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THE SUBJECT OF this paper is an analysis of the experimental Hopkinson bar tech-
nique when such a device consists of a short tensile or shearing specimen surrounded
by two very long elastic bars [1]. Unlike the commonly applied by-pass analysis which
attempts to draw conclusions from the behaviour of elastic bars, we attempt to take
into account real plastic waves inside the specimen with several hundreds of reflec-
tions. A quasi rate-independent as well as a more general, rate-dependent tensor
function model for AISI 316H calibrated in [19] are applied. Some special slightly
perturbed elastic incident and reflected waves in elastic bars served to simulate the
starting solutions. The numerical results have shown a good agreement with exper-
imentally observed homogeneous strain state throughout the specimen during the
process. Lindholm’s procedure for finding specimen stress and strain by such a by-
pass procedure is criticized.

1. Introduction

THE GOAL of this paper is to revisit the standard techniques for analysis of the
Hopkinson bar testing technique, taking into account plastic wave propagation
inside the standard (extremely short) tension specimen, as well as elastic waves
propagating along the very long incident-reflected wave bar and the transmitted
wave bar. The strains inside the specimen are large and reach up to 60%. The
evolution equation for plastic stretching tensor was calibrated in [19] on the
basis of the experiments performed in dynamic testing laboratory of the JRC-
Ispra, Italy [1,2, 3], with classical tension specimen as well as “bichierrino” shear
specimen (consisting of two rigid cylinders connected by the gauge part - a thin
circular crown explained in detail in [4]) made of austenitic stainless steel AISI
316H, in the range of strain rates [1073,10%]s~! .
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578 M. Mi¢unovi¢ and A. BALTOV

2. Preliminaries

Before proceeding, clear stress and strain measures are necessary. It is com-
monly accepted that in addition to the undeformed configuration By and the
instant deformed configuration B, an intermediate local reference configuration
By is introduced. Then Kroener’s decomposition rule holds [9]

(2.1) F =FgFp

where F - the deformation gradient tensor, F g - the elastic distortion tensor, and
Fp - the plastic distortion tensor, mapping respectively By — B, By — B and
By — By . The name “distortion” is used to underline the fact that Fp and Fp are
incompatible, i.e. compatibility conditions applied to a metric tensor of By are
not satisfied (cf. e.g. [13]). Let us apply polar decomposition on plastic distortion
i.e. Fp = RpUp = VpRp, where Rp is the plastic rotation tensor Up and Vp
are the right and the left plastic stretch tensors. In the subsequent sections it
will be especially convenient to use logarithmic plastic strain by making use of
the definition:

1
(2.2) ep=InVp= §m (FpF}).

It is traceless when plastic volume change is negligible (which takes place when-
ever damage such as creep, low-cycle-fatigue, irradiation creep etc. is not taken
into account). It is worth of note that this holds true for large plastic strains as
well. As another strain measure, the Lagrangean elastic strain will be used

1
(2.3) Ep=3 (FLFp —1).

Both measures are referred to the vectorial base vectors of By. Another tensor
connected also with the configuration By, being of importance for the following
considerations, is the plastic stretching tensor:

1 /. .
(2.4) Dp = 5 (FpF5' + F5'FE),

where the superposed dot stands for material differentiation with respect to time
holding considered particle fixed.

According to the assumption that the elastic strain is caused and escorted
by the corresponding stress tensor, Hooke's law holds for the mapping By — B
and it should be written in an invariant way connected with the intermediate
referential configuration Bpy. For this aim, aside stress tensor present in B -
configuration, called Cauchy stress (or “true” stress), we quote also the first and
second Piola-Kirchhoff stress tensor [28]:

(2.5) Tk =det(F)TF T, S =det(Fg)F;' TF;",
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respectively. The first of them is connected with B and By and often it is named
the engineering stress, whereas the second one is referred to the natural state
local configuration By . If the elastic strain is much smaller than the finite total
strain, then Hooke’s law reads:

(2.6) S =H:Eg.

Fourth rank tensor H consisting of material constants should depend in general
on temperature as well as on principal invariants of the (traceless) plastic strain
tensor.

(2.7) my=tr{eb}, ms=tr{ep}.

Two basic tensor constituents of the subsequent evolution equations are the
plastic strain tensor and the second Piola-Kirchhoff stress tensor defined above.
Thus, the relevant tensor generators are (the subscript d is used to denote the
deviatoric part of a second rank tensor) [28,21]:

Hl = Sd: Hy; = (Sfi)dv H3 =ep, H4 = (e%‘)da
(2.8) H; = (Sqep + epSa)y, He = (See} +€3S4),,
H; = (Sjep +epSJ),,

while the corresponding principal and mixed invariants will also be necessary in
the sequel:

Ss9 = Ir (Sg) y 83 = tr (Sg) y M1 = T (SdEp) 5
(2.9) p2 = tr (Sqep), us = tr (Siep), pa=tr(Sie}),
v = {82, 83, M2, T3, fh1, b2, 43, 4 } -

As usual, some of the above principal invariants are used here to denote the
intensities of the corresponding tensors

(2.10) S =5, #=(Dp:Dp)?, ?r——-/rir('r') dr'.
0

In the terminology of experimental plasticity, in a slightly different form

& 5y . (2 2
(2.11) ae":S\/;, 6;?:“\/;, Effz-.-r\/;,

they are commonly named equivalent stress, equivalent plastic strain (i.e. accu-
mulated plastic strain) and equivalent plastic strain rate.
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3. Experimental evidence and evolution equations

It has been known by experimentalists for a long time that initial yield stress
depends on the strain rate or on the stress rate such that at higher stress rates,
initial yield stress is larger. On the other hand, Rabotnov in his book has sug-
gested that there exists the phenomenon of delayed yielding inherent at some
metals and alloys, i.e. it means that stress exceeds its static value after elapsing
of a certain time interval called the delay time. According to such an assumption,
in the paper [19] the following integral equation

(3.1) m(r) = _[OTJ(T =) P%T)d‘r’ = /UT¢(T, 7') dr'

was postulated and calibrated.
If plastic deformation commences at time 7% so that initial stress time rate

equals
re=T" ) ,

then the initial yield stress depends on the initial time rate of stress. Accordingly,
the kernel in the above integral equation should read

(3.2) S(*) =Y ( 2 f)ff)

W, T
) Jr(T"’r)_{exp(—.a‘\/[), T

Applying this expression for kernel to the above integral equation, the following
representation is acquired:

(3.4) PG [ hiid o 8 { 0, g

Dr exp (—M) /2/3 6% (1), T>71"

The integral appearing in (3.1) is the Riemann integral. Indeed, it is not
difficult to show that it is uniformly bounded on [0,7]. On the other hand, a
linear relationship between Dn/Dt and DS/D7t was found in [19] in the form:

Dr DS
(35) B—T- = exp (—M) ‘E‘

with a material constant M holding both for tension and shear of AISI 316H so
that [19]:

(36) Mtension =~ Mshear ~ M = 6.8645.
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The agreement of these values with the corresponding values obtained in the
case of tension as well as shear is considerable, i.e. discrepancy between Mension
and Mgpear amounts approximately to 0.3% at a very large range of strain rates
Dn/D7 € [107%,10%] s~!. Thus it is expected that M is a material constant
for AISI 316H. V)

If the triggering value of the invariant S (cf. (2. 10); ) where plasticity onset
happens is denoted by Y, then the simplest nonlinear dependence of Y on the
initial stress rate could be given by the following equation:

)m
r=T"

Its statical value Yy depends on the accumulated plastic strain accounting in such
a way for the strain hardening effect. The other two quantities appearing above,
namely Y; and m, are constants giving rise to the simplest way of nonlinear
stress rate hardening.

It has been shown by experiments on AISI 316H (by means of traditional ten-
sion specimen, “bicchierino’type specimen as well as a cruciform specimen) that
the plastic stretching tensor is not perpendicular to the yield surface (cf. [3]).
Taking such an evidence into account, some constitutive models have been com-
pared and calibrated in the paper [19]. Since such a deviation from normality
is not large (as relatively simple and yet general enough to be concordant with
experiments) normality model introduced by Rice in [27] based on a loading
function normality and generalized to tensor functions is accepted here. Similar
evolution equation was derived by Ziegler from the principle of least irreversible
force. Such an equation reads:

(3.8) Dp:A(aQ)d.

DS (1)
DT

(37) y;m+m(

a8

This relationship has been made explicit in the papers [18,20] in such a way to
include the dependence of the loading function on the stress tensor and plastic
strain as representatives of Rice’s PIR (pattern of internal rearrangements). More
precisely,

(3.9) Q=Q(S,ep) =2(v)

Dinstead of M the value of this material constant may be more conveniently expressed
(for 7 > 77 ) by means of the integral kernel

J(0) = 1.044 x 10"} [MPa™"]

allowing for explicit dimensions.
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and stress derivatives of this function necessarily lead to the tensor genera-
tors (2. 8).

On the other hand, the above consideration on the time delay of plastic
yielding and dependence of the yield stress on the stress rate, allow further
specialization of (3.8) by means of

(3.10) A=527(0) ().

The simplest evolution equation nonlinear in the stress tensor reads then (cf. (2. 8)):

811} Dp= %f- exp (M) (S —Y) () (c1Sa+c2 (S2),) »

where n(S—Y) =1for § > Y and (S —Y) = 0 otherwise (the Heaviside
function), and the strain function ¢ (7) might be either unity or some function
aimed to take into account the strain hardening such as:

¢ () = o

where, obviously for A # 0, we have a nonlinear 7-dependance. Such a model
with only four material constants {M,¢;,c2, A} was calibrated in [19] leading
to a high correlation coefficient 0.9683 for tension and shear in the very large
strain rate range Dn /D7 € [10‘3, 103] s~ L. The evolution equation (3.11) may
be written as follows:

DS .
(3.12) Dp = F-exp(-M)n(S - Y) ¢ (n ;ra

where the loading function

Q= %C] S92 + %Cgs;g

leads to I'y = ¢, 'y = ¢, I'a = 0 (a>2), while the tensor generators
H, (a = 1,...,7) are shown above in (2.8). Such a model could be named as
quasi-rate-independent. This means that if we multiply (3.11) by dr, then this
equation becomes incremental. However, it should be taken into account that Y
depends on DS/D7 what means that time rates influence the plastic stretching
tensor.

A more general rate-dependent model in its simplest form might be given
by [19]

i
613)  Dp=n(S-Y)¢m Y (Taln) oo exp(-A) + T4 (1)) H,
a=1
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where, additionally Ff! = (:;;,I‘;"é = 04, r#=0 (¢ > 2) . Necessarily, by experi-
mental evidence, the constants c3, ¢4 must be much smaller than ¢y, s (cf. (3.5)).
Its advantage with respect to (3.12) is that for slow processes it covers the case
when the stress rate vanishes while inelastic creep strain rate is different from
zero. In our considerations dealing with high strain rates it is not so important
to take these additional terms into account.

4. Longitudinal plastic waves

Consider inelastic deformation in an isotropic straight cylindrical bar with
circular cross-section whose longitudinal material coordinate is ¢ € [0, L] and
the other material coordinates £,7n are also Cartesian. It is assumed in the se-
quel that during all the considered time interval 7 € [0,77], deplanation of the
cross-sections is negligible. Thus, all material points belonging initially to a nor-
mal cross section belong to the same section during all the motion. Therefore,
¢ = const stands for a cross-section with such fixed material points. Moreover, it
is assumed that shears are also negligible. Then the deformation gradient tensor
and plastic distortion tensor have the following forms:

l1+w 0 0
F = 0 14w 0 -
0 0 14¢
(4.1)
(1+ep)™% 0 0
Fp=<¢ 0 (1+ep)~ "% 0
0 0 l+ep

Logarithmic plastic strain tensor and plastic stretching are then obtained as
follows:

3 1 -1 0 O
(4.2) ep = \/jln(l +éep) N, where N =‘/: 0 =1 0%
2 Gl b e R

so that
3D
(43) Dp=# N with #=|Dp| =(Dp:Dp)/?= \/;5; In(1+ep).

In such a case of special geometry and strain conditions we have Dp = Dep/DrT.
Of course, such a relationship would not hold in a general case. The unit tensor
N with the properties |[N|| = (N : N)I’f2 = 1 is here introduced for convenience.
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If only the longitudinal Cauchy stress component T33 = o differs from zero,
then from Hooke’s law written with respect to the By-configuration, i.e.

(4.4) Eg = —%((1 +v) S—v1 trS)

(E, v are elastic constants for isotropic body), we get the only non-zero compo-
nents of the Piola-Kirchhoff tensors (2.5) in the form:

2

2(1+EF) 2 1+E
CHEER) s mo (L) = BB,
e 3 ( ) F33(1+5P)2

sen = ((B5)" 1) =3 01

is the corresponding longitudinal elastic strain component being very small for
steels (|Fg33] < 1). On the other hand, from S;; = S22 = 0 we get the lateral
total stretch by means of the formula

S33=EEg3 =0 (1+w)

where

1 —2vEgs3

1 e
(E4) 14+ep

The equation of balance of linear momentum written with respect to the unde-
formed reference configuration By reads:

Jd D‘IJ3
(4.5) &Tma = Pu"b-;,

where pg is the mass density in the undeformed configuration By, vz is the
longitudinal component of the velocity vector in spatial coordinates with respect
to the deformed configuration B, and Tga3 is given above.

In order to complete the field equations of the problem, the following geo-

metric relation:
dvgs De
(4.6) 8_C = Dr!

is necessary. Let us introduce non-dimensional time ¢ and non-dimensional lon-
gitudinal material coordinate Z by means of the formulae:

P

T
such that Z € [0,1], t € [0,1] and V = 7Y is the corresponding non-dimensional
velocity.
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Now, the balance law (4.5) by means of (4.6) and (4.7) may be transformed
into

DV ¢t 0 (l+eg 2
(4.5 ﬁ"?ﬁ(usp (1 +ex) -1))1
where
E Y4
4.9 2=_(_)
(4.9) il

is the non-dimensional elastic wave speed of the linearized wave equation. Indeed,
in the elastic range, ep = 0, such that (4.8) together with the following non-
dimensional equation

oV De

0Z  Dt’

obtained from the geometric relation (4. 6), give elastic wave equation. However,
if plastic strain rate does not vanish, then an additional equation is necessary.
Such an equation is (3.13) rewritten in its non-dimensional form. Therefore,

Eqs. (4.8), (4.10) and such a transformed Eq. (3.13) are collected into the fol-
lowing set of nonlinear partial differential equations of the first order:

(4.10)

ou ou 4
(4.11} E'F.A(U)ﬁ—s (U),
where
|4 0
U= e 3, B¥U={0 :
Ep nTb#
(4.12)

0 —Cg aQ —Cg a3
AU ={ -1 0 0
-nazg 0 0

In the above expressions for the matrix A and the column-vector B#, the
following scalar functions are introduced:

2(1 +€p)2a12=3(1+65]2—1, (1+€p)2013=~—(1+65) (2{1-1—63)2—1),

(1+€g)D JE A 2
e , D=1/%exp(~M)E 7 (Cy s+ Cs &),
e e o= ffeemE e
(4.13)
C 2 A
b = g(1+sp) (Cos + 432)7r.
3 1-(1+€eg)"Dy
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Here the Heaviside function is denoted by n = 5 (S — Y') and the non-dimensional
second Piola-Kirchhoff stress
Si3 1

4.14 8= = EE
( ) YO[EP"U Y0|sp:0 =

is scaled by means of the initial yield stress at the boundary of the original
(virgin) elastic range such that the reduced material constants (cf. (3.12) and
(3.13)) are introduced as follows:

4.15 Co=——,a€{l,3} and C
( ) a YOIgP:(} { } B V/_YD‘

Let us assume a solution of the homogeneous part of (3.11) in the form
U =Upexp(Z — M), i.e. as a wave propagating along the Z-axis at a speed
A = c¢. With such an assumption, Eq. (4.11) is reduced to

——, B € {2,4}.

Ep”"‘ﬂ

(4.16) (A=Al Uy =0.

Since the solutions of the characteristic equation

(4.17) det (A — A1) = —/\3+/\c§ (ay2 + 1 ayzaz) =0
are real and different, i.e.

(4.18) A1 =0, Ay =xco(arz+n arzag)'/?

the wave equation is hyperbolic. It should be noted that one of the solutions van-
ishes.

Consider now more closely the initial elastic range characterized by ep =
epg = 0. The above solutions of (4.11) reduce for this very special case to a very
simple expression for the initial nonlinear wave speed:

3 1/2
(4.19) & = o alf? = ¢ (1 +3ep + 5525) .

Of course, in this special case elastic and total strains coincide. In a subsequent
elastic range characterized by means of ep = epg = const # 0 we would have
plastic strain-dependent nonlinear elastic wave speed as follows:

3 1/2
4.20 A g 0 (1 1366+ -52) .
( )1 =€ Q9 |1+5P0| E 2 E

Taking into account that for steels |eg| < 1, we note that in a subsequent
elastic range with advanced previous plastic strains, the corresponding elastic
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wave speed is predicted to be considerably smaller than the elastic wave speed
in the initial elastic range. Such a proposition could serve as a basis for an
experimental check of validity of the constitutive model proposed and calibrated
in [19] and applied here. Concerning the character of such a wave, we see from
the derivative of the elastic wave speed i.e.

de 3(1+¢Eg) ¢
4.20 A >0,
(4.20)2 de ~ 2(1+ 3 + 360)

that an acceleration wave could be transformed into a shock wave if large elastic
strains were possible. However, this cannot happen since much slower plastic
wave appears immediately after a yield surface crossing.

Indeed, if S > Y, then plastic strain changes with time sothatp =7 (S -Y) =
1 and plastic wave speed ¢ may be expressed by the following expression (cf. (4. 14)
and (4.18)):

1/2
(421) e=¢* (1 + 213431 ??)
a

2(1+EE}(2(1+EB)2—1) (1+65‘)D 3

301 +ep) —1 1-(1+€g)*Dy

=c" |1-1n

Let us note that ¢ < ¢®. For advanced plastic strains we may even neglect elastic
strain in the above relationship which leads to

~ el 1_297? /2
cC=cC ___—I—Dn -

Thus, for a very long rod excited at one of its ends, the plastic wave front is
always delayed behind an elastic precursor wave travelling with the speed c®
characteristic for the elastic range to which the state of material at that instant
belongs.

It is worth to note that the special case of the above approximate relation
when D x 0.5 leads to vanishing of the plastic wave speed and this should give
rise to a localization onset according to [24].

Let us now introduce left l(,), a € {1,2,3}, and right r4), 8 € {1,2,3},
(column-type) eigenvectors of the Eq. (4.16) i.e.

(4.22) Il (AM) = Mayl) =0 and (AU) — Mg)1) r(s =0,

which are orthogonal to each other i.e. !E’;)r(ﬁ) = 0 if o # B . They form the
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maftrices
ia) 0 —naxn 1
(4.23) I?;) =¢ 1 —cdapn/c —cay/c p,
I?;) 1 ¢ aiz/c ¢} azfc
0 1/2 1/2
(429) {ry re re }={ —(co/c)® aiz —1/2c 1/2¢
(co/c)* a2 —mazi/2c naz /2

Suppose now that instead of the material coordinate Z and time t, new coordi-
nates r and s =t are introduced by means of

(4.25) r(Z,t) = const.

They are characteristics for the loading acceleration wave whose front Z = Z (t)
moves at the speed (cf. (4.22))

dz B =k dr /ot
(426) E — /\(2}‘ /\(2) = ¢ Cc= 37‘/321
such that
aul av e
(427)  (AWU) - A1) [5;] i [E] =28 [‘a?] :

BEP - e

5] e [5]
hold. In the above relationships [0U/dr] denotes the jump of OU/Or passing
from one side of the characteristic (4.25) to its opposite side.

Let us transform the wave Eq. (4.11) by introducing new independent vari-
ables i.e. {r,t} instead of {Z,t}, and multiply such a transformed equation from
the left side by the corresponding left eigenvector IE';). In such a way we obtain
the so-called interior equation

ou
€I — T p#
by gp = 18" @),

which holds along each characteristic (4.25) governing the change of the solution
vector U along it. Obviously, the solution vector Y is constant along a character-
istic for the quasi-rate-independent model (3. 12). In other words, such a wave is

(4.28) l
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said to be simple (cf. [22] page 145). For the more general rate-dependent model
(2.14) a change of the solution vector along a characteristic is very small since
constarts T'¥ = {e3,¢4} are much smaller than I'y = {c1,¢2}.

Let us derive an equation governing the spatial and temporal changes of
[OU/0r] . First, transforming the wave equation from {Z,t} to {r,t} and differ-
entiating such a transformed equation by r, we get

U or Ut o oUu or
Ry BT = gl) =—7=
ooz oA W-eNg 5z
e U L oB# %
ar Ot~ OU Or
If this equation is multiplied by I?; and the orthogonality of [(,) and r(g) is re-
membered, then after taking jumps of all the terms, the above equation becomes:

9 [0e Oe 9e1?
(4.30) 5 [51 + [5;-] + p2 [51 =0,

which is the required evolution equation commonly called the amplitude equation.
If it is solved, then jumps[0V/0r] and [dep/Or] are easily found from (4.27).
The coeficients of the amplitude equation are obtained after a tedious calculation
in the hllowing form:

1 de l’:2 3&3] ou
4.31 = — | —+ 0 f # J /|
( ) H1 2 (9f n ca'l3 N ) H m i

(429) (AMU)-c1)

with notations:

c? ab# ab¥#
Hy ——2—C'§WT013 (@4-03152;)1 m ={££1V Hie ,Ulsp}s

g da da
v 3 +7}asla——7? %013 (6_21 18_31)’
dc | c§ (Bara 0 dasz;
Ba==gat (_85 + 7nas3; 9 I

de da da da
Hiep = —N0G3] 5{; + 7?%%031 (Tj: + a3 T:: —a i)
2
G (G, w1 (O . O
gy ( g | ea dep ¢ 13\ Be I oep))’
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as well as

dc dc ¢ (Oan Oays
(4.32) po = 5 7IG3IBEP + 2% (_35_ + nas Bep

2 L Fa 2 [a .
5 dayg da3 o das; dazy
3 gg oL ( Oe + 908 35;:) 9¢ 1013 ( 3 AT dep )
#

The term pui” is shown separately in order to demonstrate that it vanishes
for the quasi-rate-independent model (3.12). If a loading wave enters into an
undisturbed region we have U™ /0r = 0 so that the amplitude equation becomes
significantly simplified. However, under such an assumption, caution must be
observed since in front of a plastic wave there exists the corresponding elastic
precursor wave.

Finally, let us remark that if the indirect wave with the speed A3y = —cis
considered, then for such a wave U = Uy exp(Z + ¢ t) and analogous calculations
with the corresponding left eigen-vector Ii‘;} (cf. (4.18) would give a new ampli-
tude equation, similar to (4.30) but with other coefficients (4.31) and (4. 33).

5. Numerical simulation of a Hopkinson bar

5.1. A solution algorithm and its accuracy

Consider now a Hopkinson bar as an experimental apparatus consisting of
two very long and thick cylindrical coaxial elastic bars with a cylindrical, very
thin and short viscoplastic cylindrical specimen (cf.[1]). The left bar is preloaded
by a constant elastic tensile strain on a major part of its length such that the
remaining part of the left bar is initially immobilized by a clamp which suddenly
becomes broken at the beginning of the wave motion (cf. [1]). Let their material
coordinates as well as time be normalized in the way shown in the previous
section, i.e. by

(5.1) t=T te0,1], Ze=k Z.€[0,1], ke{1,2,3},
T i

such that their non-dimensional linearized elastic wave speeds are

s
(5.2) (cgh)? = =2 (3) ke {1,2,3},
por \ Lk

where indices 1,3 stand for elastic bars, and the index 2 serves to denote the
tension specimen.
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Boundary conditions between the bars and the specimen must include equal-
ity of normal contact forces leading to the corresponding relationships connect-
ing their first Piola-Kirchhoff stresses. Taking into account values of the non-
dimensional material and temporal coordinates ¢t and Zi, the boundary condi-
tions in stresses read

Au] A02
(5.3)1 Th22(0,t) = Trir (1,4) 77— and Tray(0,) = Traz(1,) 1,

Ap2 03
where Agx, k € {1,2,3}, are areas of undeformed cross-sections. Similarly,
boundary conditions for nondimensional velocities have to take the following
form:

L L
(5.3)2 Va(0,8) = Vi(1,8) == and V3(0,t) = Va(1,t) .

L, Ly
For a numerical solution of the wave equations of the type (4.11), the follow-
ing numerical method [5] is applied here. Time and material coordinates are
discretized as follows:

t€[0,1], = temporal index K € [1,M], At=(M —1)""

Z€[0,1], => spatial index J€[1,N], AZ=(N-1)""

Implicit integration in the quasi rate-independent case (cf. (3.11) ) is shown
by the following scheme. Its initiation at time step K + 1 is determined by the
last iteration values of the previous step i.e.

D (1K +1) =e(J,K)

with i = 1 at the initial iteration position and U9 (J, K + 1) = U(J, K).

@ (J,K+1)
4

sg) (LK +1)=ep(J,K)+
60 (1, K +1) i (1K +1) (O (J, K +1) — € (J, K))

¢
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VO (1K +1) = V (J,K) + & afy (J K +1) 9z¢® (J,K + 1) At+
Zal) (J,K +1) 8% (J,K +1) At

T

VIO (L K+1)=05 (VO (J+1,K+1)-VO(J-1L,K+1)) /AZ

¢

et (JK+1)=¢(J,K)+ 0V (J,K +1) At

T

ABS (WD (LK +1) — W (J,K +1)) < TOL

5 ®

K+1< K i1+1<«1

From the above algorithm we are able to derive its order of accuracy fol-
lowing the procedure explained in [11]. To do this we recall that (4.11) is here
approximated by:

G gy (I ) + g () (s -ufta) = 8% ().

Now, taking into account that the expansion of

(5.4)9 U =U (JAZ + BAZ, K At + adt)
into power series and substitution of the obtained expression into (5.4); gives
the approximation of order O(At + AZ?), we see that the algorithm is linear in
time but it is of second order in material coordinate.

On the other hand, von Neumann stability analysis (cf. e.g. [25]) requires
that £ < 1 in the following solution

(5.4)3 Ul = eXexplixJAZ)Us
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of (5.4),. Substituting (5.4)3 into (5.4); we arrive at the following form of the
characteristic Eq. (4. 18):

ANZE~1 A N

such that its solutions lead to the following inequality:

1 _1 AZ apgAZ
(3

5.4 3
( )5 At > ’ |C[ ol 3

where plastic wave speed ¢ is determined by (4.19). Therefore, the proposed
procedure is unconditionally stable permitting unbounded time increments. In
the paper [6] the value agx = 5'/? is suggested to be convenient.

Practically, for meeting some accuracy requirement by choosing £ € [0.9,1)
we may reduce At as much as necessary. For instance, if the specimen is divided
into 100 elements, then a convenient nondimensional time interval could be At ~
10~ for the above established accuracy.

5.2, Appropriate boundary conditions

A very delicate point in this numerical routine is initialization due to the
fact that geometrical changes in the apparatus are abrupt with large values of
Ag1 /Aoy as well as of Ly /Ly. Moreover, the length of specimen is more than one
hundred times smaller than lengths of the elastic bars. This means that only
at the beginning of the plastic wave motion, plastic waves might be clearly rec-
ognized whereas during numerous subsequent reflections, the state of specimen
strain becomes practically homogeneous.

Thus, a more realistic initialization simulating a background wave-type space-
time values of velocity and strain is needed. Otherwise, a disturbance at the end
of the specimen becomes numerically “frozen” and does not propagate at all along
the specimen. In this paper we proceed in the following way.

For the time being, suppose that a very small disturbance of the type:

(5.5) €1(0,t) =eg n(—2Z; + ©OLy), with © = const < 1

is imposed to the left (so-called “incident-reflected” bar), so that the correspond-
ing induced strain in the specimen stays inside its initial elastic range. Here
n(Z) =1, for Z > 0 and 1 (Z) = 0 otherwise, while magnitude of &y is chosen
to be small enough to provoke only linear elastic wave inside the specimen due
to approximately constant value of a;s for the wave speed cﬁ‘z in (4.20). Then
after P reflections, the incident and reflected stresses and velocities in the bars
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as well as in the specimen (under the assumption of linearity of the elastic wave
equation) would have the following forms:

E -7, +6L E =BT,
(5.6) 01!=€Eofl(t+—1——l)+?150n(—t+¥)‘

€01 Co1
By r2-—1 ( (1+ 0) L[) T12
5.7) oyp=—— =9Bgn ———
(5.7) oir 3D 180 )
T‘g-;— Z: Tln = (f.+ 7 —(1+@}L1 B ZQLQ)‘
7‘23 == o1 Co2
enly ma =
5.8) oar = E: -
(5.8) oo 2 €0 C°2L2T12+1a2=:1 Tu’s

Z1—(1+09)L 2aeL
Xn(t-l— i (. )1_“2)‘
€o1 Co2

conly ra2 T3 —1
coolyrig + 1123 + 1

P-1
—(1 L 20 L
% Z (-ri23)* ' (H’ Al Sk R 2) :

Co
sy €p1 02

(5.9) o2r = E3 €

corly T2 T
coalzria + 1oz + 1
P-1

i Z: OL 14 2a) L
x 3 (=r1z5)° lﬂ(t——q— 1 (1+2a) 2)’

[&
st Co3  Col 02

(5.10) o037 =2E3 €9

with the following notations based on elastic impedances 2)

Ey A coaLy e EyAj co3L3 RN Lraa—1
EyAy o1 Ly’ E3As oLy’  rip+lres+1°

T12-=

2 At the first sight, a special case of (5.8) when elastic impedance 712 = 1 leads to ry23 =0
so that o2; disappears which, obviously, is a nonsense. Such a conclusion comes from the above
compact notation. In fact, when ry23 — 0, then for a = 1 we have lim,,, 0 riss = 1 so that

Culqu(t+ Z1—-(14+09)L, __2&)
caz Lo co1 o2

Similar result holds true for o2r and 3 given by the next two formulae, (5.9) and (5. 10).

a2 = 0.5E2 Ep
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The corresponding velocities would have the values:

. 1 —Z1+ OL, 1 —7Z1+ 0L,
VH‘ = E Co1E0 7] b ——— = — = Co1E0 M —hle———————i)l,

;e \ o1 2 (&)
(6.11)
Vv Co1 = v Co2 o V. ffnzg Vv imﬂ
1R = 1 71R, 2l = — 4 021, 2R =+ O2R;s 3l = — 0, 23l-
E, E, Es Ej3

Due to the assumed linearity of the elastic wave equation (which is fulfilled for
very small elastic strains), the additivity condition

0k = 0k1 +0kr s Ve = Vir + Vir

would hold.

5.3. Results of plastic waves inside the specimen

Let us imagine that the initial strain of the left bar, g, in (5.5)—(5.10) is
now augmented enough to cause plastic straining of the specimen and that after
P = 2, the stresses and strains in elastic bars remain unchanged. In other words,
this means that during the first two reflections inside the specimen it stays inside
the elastic range. Then these formulae with P = 2 will serve as an input into the
numerical routine shown above. With this type of initiation of plastic strain of
the specimen, being calculated by the proposed algorithm as a function of time
and its material longitudinal coordinate, is depicted in the following figure.

0 0

FiG. 1. Plastic wave inside the specimen as a function of space and time.

In order to underline that at initial time interval we have to deal with in-
homogeneous distributions along the specimen whereas at advanced strains we
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have almost constant strain along its gauge field, we show the following two
figures. From the whole history, two characteristic regions are here chosen for
presentation: the initial transition time interval and only the last segment of the
subsequent steady time interval.

The considered example was made for the following data: T = 0.001[s],
Ap1/Ags = 25, Li/Ly = 250, E; = 210 GPa, E; = 190 GPa, Agz = An,
L3 = Ly, E3 = E}, gy = 0.0016, while pg is the mass density of steel. Taking into
account the above accuracy analysis, the specimen was divided into 100 equally
spaced elements. The initial time increment was taken to be slightly smaller than
the corresponding Courant value [11]. The geometric transition from elastic bars
to the specimen was assumed to be gradual with change of rounded corners ra-
dius in order to diminish the stress concentration [1] such that the gauge part of
the specimen has two times smaller radius than its mounting ends. The initial as
well as the yield stress at a non-zero plastic strain are taken respectively to be 3

0'06]

0.04,

0.02

Fi1G. 2. Initial transition interval of plastic wave.

(5.12) LB \/EE@ . Y =Yo+ adn®.
a 2 ot o
0=

¥ The meaning of normalizing constant a is that it is used to denote the initial vield stress
at zero plastic strain and equivalent stress rate equal to 1 [M Pa/s]. The other constants ap-
pearing in (5.12) except the Young modulus as well as the “evolution” constants ¢, and c2 are
nondimensional.
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These as well as material constants appearing in (3. 11) are taken from [19]:

a = 2512 [MPa], b=0015, ec=144, d=17.23 e=0.5,
e = 1.095[MPa™'], cp=-0244[MPa~?], X=0.223.
It is worth to note that unlike (2.7), the triggering relationship (5.12) for plas-
ticity commencement at diverse loading-unloading paths takes into account the

combined strain-strain rate hardening. Thus, for strain-controlled experiments,
curves Yy(7) are not parallel when the strain rate is varied (cf. [1,2]).

0.4,

F1G. 3. Ending steady interval of plastic wave.

4.4 A discussion of Lindholm’s procedure

At the end of this section, let us consider carefully the standard determination
of the stress-strain state inside the specimen by means of measurements made on
the elastic bars only. Suppose that two strain gauges, SG1 and SG3, are situated
symmetrically at the same distance from the specimen i.e. YL; = 9¥L3, where
¥ < © < l.In other words, SG1 has a position between the fixing clamp on
the left (incident-reflected) bar and the left end of the specimen. Let the elastic
waves in the left and the right elastic bar be:

Z Z Z
up = fi (3——1)+91 (t+—l), u3=f3(t——3—)
Co1 €o1 Co3

where f; is the incident wave, g, - the reflected wave and f3 - the transmitted
wave. Neglecting the length of the specimen we may assume that time delays at
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SG1 and SG3 are approximately the same and equal to
Al = ‘t?L]/Cm = ’l?L;;/Cﬂg.

Let us denote the incident, reflected and transmitted strains by means of e; (Z;,1) =
0f1(:) /0Z1,er (Z1,t) = 091 (-) /0Z) and et (Z3,t) = Of3 () /0Z3 respectively.
Then we have

£1(L,i8) = eC (t—At)+eiCl (t+ At) = e (t) +er (),
e3(0,8) = €3C3(t+ At) = ep(t),

where £ with superscripts SG1 and SG3 show readings on the strain gauges.
For only two prescribed reflections caused by the augmented input (P = 2 in
formulae (5.7) - (5.10)) as well as stresses and strains subsequently kept at fixed
values, we would get the following picture for incident, reflected and transmitted
strain histories at the strain gauges. Having such kind of readings as inputs, Lind-

x 10° _
‘ 1
SGI
0.8 | = (Y 1
0.6
—
0.4 yF &%
0.2} : |
1 |
0_‘_—.__—__.__.'__ s i
0 0.2 04 0.6 0.8 1

Fic. 4. Incident, reflected and transmitted strains from the left (SG1) and right (SG2) strain
gages as functions of nondimensional time.

holm proposed the approximate formulae for the Cauchy stress and presumably
homogeneous linear strain (cf. [12]) as follows:

(5.13) 02(0.5,8) % 0.5 (02(0,2) + 02(1,2))
= 0.5 E, (Ao1 (67 () +er (t)) + Aoz er (t)) /Ao2,

(5.14) 2(0.5,8) = L%/; (Llcm (51 (t) - (:)) S — (t)) dt.
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Comparing the above two functions of time with the corresponding values cal-
culated by the applied numerical routine yields the following figure which shows
that Lindholm’s approach should be applied with caution, having in mind that
the corresponding error is considerably high. Similar conclusion, but following
from some other considerations, has been drawn recently by Wu and GORHAM
in [29].

St 1
Lindholm stress

4+ r o
'
L

3t :

SfYn ; 2
2 ‘I Calculated stress
|
l L
0r - £
-0.1 0 0.1 0.2 0.3

Fic. 5. Check of Lindholm’s approximate formulae

6. Concluding remarks

At the end of this paper we could draw the following conclusions:

e It has been previously shown that the so-called universal flow curve and
associate flow rule based on the yield function relating only scalars like
equivalent stress and equivalent plastic strain was not capable of describ-
ing simultaneously the tension and shear, even in the range of only small
strain rates (compare for instance [16,19]). Although commonly used for
its simplicity, such an equation is intrinsically scalar since it can describe
successfully only a tension test up to large strains. The simplest yet approx-
imately correct approach is to combine the loading function orthogonality
with tensor functions.

e At present, it may be concluded that the standard Lindholm’s approach to
Hopkinson bar analysis does not give satisfactory answers to the assumed
homogeneous stress and strain states until failure. Instead, despite the
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numerical difficulties met at time and space normalization the approach
which accounts explicitly for plastic waves has obvious advantages.

e [t is important to underline that the flat horizontal line in the last figure
follows either from the applied numerical scheme nor from the constitutive
assumptions. On the contrary, boundary conditions at both ends of the
specimen are assumed to fulfil Eqgs. (5.5) - (5.10) dictating a fixed form
of strains and stresses at the left and right end of the specimen. Then
the determination of stress and strain by application of (5.13) and (5.14)
necessarily lead to such a line. The point is that in such a procedure which
eliminates plastic waves and reflections, the specimen is considered as
a “black box”.

e However, it must be taken into account that ingenious Lindholm’s assump-
tion has to be accepted at the beginning of a test analysis. Then, an in-
teractive procedure should be applied to improve agreement between the
theory and test, especially at the initial transition range of inelastic strains.
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