d), g2(9) < 0.

The function g, can be determined from the speed of second sound pulses
while g can be found by steady state conductivity measurements, [12], [13].
Since the presence of low temperature wavelike features is a relatively short time
effect, [8], we are interested in pursuing steady state features further here.

The steady state condition is defined by p; = 0 in (1.3), which gives

(1.8) g1(9)9; = —g2(0)p,
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and the steady-state conductivity coefficient, K(9), is given by
20993 (9) )o
T
92(9)

We will make the following hypotheses concerning the constitutive functions,
91,92 € C(R+)=

(1.9) a() = ( = —K(d),

(1.10) s i )

<0 and (0)=0, 1=1,2, 4=,

to allow the possibility of a conductivity peak for K(J) as 7 — ¥—. Examples of
g1 and g include

(1.11) q1(9) = ad3(9 - 9)7}, a>0,
and
(1.12) g2(9) = —b(1 + ed*)(9) — 9)2, b>0, [¢] << 1,

with 2r; = rg > 0, where 2z, = 2"H(2) and H(z) denotes the step function.
Let us define the steady state conductivity, K (1), for all temperatures, as

{Ktw) if 9 <y,

(113) R k() if 9 >9,.

Experimental observations reveal K (1) to be continuous, in particular across ¥ =
¥, from which it follows k(Jy+) = K(J9,—). We will assume that K'(J,) =
Reasonable choices in (1.11), (1.12) are r; = 1/5 for NaF (J) = 18.5K), r; =
1/4 for Bi (9, = 4K), and € = 3/9%, with a useful empirical example of K ()
given by

Paoa’ 93

1.14 :
-4 Kemp(?) = =5 1+ 394/9%

The aim of this paper is to investigate some properties of phase transitions
connecting the states U_ and U, under the steady state condition p; = 0. Let
I' denote a curve z = (t) in R x R" separating the regions and consider the
equations

(1.15) e(9); — (K(9)92), =0, in U-
and
(1.16) e(9): — (k(9)9z); = 0, in Uy.
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Our interest in these equations comes from the jump in the specific heat, ¢, () =
€' (1), across I'. We are unaware of observational indications for a latent heat con-
tribution in the present context, but it is important that we allow the possibility
of ¢, becoming unbounded, at least locally, in U_. Letting u be a generic func-
tion, we denote limits of u, as z — ¢(t) from below and above ¥, by u|r—
and u|r; respectively, and write the jump wu|ry — u|p— across I' as [u]. This
means that if [9] = 0 then [¢] = 0. We will however have a second order phase
transition, [¢,] # 0, and to examine this we list some simple consequences.
Equation (1.1) implies the jump relation

(1.17) —sle] +[g] = 0,

where s = £(t).

If [9] = 0, then [q] = 0 and so [K(9)9;] = 0. By the continuity of K(¥)
then, assuming k(J)) > 0, [¥;] = 0, and so [#;] = 0 because [J] = 0 implies
[9¢] + s[¥z] = 0. Therefore

(1.18) [ee] = [en]Pelr-

Similarly, [g;] + s[ez] = 0 because [¢] = 0. Combining this with the jump of
Eq.(1.1), [e:] + [gz]) = 0, implies [gz] = s[ez] or

(1.19) [9z] = sleu]dz]r-

Since 9, is the temperature of maximum heat conductivity (K'(9,) = 0), (1.19)
shows

(1.20) [ﬂzz] = _ﬁ:\_)[cv]ﬂzlf‘-

If we more generally allow [9] # 0, we have from (1.17)
(1.21) se(9)] + [K(9)9;) = 0.

An appropriate interpretation of (1.21) is important also when [J] = [¢(9)] = 0
but [¢,] is undefined in (1.18). In this case s may be defined by computing the
ratio of the jumps in (1.21) in terms of limits. For example, (1.21) implies that
if one state, say Uz|r+, is zero, then

- . ’191;((10(“ ) 5& t‘)
(1.22) $=H0) I D+ 5.0) - e -5

while if either state of 9, is nonzero then in order for s to be finite, the solution
must cross 1y.
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We will examine several forms of discontinuity in ¢, since it is hard to obtain
empirical evidence to determine whether or not specific heat contains a gen-
uine singularity at 9. Our aim is to derive mathematical consequences of these
assumptions.

In Sec. 2, we begin by considering the case of [¢,] being finite, with ¢, piece-
wise constant (a second order phase transition) and K constant, then allow ¢,
to become infinite within U_. Section 3 deals with nonlinear constitutive laws
having infinite, but locally integrable ¢, (‘lambda’ phase transitions), following
which we examine the speed of propagation of solutions with compactly sup-
ported data about ¥ = 0 and 9 = 9.

2. Piecewise constant constitutive terms

In this section we examine the case K(¥) = 1. It is convenient to introduce
the normalized temperature

(2.1) T !

with equations (1.15) and (1.16) taking the form

1
(22) Tt . .._T:::: = O;
&y
where
b e, af P,
(2.3) &(T) =
¢, M 0]

and ¢_ > ¢4 > 0. We take initial conditions

Ty B 2l

G F ={ Ty, if >0
hs = Uy

with 7, < 0(9(z,0) < 9y, < 0) and T}, > 0(¥(z,0) > 9,z > 0), together
with the conditions

(25)  T(e(t),t) =0, [Tx(p(®),0)] =0, [Tra(p(t),t)] = —s&]T=(p(t), 1),

(see (1.20).
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2.1. Phase transitions
Consider similarity solutions of the form

- { o), i (@)U,

(2.6) = .
gn), if (z,t)eUy,

where n = Z_. Since d—T‘ = 0, clearly

Vi dt Ir
_ e
for some value of +.
We write (2.3), (2.4), (2.5) and (2.6) as

(28) J'(0) + e S =0, ~o0 <7 <7,

29) §"(n) + 3erg/ (=0, 7 <7<,

(2.10) f(=0) =T, g(c0) =Th, f(v)=9(7) =0, f'(7)=4()
(211) 1) = 8" = =37 I )e- e,

Solving, we obtain

1+erf(ve_n/2)

(2.12) f(n) =Te(1 - 1+erf(\/E_'y/2))’ —00 < 1) <9,
and
(2.13) g(n) = Tx(1 L= erflvieynid) ), 1 <n<om,

 I-erf(veyn/2)

Z
where er f(2) = %/ exp(—z?) dz. Consequently, the location of I' is found
0
via (2.10)4,
T Th
—ve_ - e e
1+erf(Ve_v/2) f(Veyn/2)

from which, having used (2.7), (2.11) is identically satisfied. We remark on two
limiting cases of (2.14).

—cy12/4

(2.14)

—c-72/4 _
\/E"' l—er

http://rcin.org.pl



SOME EFFECTS OF PHASE TRANSITIONS. . . 641

a) If T.—- 0 (9(z,0) > 39x,z2<0) and T, >0, theny— —oo.

b) If T =0 (I(z,0) > 9,2 >0) and T, <0, theny— oc.

2.2. The unbounded limit

Now we examine the case ¢ — oo, with ¢, constant, with T, < 0 < T},.
Although this form of ¢, is clearly not integrable, it is instructive to compare
the features of the solutions to those in the following sections.

Rewriting (2.14) as

T Ve, 1+erf(ve_v/2)
The ol Vo' 1-erf(Ve,1/2)

(2.15) )

it is easy to see that as c_ — oo, c_y? = oo while ¥ — 0, the phase transition
becoming stationary. (A little further investigation shows that, asymptotically,

2 2, Ty
oy} — |_+‘ !
F e nyc_—In T, )

In particular, we observe from (2.12) that in the limit

(2.16) fn)=T,, —c0c<n<0,
while (2.13) becomes

(2.17) 9(n) = Therf(Vein/2), 0 <n < oo.

Thus we obtain a jump of [T'] = —T, across I'. Noting that this limiting solu-
tion no longer satisfies (2. 10)2 3, we remark that it may be considered consistent
with (1.21) in a sense provided s = 0, [e] not being defined but the second term
being finite by (2. 16), (2.17).

3. Locally integrable specific heat

In this section, we employ nonlinear constitutive relations which allow anal-
ysis using similarity solutions. For this reason we will assume that, for ¥ in a
neighbourhood of 9, all functions can be represented in terms of the normalized
temperature T' (this will however not be assumed when we examine J — 0 at
the end of the final section). We will also assume that ¢, is unbounded at, but
locally integrable about 7' = 0, monotone increasing for T' < 0 and monotone
decreasing for T' > 0. Since ¥, is a maximum for the continuous function K (?),
K(T) = K(95(T + 1)) is similarly monotone increasing below, and monotone
decreasing above T' = 0. ¢, and K are both considered to be positive for all
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# > 0 and so € and W, defined by W/(T) = K(T), W (0) = 0, are both invertible
on their domain. Setting é,(T) = ¢, (9A(T + 1)) we will, for simplicity, adopt
the power law form &(T) = ¢|T|™, ¢ > 0 with0 < v < 1 for T € (T.,T}),
—§ <T. <0< Ty <§ and § > 0 sufficiently small. (1.13), (1.14), (1.16) may
be rewritten as

(3.1) E(T)e — W(T)ge =0.

Since W(T') = w is an invertible function of 7', (3. 1) can similarly be rewritten
in the form

(32) e(w)t — Wgg = 0,

where e = £ o W1, For simplicity, we now use the fact that K(T) ~ K(0) = 1
(in normalized units) for T, < 0 < T} and small 4, and employ the power law
hypothesis to express (3.2) as

(33) lenpwt — Wz = 0: O<v< 1:

where we have set ¢ = 1 for convenience. (3. 3) is a slow-diffusion porous medium
equations ([2,3,7,11]) as can be seen by substituting w = (1 — )1 =¥|e|*/1 e,
which gives

(3.4) ee— (1= v)*/17*(le]/'Ve,), =0.

We will consider self-similar solutions to (3.3) of the form w(z,t) =
f(t)g(zh(t)). Substituting into (3.3) and assuming f(t) > 0,h(t) > 0,9 = g(z
and z = zh(t), implies that for certain constants A, u, we have

(3.5) Mgl ™ g+ ulgl™"¢d'z—g¢" =0,
where

f h
(3.6) W = A W = K,

and up to a constant factor,
(3.7) f(t) = h()M*.
3.1. Examples of continuous solutions and blowup
First consider the case A = 0, f(t) = 1. Equations (3.5), (3.6) then give
e y dh(t
(38) Mo (2) ~ g"(2) = 0, L = o)
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Considering monotone increasing solutions to (3.8); of the form g(z) = a|z|?~'2
with a > 0 gives g > 0,a = (u/(8—1))"/¥ and B = 2/v, where we take the
particular solution h(t) = (1 — 2ut)~/2 for (3.8), so that

(3.9) 9(zh(t)) = az|z|¥¥ (1 — 2ut) V", 0<t<1/2p.

This allows us to construct two families of solutions, w(z,t) :

mlzl?/u -1 .
(3.10) w_(z,t) =4 =gyt T
0, z >0,
0, %<0,

311 ot 2/v—1
(3.11) wy (3,1 zlo| i

=2

These (unbounded) solutions have a maximal time of existence, ¢ < 1/2u4,
at which point they develop infinite jump discontinuities. Both satisfy s = 0,
corresponding to (1.21) in the sense of (1.22). In view of the smallness of §
discussed above, this class of solution can only be considered as a first approxi-
mation to solutions of the full model since, as  leaves the vicinity of the origin,
the solutions leave the region where K =~ 1.

Another class of solutions exists for the case u = 0,h(t) = 1, which is
bounded. Here (3.5) and (3.6) become
(3.12) No(@)|g(z) - o"() =0, LD = 3 )
For A < 0,g(z) is periodic since the quantity E = %9'2 - ﬁ]gﬁ“” is a data-
dependent constant in z. This delivers an z-periodic solution

(3.13) w(z,t) = ag(z)(1 — va“At)~ /",

where we can choose 0 < a = f(0) < §/E to meet the smallness requirement.
In the following, we will only consider solutions which are both a priori
bounded and have compact support.

3.2. Finite and infinite speeds of propagation

An important motivation for introducing hyperbolicity into heat conduction
models is that of finite speed of propagation. Since the linear heat equation
violates this condition, one can attempt to correct the situation by more detailed
modelling, for instance as sketched earlier. In the steady state regime under

http://rcin.org.pl



644 K. SAXTON and R. SAXTON

consideration here, hyperbolic effects are no longer a feature and one might
expect propagation speed to be infinite again. The fact that this is not entirely
the case turns out to be a result of the discontinuity in c,.

Consider again the selfsimilar solution w(z,t) = f(t)g(zh(t)) to (3.3), now
with /A = 1 — v. Equation (3.5) then gives

(3.14) Algl™ 9z)" = ¢"
from which we have either g(z) = 0 or, specializing to w(z,t) lying in U_ U {0},
(3.15) g(z) = —u‘f“{’%z‘* +0), b>0,

where we choose A < 0. Since (3.7) gives f(t) = h(¢t)/(1=¥), (3.6) can be solved
to give

(3.16) ft)=(2-v)(d-At) 77, d>0,
and
(3.17) h(t) = (2 - v)(d - At)) 5=

This implies

2b |lf2

AR2(t)
2b |1/2

AR2(2)

—f(z)u'f"(’%xzh(a)? it b)”", |z| < |

?

(3.18) w(z,t) =

0, 2] > | ,
which is a compact support Barenblatt-Pattle solution. Thus, given an initial
‘cold pulse’ (¥(z,0) < 95) coming directly below the temperature of the phase
transition, with
—FOW* (32200 +) ", Jal < | g
Ah?
(319)  w(z,0) = o 12
] [P
0, = Ah2(0)|

1

1/v | 2b |l}2

]

we obtain an expanding cold region whose support about ¥ = i, never becomes
unbounded.

Finally, for u/A = (1 — v)/2, we remark on a ‘dipole’ solution (cf. [3])
which changes sign once, going from cold to hot temperatures or vice-versa.
Here g(z) = 0, or

(3.20) 9(z) = (1 —v) T z(c — 122) 7, ¢ > 0,

2(2—-v)
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while
(3.21) F@&) = (W)= = (1= 2)~1, A= —(1-v)T5,
giving
¢ 1 }’u
:l:(l—u)mzf{t)h(t](c—2(2 |zh - ,,)1 ’
(3.22) w(z,t) = ¢ T e h:;))/’f)r‘
o (22— w)/v) T
| 01 '.1:1 2 h(t} '

We have tried to capture finite speed of propagation as well as other features
of the physics for temperatures below ¥, but we have been less motivated in
doing so elsewhere due to the fact that wavelike features have only been observed
clearly in this one region. We have however considered only a simple model
here, for which we have taken ¢, to be a symmetric function about 9y, which
need not generally be the case. Consequently, the behaviour of the periodic
and dipole solutions may be somewhat different to that which might be found
experimentally. All of these results should be contrasted with the behaviour of
solutions at temperatures well below 9. If we consider similar (small) data to
that in (3.19), except with a ‘cold pulse’ below ¥ = 9, being replaced by a ‘hot
pulse’ above 9 = 0, we may use, for example, the empirical form (1.14) to find
that close to ¥ = 0, K (1) = 9%, where we have dropped inessential constants. For
many materials including those under consideration, Debye's law has, similarly,
cy(9) = 93, Therefore, (1.15) takes the form

(3.23) (%) — (9%)gz = 0,

a linear parabolic equation in u = 9, with the usual infinite speed of propaga-
tion.
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