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THE AIM of the paper is to study the description of plastic strain in metals pro-
duced by a hierarchy of plastic slip and shear banding processes: from slip lamellae
and slip bands to coarse slip bands, which may further transform into transgranular
micro-shear bands and form clusters of micro-shear bands. Constitutive description
accounting for the contribution of shear banding was proposed and possible simplifi-
cations are discussed from the point of view of applications for numerical simulation
of metal shaping operations.

1. Introduction

MULTISCALE MODELLING of large deformations of metals requires the identifi-
cation of physical mechanisms of plastic strain, careful analysis of averaging pro-
cedures and proper setting of the resulting description within continuum theory
of materials. The analysis and interpretation of available experimental results
obtained with the application of different techniques at different scales reveal a
hierarchy of plastic slip processes: from slip lamellae and slip bands to coarse slip
bands, which may further transform into transgranular micro-shear bands and
form clusters of micro-shear bands. This shows that crystalline solid subjected
to plastic deformation is a multi-scale hierarchically organised system. It is a
difficult task to describe and predict theoretically the behaviour of such a com-
plex structure. Only partial solutions are available up to now. The mechanism of
shear banding was studied in [1], where also the derivation of related macroscopic
measure of the rate of deformation was presented. The continuum mechanics de-
scription of the kinematics due to shear banding made a basis for constitutive
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description proposed in [2-5]. The important question, which remains unsolved,
is formulation of a condition of the onset of micro-shear banding. One could
expect, that such a criterion should specify at which instant of a considered
loading path micro-shear bands start to contribute to plastic deformation. In
[3, 4] a theoretical description of small elastic and large plastic deformations
within the framework of a two-surface plasticity model, with the internal yield
surface connected to back stress anisotropy and the external surface related to
micro-shear band formation, was proposed.

On the other hand, the attempts to identify the proposed model for simple
case of symmetric shear banding occurring in the case of channel die test made
possible to specify the contribution of shear banding as a logistic function of
equivalent plastic strain [5, 6]. Such a function accounts for smooth increase of
a contribution of micro-shear bands, from zero for very small values of equiv-
alent plastic strain to rapid growth within certain narrow strain interval up to
the ultimate value, which is always lower than one. This result led us to the
conclusion that it is possible to formulate a simpler form of flow law with a sin-
gle Huber-Mises yield surface without the necessity of defining the second limit
surface related with the onset of micro-shear banding. The aim of the paper is
to study afresh the description of plastic strain in metals and to propose such a
constitutive description of plastic strain accounting for the contribution of shear
banding. In the companion paper [6], the identification and verification of the
proposed model are discussed. The results presented herein show the predictive
power of the model and the possibilities of applications for numerical simulation
of metal shaping operations.

2. Physical motivation

The available results of metallographic observations reveal that in heavily
deformed metals, or even at small strains if they are preceded by a properly con-
trolled change of deformation path, a multiscale hierarchy of shear localization
modes replaces the crystallographic multiple slip or twinning. Different termi-
nology is used depending on the level of observation. In our study, the term
micro-shear band is understood as a long and very thin (of order of 0.1 um)
sheet-like region of concentrated plastic shear crossing grain boundaries without
deviation and forming a definite pattern in relation to the principal directions of
strain. It bears very large shear strains and lies in a “non-crystallographic posi-
tion”. The term “non-crystallographic” means that micro-shear bands are usually
not parallel to a particular densely packed crystallographic plane, of convention-
ally possible active slip system, in the crystallites they intersect. In such a case,
a polycrystalline sample deforms as a “pseudocrystal” subjected to a single or
double shear. This change of deformation mode modifies remarkably the ma-
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terial properties and makes a basis for the development of new technologies of
metal shaping operations [7]. The detailed experimental information about me-
chanical behaviour and related structural features is reviewed in [2-9], where also
comprehensive lists of references are given. The experimental observations reveal
the time and spatial organisation of dislocations. This results in the hierarchy of
plastic slip processes: from coplanar dislocation groups moving collectively along
active slip systems, through slip lamellae and slip bands to coarse slip bands,
which may further transform into transgranular micro-shear bands and form
clusters (packets) of micro-shear bands of the thickness of order (10+100) pum.
At this level of observation, the clusters become elementary carriers of plastic
strain.

New information on this phenomenon, showing that it appears even more
complex, provide the recent observations of the correlation of temporal insta-
bilities and spatial localization during propagation of Portevin-Le Chatelier de-
formation bands with use of a novel multizone laser scaning extensometer [10,
11]. The analysis of the extensometer data reveal three types of the PLC bands:
type A with continuous propagation of single band along the specimen, type
B characterizing with discontinuous band propagation and type C of stochas-
tic nucleation of single bands along the specimen. The clusters of micro-shear
bands, produced for instance in rolling, form the planar structures, which are
usually inclined by about +£35° to the rolling plane and are orthogonal to the
specimen lateral face. There can be, however, considerable deviations from this
value within the range of 15° to 50°. As it was already stressed in [3, 5], it is
typical of the clusters of active micro-shear bands that their planes are rotated
relative to the respective planes of maximum shear stress by a certain angle /3,
which is usually of the order (5+15)°. It is worthy to stress that the problem of
specifying the angle is complicated by the difficulty of distinguishing the most
recently formed micro-shear bands from those that were formed earlier and sub-
sequently rotated with material towards the rolling plane. This is related with
the important observation, discussed in [2], that a particular micro-shear band
operates only once and develops fully in very short time. As it was discussed
in [1], the head of micro-shear band can propagate with the velocity, which is
close to the elastic shear wave speed (velocity of sound) in the considered metal
or alloy. The micro-shear bands, once formed, do not contribute further to the
increase in plastic shear strain. They leave characteristic traces in the structure
of the material but it is irrelevant for the constitutive description of plastic flow.
We assume that the successive generations of active micro-shear bands compet-
ing with the mechanism of multiple crystallographic slips are responsible for the
process of advanced plastic flow.
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3. Physical model of shear strain rate produced by active micro-shear
bands

The physical constraint on any continuum mechanics approach to metal plas-
ticity, i.e. the physical dimension of the smallest representative volume element
(RVE) of crystalline material, for which it is possible to define significant overall
measures of stress and strain during plastic deformation and the assumptions of
the averaging procedure, were thoroughly discussed in [1, 2]. The known in the
literature averaging procedure is valid under the general assumption that the
dominant mechanism of plastic deformation corresponds to multiple crystallo-
graphic slip. In such a case, the theory describing kinematics and constitutive
structure of finite elastic-plastic deformation of crystalline solids is well estab-
lished and the transition between the microscopic and macroscopic levels is well
understood. In particular, relations between macro-measures of stress, strain and
plastic work are related with the volume averages of their micro-measures. As it
was stressed in |2, 4], the situation changes, when an additional mechanism of
micro-shear banding is taken into consideration. To solve the problem of proper
setting of the effects of micro-shear banding within the continuum mechanics,
the description of shear strain rate produced by active micro-shear bands should
be given and the concept of RVE should be redefined.

Consider the RVE containing the region of progressive shear banding, de-
picted schematically in Fig.la. An active shear band consists of the clusters of
micro-shear bands, which at this level of observation can be considered as el-
ementary carriers of plastic strain. On the other hand, an active micro-shear
band is produced as the effect of spatial and time organisation of large number
of dislocations. They are generated and move collectively within a long and thin
sheet-like regions, crossing grain boundaries without deviation and having the
thickness of the order of 0.1 pm. Therefore, from the point of view of kinematics,
the micro-shear band can be considered as a thin region of concentrated plastic
shear. During the passage of the active zone, of thickness h,,s and width [, the
local perturbation B, of the microscopic displacement field is produced which
travels at the head of the micro-shear band with the speed v,,4 as a distortion
wave, cf. Fig lc. In Fig. 1, two successive “magnifications” of the shear-banding
zone are “zoomed in” and the related fundamental mechanisms of plastic shear
are illustrated. The first one, depicted in Fig. 1b, corresponds to the cluster of
micro-shear bands, in which the passage of large number of active micro-shear
bands results in the local perturbation Apsg of the mezoscopic displacement
fieldups =xpr-Xar, which moves with the speed Vs. The second “magnification”,
shown in Fig.1lc, represents the aforementioned active zone of a single micro-
shear band.
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Consider an elementary dislocation model of plastic shear produced in the
active zone at the head of a single micro-shear band, as it is depicted in Fig. lc.
According to the known approach, the shear strain 7,,s results from the genera-
tion and movement of large number of dislocations within the active zone [1]

al bl c)

RN

Hus

FiG. 1. Schematic view of the multiscale, hierarchically organized system of shear banding:
(a) The RVE of the dimension of Ly =1 mm traversed by the region of shear banding
progressing in the direction pointed by the arrow. (b) The cluster of active micro-shear bands
with the active zone of the thickness Hass 2=(10+100) pm and the width Las being of the
same order. Beneath, the fundamental mechanism of plastic shear strain generated by the
active micro-shear bands operating within the active zone, moving along distances z;,

i =1... Nuys during their “lifetime”, and producing the total displacement Ay s is depicted.
(c) The active zone of a single micro-shear band of the thickness A, ~0.1 pm and the width
Ims of the same order. Below the picture of an elementary dislocation model of plastic shear
in the active zone is shown. The displacement B, is produced by n dislocations moving at

the distances &,1 = 1...n.
>
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where b is the length of Burgers vector and £ is the average distance that disloca-
tions have moved. If the distance £ and the number of dislocations n can change
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with the variable 7, corresponding to the duration of the microscopic process of
plastic shear, we have

dYms e
dr lms hms

(3.2) nvg + E%)

df . . . e :
where vy = « is the average dislocation velocity. Finally, the shear strain rate,

-
produced in a single micro-shear band, is expressed in terms of the head of
micro-shear band speed vy,

dYms _ Ums = b ~dn
(3.3) AT Vg = = (?11?d+<de) .

According to (3.3), generation and movement of new dislocations contribute to
the plastic strain rate. If we assume that the movement of a constant number of
mobile dislocations plays the prevalent role, (3.4) transforms into the well known
form of the Orowan relation

mszv o= n
dr &

(3.4) ‘!mshms s
where p denotes the dislocation density. In the case of micro-shear bands prop-
agation, the systems, which are not necessarily parallel to densely packed crys-
tallographic planes, are activated. The critical stress in such planes is very high
and therefore, the generation of new dislocations may contribute remarkably to
plastic shear strain rate. Therefore, it is possible that (3.3) supplemented with
proper form of evolution equation for n should be taken into considerations.
Consider a number of active micro-shear bands Njsg of similar orientation
and produced within certain time interval, A7 = 7; — 7;, which can be con-
sidered as a “time-like” variable or rescaled length of deformation path in the
macroscopic description of plastic flow. The interval §7 corresponds to the Rep-
resentative Time Increment of the process considered earlier in [12]. Such a clus-
ter of “simultaneously” activated (averaged over A7 ) micro-shear bands, as it is
depicted in Fig. 1b, produces the shear strain on the mezoscopic level

Ui

A B,..N 15 _ =
(3.5) TMS = HMS y Ayg=—m MIxL e Boa= /UmsdT
MS 15

Ti

where By, is the total displacement produced by a single micro-shear band and
Xms denotes the average distance that Nps¢ micro-shear bands have moved,
during their “lifetime” in the active zone. Assuming that the distance and the
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number of micro-shear bands can change during propagation of the active zone
of the cluster, we have from (5)

V. B '
5 Vo= 2" (Nyisvms +ZusNus)

3.6 s = s
(3.6) TMs = g Fare

where the dot denotes differentiation with respect to the “time-like” variable t.
Let us observe that the rate Tpss can be identified with the speed v,,s of the
head of a single micro-shear band under the simplifying assumption that vy
is approximately the same for each micro-shear band in the active zone of the
cluster. Vg corresponds to the speed of propagation of the disturbance of the
microscopic displacement field, produced in the active zone of the cluster of
Nars active micro-shear bands. If the number of active micro-shear bands in the
active zone can be assumed constant, the formula similar to the aforementioned
Orowan relation is obtained

: ~ Nus
(3.7) YMS = BrnaPMSVms, PMS =

LysHus'
where pprg denotes the active micro-shear bands density in the cluster. It is a
matter of further investigations upon the evolution of clusters of micro-shear
bands to confirm the usefulness of this hypothesis. If we assume that Nyss is of
the order 100, and the width and thickness of the active zone is of about 100 pm,
then the density pass can be estimated for about 10' (m~2).

4. System of active micro-shear bands as a hierarchy of discontinuity
surfaces

The discussed process of shear banding can be idealized mathematically as
a hierarchy of singular surfaces. The necessary mathematical formalism of the
theory of propagating singular surfaces is given in [13-15]. The singular surface
of order zero corresponds to the local perturbation of the microscopic displace-
ment field produced by the passage of a single micro-shear band. The passage of
large number of micro-shear bands within the active zone of the cluster smoothes
out the discontinuity on the micro-level and results in the perturbation of the
mezoscopic displacement field traveling with the speed, which produces a dis-
continuity of the velocity field in the RVE it traverses. This corresponds to the
singular surface of order one, called also the surface of strong discontinuity. The
discussion of physical nature of the micro-shear banding process, as well as the
results of the microscopic observations in situ, presented in [16] support the
following hypothesis:

The passage of micro-shear bands within the active zone of the cluster results
in perturbation of the mezoscopic displacement field traveling with the speed V g,
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which produces a discontinuity of the mezoscopic velocity field vy in the RVE
it traverses. The progression of the sequences of clusters can be idealized math-
ematically by means of a singular surface of order one propagating through the
macro-element (RVE) of the continuum.

The theory of singular surfaces allows identifying the postulated discontinu-
ity surface of the mezoscopic velocity field vy in RVE as a singular surface X (t)
moving in the reference configuration of the RVE and its dual counterpart S (t)
moving in the spatial configuration of the RVE. There exists the jump disconti-
nuity of derivatives of the function of motion x,,, i.e. of the mezoscopic velocity
field x,; and gradient of deformation f = Grady,,

(4.1) [Xa] = Xpr —Xar #0, [f]=FH—f #0.

According to the study in [1, 4] the considered surface of strong discontinuity of
mezoscopic velocity field fulfills the properties of a vortex sheet with the jump
discontinuity of the first derivatives of x,, given in the spatial configuration by

(4.2) [vm] = Vgs, [f]= —%s @nf, for U#0,

where s and n are, respectively, the unit tangent and the unit normal vectors to
the discontinuity surface S(t), while U corresponds to the local intrinsic speed
of propagation of S(t), (cf. [13], p. 508). Similarly, for the material counterpart
of a singular surface, the compatibility relations take the form

(4.3) [Xu = Vss, []=—p>s®N for Uy £0,
N

where N is the unit normal to the discontinuity surface X (¢) in the reference con-
figuration of the body and Uy is the normal component of the surface velocity
(cf. [4], Fig.2). The progression of large number of clusters of micro-shear bands
extending the region of shear banding can be idealized mathematically by means
of the singular surface of order two propagating through the macro-element of
the continuum as an acceleration wave. The application of the theory of sta-
tionary acceleration waves opens the possibility of the analysis of plastic flow
instabilities, e.g. strain localization or flutter [17], in relation with shear band-
ing. Application of the results presented in the study [18] upon the mathematical
justification of the extension of the concepts of divergence and flutter instabili-
ties to elastic-plastic materials described by incrementally nonlinear constitutive
law can appear to be helpful by that.
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5. Macroscopic measure of the rate of deformation by micro-shear
banding

According to the analysis in [1,4], application of the generalized form of
Gauss’ theorem for the gradient of the mezoscopic velocity field, which is suf-
ficiently smooth in each point of RVE except the singular surface, where the
discussed discontinuity jump appears, results in the following relation for the
rate of deformation gradient F in the reference configuration:

(5.1) F= k= /Grad)'(MdVg + s ] Vss @ NdAy.
Vo Vo
Vo (1)

If we choose the current configuration of RVE at time ¢ as the reference one, the
rate of deformation gradient F becomes then the rate of the relative deformation
gradient (cf. [19], p. 54), and the averaging formula (5.1) takes the following
spatial form, [1]:

(5.2) = %/‘gradedV +% / Vs ® ndA ,
v S(t)

where L denotes the macroscopic measure of velocity gradient averaged over the
macro-element V' traversed by the discontinuity surface S (t). For Vg = 0 the
known relation is retrieved

(5.3) L=L= %/grad vpdV
Vv

The averaging formula (5.2) enables us to account for the contribution of micro-
shear banding in the macroscopic measure of velocity gradient produced at finite
elastic-plastic deformations:

1
(5.4) L=L+Lgp, Lgp= % / Vss @ ndA.
S(t)

Assuming that the singular surface S (¢) forms a plane traversing volume V with
the unit vectors s and n held constant, we have Lgg = Ysps ® n, where sp is
the averaged macroscopic shear strain rate produced by micro-shear bands

: 1 =
(5.5) 158 =1y, / Hyspms BmstmsdA.
S(1)
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Considering the idealized situation, in which the total displacement produced
by a single micro-shear band By, and the speed v,,,s of the head of a single micro-
shear band are held constant, we arrive at the following Orowan-type relation
for the level of macro-element (RVE) traversed by shear banding zone

A = 1
(5.6) YsB = pSBBmstms, psB = v / HyspusdA,
S(t)

where pgp is the macroscopic measure of the density of micro-shear bands oper-
ating in the sequences of clusters contributing to the progression of shear banding
zone within the RVE. If we take into account that the density pprgcan change
from cluster to cluster in the course of shear banding, then the shear strain rate
can be also expressed in terms of the mean rate psp

(5.7) YsB = pspBmsLus.

The derived relation (5.7) is valid for a single system of micro-shear bands. This
can be generalized for the case of a double shear, where

2
(58) LSB —; Z ’]((;335(‘) [v21] I'.I.(ﬂ.

The generalization is possible if we assume that the period of time (or the de-
formation path length), within which the active micro-shear bands operate in
both systems, is sufficiently long. Such a period can be considered, on the other
hand, as an infinitesimal increment of “time-like” variable, corresponding to the
Representative Time Increment, in the macroscopic description. In such a case,
the “simultaneous” operation of both systems (clusters) i.e. the double shear is
considered. Otherwise, the sequence of single shear systems should be taken into
considerations. The derivation of kinematical relations for the rate of deforma-
tion and material spin, composed of elastic and plastic parts and accounting
for the contribution of micro-shear bands in the double shear (5.8) are given
in [1, 4]. The mathematical foundations, which are necessary to describe finite
plastic deformation due to the sequence of single shear systems, are given in
(20, 21].

6. Constitutive description

According to R. HILL [22], the macroscopic constitutive equations describing
elastic-plastic deformations of polycrystalline aggregates are either thoroughly or
partially incrementally non linear. Depending on the contribution of the mech-
anisms involved in plastic flow, a region of fully active loading, called also a
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fully active range, separated from the total unloading (elastic) range by a truly
nonlinear zone corresponding to the partially active range, may exist. The con-
nection of the fully active range and partially active range with the geometric
pattern of micro-shear bands is necessary to specify the relation for the rate
of plastic deformations for different loading paths. Because multiple sources of
plasticity are dealt with, the theory of multimechanisms with multiple plastic
potentials can be considered. The concept of multiple potential surfaces forming
a vertex on the smooth limit surface was studied earlier by Z. MR6z [23] within
the framework of non-associated flow laws. In our case, the existence of the fol-
lowing plastic potentials related to the mechanisms responsible for plastic flow
can be postulated [2, 4].

e The plastic potential gy that reproduces at the macroscopic level the crys-
tallographic multiple slips and is associated with the limit surface approx-
imated by means of the Huber-Mises locus I = gy.

e The non-associated plastic potentials g, and g, that approximate at the
macroscopic level the multiplicity of plastic potential functions related with
the clusters of active micro-shear bands.

The plastic potential functions gjand g display the geometry of the micro-
shear bands systems considered and result in two separate planes that form in
the space of principal stresses 7 (k =1, 2, 3) a vertex at the loading point
on the smooth Huber-Mises cylinder F. The planes are defined by normals N;,
which can be expressed in terms of the unit vectors s/, n( (i = 1, 2) defining
the “i” th system (cluster) of micro-shear bands

(61) N,‘ —] ? (S(i) ® n(‘.} B n(i) ® S(i)) -

The normals N; can be expressed in terms of the unit normal pp to the Huber-
Mises yield surface %1": T = k?, expressed by deviators of the Kirchhoff stress

tensor T , and the unit tangent T to the limit surface at the loading point

’

(6.2) N; =cos2Bup +sin28T, N3 =cos2fup —sin2fT, pp= ﬁ‘t ;

The tensor T is coaxial with the tangent to the Huber-Mises locus in the devi-
atoric plane at the loading point

(6.3) T =2 :T[T'—(%: uF) pp], F= %r’:r’.

-]l' "‘-..°
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o
For the pressure-insensitive Huber-Mises yield locus T : pp = T : up holds,
whereas T' is a normalization factor

° °

T ‘Hp | Up
o ° 2 o o ° 2
T—(T “F‘)MF =T:T“(T:|J.F),

o
I o
cosd = H'r” cos &

|
(6.4) T =

which due to

(6.5)

[+]

' '
T ! Up = ||T

(+]

=7
is given by T' = ( T || sin 6') . The symbol T denotes the objective rate of

stress, which reads

(6.6) T=17-W'T+TW, W =W - W?,
where W is the material spin and WP is the plastic spin, which was derived in
the following form [2]:
1

o0 WP =_——_ (Dt — TtDP).
16:7) oA kit ol
Due to the above derivations, the relation for the rate of plastic deformation
takes the form

V2 2 . (4)
(6.8) D? =DF + <= ;%BN,-.
Assuming that DP, representing the rate of plastic deformation produced by the

crystallographic multiple slips, can be expressed in the simplest case by means
of the classical J; plasticity theory, we have

\/i \/§ %: 192
B el Y e
(ﬁg) D 2 TsHpy Vs 2 T

Due to equations (6.1), (6.2) and (6.8), (6.9), the relation for the rate of plastic
deformation takes the form

v2.. V2,
(6.10) DP = - Vup+ TESBT.

http://rcin.org.pl



PLASTIC STRAIN IN METALS ... 615

where
¥ =95 +¥ss,

e 1 2
(6.11) s = cos2f3 (’yggﬂig,) )

4 4 1 2

ésp = sin2f3 ('T{s;)s ‘r(s;);)
The scalar functions: f SB» f s g representing the contributions of the shear band-
ing system (1) and (2), respectively, in the total plastic shear strain rate ¥*, are
introduced

(6.12) ')rg.lg, cos 23 = f,{;g'y‘, 'y(s‘g cos2f = f(z) ¢
which are subjected to the following constraints:
6.13) LifDis® 1 420, fB+rBen 1), 58 1Eep,).

Let us note, that this is the formal statement of the experimental observation that
shear banding never appears without even slight contribution of crystallographic
slips [2]. Basing also on the observation that micro-shear bands can be active
only in the case of continued plastic flow, i.e. when the loading condition is
fulfilled, it is assumed that for 4* = 0, _glg. = gz; =

According to the foregoing discussion and due to (6. 11) and (6.12), equation

(6.10) is specified for two situations:
e For the case in which the loading direction described by the objective rate
o 1T
of stress T is pointing at partially active range, i.e. for § € (55, E]

x: Hr
614 DP = —————
(5:44) h(— fsp)MF

o

T:pp Afsptan2f
+2h(1‘-f5'8) ;, o l ("l' IJF) ]

e For the case in which the objective rate of stress T is pointing at fully
active range, i.e. for § € [0, 4]

"cl,.': Hp
6.15) DP= —————=
a0 R fsm)"F

%:pp Afsptan2g 0:_ °
Al =7s3) tand. T ("'”F) HF >
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1 2 1 2 ;
where fop = fS) + &, Afse = f89 - 13, Afsp € [-1,1] and h is
the plastic hardening modulus obtained from the simple tensile or compression
test. It is confirmed experimentally that in such tests the contribution of shear
banding is negligible, [24].

7. Possible simplifications of constitutive description for numerical
simulations of metal shaping operations

Among many possible realizations of shear banding processes, which are de-
scribed by (6.14) and (6.15), one can single out the group of processes charac-
terizing, at lest approximately or for sufficiently long deformation paths, with
the same contribution of both systems fég = fg. Then we have A fsp = 0 and
(6.14) simplifies. On the other hand, the non-symmetric activation of shear band-
ing can be induced by the sufficiently large change of the loading direction or
rotation of the principal axes of stress tensor in the inhomogeneous deformation

process caused by boundary conditions. Therefore, we postulate that:

(11)  Afsp=0 for 6€[0, &] and Afsy =A(9) ford € (&, %]
The function A(d) being a measure of the mentioned asymmetry of shear
banding should be identified from numerical simulations of the experiment ac-
counting for the change of loading direction.
As a result of the above assumptions, the flow laws (6.14) and (6.15) read
respectively:

e For the case in which the loading direction described by the objective rate

> witns . - . ™
of stress T is pointing at partially active range, i.e. for d € (éc, 3

o
T:'.I.F

R T g

Q
!

+ —br A(f) ke T"('ofil-lp)l-lp ,
2h(1 = fs8) |2\l sing

e For the case in which the objective rate of stress T is pointing at fully
active range, i.e. for é € [0, d.):

T: HF

7.3 D?P = ———— —up.

A 2h(1— fsp)""
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The above-mentioned assumptions leading to simplified formula (7.3) finds con-
firmation in experiment, for the experimental observations reveal that the spatial
pattern of micro-shear bands does not change for loading conditions that devi-
ate within limits from the proportional loading path, i.e. the load increments
are confined to a certain cone (fully active range) the angle of which can be
determined experimentally. For instance, according to [25] in polycrystalline Cu
the critical angle . of this cone is of the order of 22°. A more drastic change
of the loading scheme produces, however, the change of the spatial orientation
of micro-shear bands. This is supported by the results presented in [26], where
after cross-rolling two families of micro-shear bands inclined by about £35°to
the most recent rolling direction were observed. The possible applications of the
plastic flow law (7.3) for numerical simulation of metal shaping operations are
discussed in the companion paper [6].

8. Conclusions

It is worth mentioning that the existence of the deviation angle 3, which plays
an essential role in the non-linear flow law (7.2), is typical for the micro-shear
bands produced in the deformation processes carried out under nearly isothermal
conditions. Thermal shear bands, i.e. the mode of plastic localization governed
by a coupled thermoplastic mechanism, have also been studied by many au-
thors (cf. e.g. [27-29]). In particular, the so-called “adiabatic shear bands” are
often reported to coincide with the trajectories of maximum shear stress, which
result in =0. In our view, such a qualitative difference can be attributed to
the influence of internal micro-stresses, which control the formation of micro-
shear bands. The micro-stresses perturb locally the applied macroscopic state of
stress deviating the principal axes of stress tensor. According to the hypothe-
sis on a micro-shear band formation presented in [8], within a suitably oriented
grain the critical coarse slip band is activated, which can further transform, un-
der appropriate dynamical conditions, in a transgranular “non-crystallographic”
micro-shear band propagating in the planes that are usually deviated from the
planes of applied maximum shear stress. On the other hand, the effect of micro-
stresses decreases while thermoplastic coupling becomes operative and “adiabatic
shear bands” develop. The experimental investigations of the thermomechanical
coupling during a simple shear test with use of the thermovision system show the
temperature distribution along the shearing paths and reveal a misorientation
of the shear-banding zone with respect to the plane of maximum shear stress
for non-adiabatic conditions [30]. This confirms, at least qualitatively, the afore-
mentioned interpretation of the deviation angle 3. The constitutive description
of plastic strain for the angle =0 reduces to the simple form of plastic flow law
(7.3), which can be applied for the numerical simulations of cold as well as hot
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metal forming operations. Some results of the relevant applications are reported
in [31]. The extension of the proposed description of plastic strain in metals with
an account of shear banding under dynamic loading conditions was recently pro-
posed in [32]. The main idea was the modification of the viscoplasticity equation
in the form proposed originally by P. PERZYNA [33] in such a way that the
viscosity parameter depends on the contribution of shear banding fsp.
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