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TRANSIENT RESPONSE of a clamped rigid-perfectly plastic circular membrane sub-
jected to central impulse loading is formulated as a wave propagation problem. A
closed-form solution for transverse deflections is derived by neglecting the radial mo-
tion as well as the circumferential stress in the constitutive law but retaining finite
deflections and slopes. The final shape of the membrane is obtained in terms of the
magnitude of the applied impulse and the radius of the centrally loaded area.

Notations

Po, p = initial and actual mass density per unit initial and current area
of the membrane

R,r = initial and current radius

w = transverse displacement

t = time

P = pressure load per unit current area

Oy,04 Cauchy stress components

ao = uniaxial yield stress

£1,E2 = strain measures

Iy = stress measures conjugated to £1,€;

R = radius of central loaded area

Ro = radius of the plate

Io = impulse per unit area

1 = total impulse imparted to the plate

£ = %, dimensionless radial coordinates
R : g ;

éo = Ro’ dimensionless central radius

T = cﬂ—t, dimensionless time
Ro
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a . ;
co = J 53, plastic transverse wave velocity
o
w . ; "
w = —, dimensionless plate deflection
Ro
h = plate thickness
T ;
s = — , dimensionless stress
Ta
v - ow
ar
= - Ow
3
; Iy ; ; ;
V = , dimensionless impulse.

copo h

1. Introduction

Several decades of research on dynamic inelastic response of structures brought
an important understanding of many factors that govern the deformation and
failure of beams, plates, and shells. Perhaps the most comprehensive review of
the methods and solutions pertaining to this subject was compiled by JONES [1].
Circular plates have been regarded as the prototype of a thin-walled structure on
which various modeling concepts could be conveniently studied. Early work on
plates was concerned with determining the transient and permanent deflection
profile and relating it to material properties and temporal and spatial variation
of the external dynamic loading applied in the form of a projectile impact, pres-
sure loading or an ideal impulse |2, 3, 4, 5]. For a comprehensive review of the
relevant literature, the reader is referred to the survey paper by JONES [6].

In a special level of complexity, failure of plates has become an important
topic of research. It was shown through extensive testing that plates may fail ei-
ther through necking followed by fracture (as in sheet metal forming) or through
out-of-plane shear. JONES |7, 8] was first to offer a theoretical description of
these phenomena, while NURICK and his co-workers contributed significantly to
this problem through small-scale testing [9, 10, 11].

One of the present authors (T. W.) has been actively involved in the devel-
opment of solution methods for dynamically loaded inelastic plates over more
than 30 years. Early efforts were restricted to small deflection bending the-
ory of viscoplastic plates subjected to a uniformly distributed impulsive load-
ing (FLORENCE, WIERZBICKI [12]) and projectile impact (KELLY, WIERZBICKI
[13]). These results have been extended to the range of moderately large deflec-
tion by WIERZBICKI and KELLY [14] and SYMONDS and WIERZBICKI [15], where
the theoretical solution was correlated with tests. In a much more recent develop-
ment, the momentum conservation approach was used to derive an approximate
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solution for large transient deformations of plates subjected to central explosive
loading, W1ERZBICKI and NURICK [16], and to mass impact, WIERZBICKI and
Hoo FarT [17]. It was shown by SymMoNDs and WIERZBICKI [15] that large
dynamic deformations of rigid-plastic plates subjected to an axisymmetric im-
pulsive loading are governed by the homogeneous wave equation in the polar
coordinate system. By contrast to the elastic formation, the initial-boundary
value problem is subjected to an unloading condition that brings to the problem
an interesting nonlinearity.

In previous attempts to treat this problem, analytically approximate so-
lutions were derived. The mode solution with error minimization was devel-
oped in Ref. [15]. The method of eigenvalue expansion developed originally by
WIERZBICKI [18] was applied in Ref. [16] while the momentum conservation
approach was proposed in Ref. [17].

The objective of the present paper is to derive an exact solution of the prob-
lem using the method of characteristics. This method was very popular in the
literature before the final element method came onto the scene in the seven-
ties. Many important practical problems for inelastic solids and structures were
solved using this method. A good source of information on this technique can be
found in a classical book by CRISTESCU [19].

On the practical side, the present solution gives a distribution of maximum
radial strains along the plate radius and the permanent deflection profile of the
plate. Based on these results, predictions can be made on the onset of fracture
as a function of the magnitude of the applied impulse and the radius of the
centrally loaded area.

The authors believe that the subject of the paper nicely fits into this special
anniversary volume of the Archives of Mechanics. The first author spent four
months as a doctoral fellow back in the 60s in the Laboratory of Viscoplasticity
directed by Professor Perzyna. The second author was the Ph.D. student of
Professor Perzyna and worked closely with him during the period 1961 through
1981. By submitting this manuscript to the Archives of Mechanics, we would
like to pay tribute to our wonderful teacher, mentor, and professional colleague.
The present paper makes indeed a connection between the present time and
Piotr’s early work on the application of the newly developed by him theory of
viscoplasticity. Back in 1963, after returning from his extended stay at Brown
University, Piotr published two groundbreaking papers. The first of the series
presented a unified, phenomenological theory of viscoplasticity (The constitutive
equations for rate sensitive plastic materials, Quarterly Applied Mathematics,
Vol. 20, pp. 321-332, 1963). The second dealt with propagation of spherical
and cylindrical waves in the viscoplastic medium (On the propagation of stress
waves in a rate sensitive plastic medium, ZAMP, Vol. 14, pp. 241-261, 1963). Our
exposure to this subject, a mathematical rigor that has characterized all Piotr’s
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work ever since and relation to the world of physics, made a long-lasting effect
on our professional careers in these formative years. We take this opportunity to
wish Piotr many happy and productive years and continuing success in his new
world of fracture.

2. Formulation of the problem

The problem of the transverse motion of a rigid-perfectly plastic finite circular
membrane is formulated and solved in this paper. We extend here the wave
solution obtained in [20] for the transverse motion of a rigid-perfectly plastic
string on a plastic foundation to the case of a circular membrane.

The circular membrane of a finite radius R, is considered initially at rest on
a plane and at ¢ = 0+ an impulsive transverse load is applied over a central
circular zone of radius Ry, Fig. 1.

> ¥

LL LT

Fic. 1. Plate geometry and loading configuration.

In order to obtain a closed-form solution, it is assumed that the radial dis-
placements are neglected. Also the circumferential stress is disregarded in the
constitutive law. In order to simplify the problem, a material description with
appropriate measures of stresses and strains is used in this work. A similar set of
assumptions were also made in [17] to obtain a closed-form solution of a circular
membrane impacted by a rigid projectile. In the present work, following a similar
technique as in [20], the impulsive loading problem is transformed into a sim-
pler but discontinuous initial-value problem. The piecewise smooth solution (i.e.,
the vertical displacement of the membrane) can then be constructed by using a
complete analysis of the first and second order waves. The resulting permanent
deflections depend on magnitude and spatial distribution of the applied impulse.
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The stress profile is not always unique but this loss of uniqueness in stresses does
not affect the strain, velocity, and displacement distribution in the membrane,
which are unique. As an example, deflection and normalized deflection profiles
are determined for several values of the radius of a centrally loaded area.

We consider a plane circular membrane clamped at the edge and subjected
to the impact of a uniform transversal pressure p suddenly applied over a central
part of the plate of radius R; < R,. The pressure is held constant during a time
interval ¢, > 0 and then is suddenly removed. The problem is axi-symmetric
and therefore the actual position of each particle of the membrane is completely
described by its actual radius r and actual transversal displacement w,both r
and w being functions of the initial radius R and the time f. We are interested in
impulsive loading so we assume that for each fixed time interval ¢,, the uniform
applied pressure p(t,) is such that the product ¢, p(t,) remains constant when £,
decreases, i.e., we have

(2.1) lim top(to) = [, = const, Iy = poVo.
ta—?o

In the limiting case ¢, = 0, the pressure loading problem is converted to the
impulsive loading problem, i.e., an initial-boundary problem with a discontinuous
initial velocity (see for instance [20] and also [21]).

The balance of momentum and the balance of mass in Lagrangean descrip-
tions (according to MUNDAY and NEWITT [21], see also [19]) give rise to the
following equations:

r ol ds d dR or
B sr=~% R " R (“’" EBR) ’
P w d dR 0w
(22) pﬂR_Bﬁ = ﬁ ('I‘O'r Eﬁ) y
ds
p!" E = p[] R\

where 7 = r(R,t), w = (R,t) represent the equation of the actual meridian
curve of the membrane and

1/2
ar\? ow?
(2.3) ds = { (ﬁ) + (ﬁ) } dR.
is the element of arc length of this curve; 2, and p are the initial and actual mass

density per unit area, while o, and gy are the actual meridian and circumferen-
tial (Cauchy) stress components respectively (on unit actual area). We use the
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following strain measures:
(2.4)

with the corresponding conjugated stress measures with respect to the mechan-
ical power

i R for\® [ow\*|"
a2=03?{ (B_R) +(5§) } |

Equation ((5.3)2) then becomes

?*r 0 ar r
poR(’?—t? ~ 3R (UIR ) as.

(2.6) 82111_1 ow
pOR__atQ _8R OIRE’R .

p{(1 +2¢€1)(1 +2€9) }/2 = p,

The initial and boundary conditions are

(r,w)(R,O) = (R,U), Re (01 Ro),

ar
E(R’U) =0, Re€(0,Ro),
(2.7) Iy
——, R € (0,Ry),
?3_!:(&0) ) = (0, 1)
0, R € (Ry, Ry),

w(Ro,t) = 0,t > 0.

The membrane is assumed to be rigid-perfectly plastic, with a uniaxial flow
stress g,.

In order to get a closed-form solution of the above problem, two additional
hypotheses are introduced: (i) there is no radial displacement, i.e., r(R,t) = R
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for R € (0, R,) and t > 0; and, (ii) oy is sufficiently small to be neglected in the
constitutive relation. Both of these additional assumptions are very restrictive;
the first one may be proper for clamped boundary conditions, while the second
one is not adequate near the center of the membrane where by symmetry the
circumferential stress is in fact equal to the meridian stress. Consequently, as it
will be seen in the following, the solution of this simplified problem differs (at
least in the neighborhood of the center of the membrane) from the experimentally
observed one.

Under the assumptions (i) and (ii) the initial boundary value problem is
simplified as follows:

2
paRa s a (OlRa—w),

9 ~ OR OR
ow\ 2
2= (3R)
de 0 for o7 € (0,0, ) or o1 = 0y, %<0,
N do
ot >0foror =0, =0,
(2.8) w(R,0)=0,Re (0,R,)
Io
%1:‘(}2,0) = _m! Re {OsRl)
0, Re(Ri,R,)

w(Royt} =0,t >0

where o, = const is the uniaxial yield stress.
With the following notations:

£_RU‘ EU_R{J! T_Ru! co—[po]
w ay Io
2.9 = M Bl wes
i i Ro : To Copoh
L
e T or
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a dimensionless form of problem (2.8) transformed to a system of first order
PDE’s is

ov 0 ou Ov

3= a—g(fsu)s§ =%

w(§,0) =0,£ € (0,1)

= _V$ f € (0: 60)
“@m‘{meemJL
@, Tl =0r=0

The natural boundary condition at the plate center requires vanishing of the
total shear force, i.e., fliu(ll 2w€su = 0. This is satisfied as long as the product su
—

£

(2.10)

remains finite as £ — 0. It can be shown by inspection that the present solution
does satisfy the above boundary condition.

3. Solution of the problem

The initial discontinuity in velocity generates a discontinuous solution and
therefore, in order to construct this solution, a complete analysis of all possible
shock waves, rarefaction waves, and acceleration (second order) waves is neces-
sary. This has been done in the earlier publication dealing with the impulsively-
loaded string (see [20]). The main difference with the present problem being that
rarefaction waves are possible in the membrane, at £ = 0.

The discontinuity in the initial condition(10 ), gives rise at (£,,0) to two shock
waves Sy and Sy with constant propagation speeds df/dr = 1 and d€/dr = —1
respectively (see Fig. 2).

No initial conditions for the stress have been prescribed but the initial values
of s are of no consequence on the behavior of u and v for 7 > 0 and therefore they
need not to be given in the mathematical problem (2.10). Indeed, a horizontal
shock wave at 7 = 0 (which leaves u and v unchanged) will force s to jump at
(€,,0) from its initial values to the value s = 1 in order to make possible the
propagation of §; and Sy. Furthermore, the only possible acceleration wave at
(€,,0) is a vertical one (note that acceleration waves superposed on shock waves
are not taken into consideration). Thus, the shock wave jump relations give the
limit values, at (£,,0), of u and v beyond the two shocks, i.e.

=, e
= g u ey
while the jump congmons for the first derivatives of u, v, and s give the limit
u Js du  Os
values at (£,,0) of e and 5 beyond the two shocks, namely el
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Therefore, there is no way to decide whether beyond the shocks there is a rigid

1,
region (i.e., with % = 0) or a plastic region (i.e., with £ > 0).

®

©)
2_360 (260.2"20)

1-¢,

FiG. 2. A phase plane diagram showing converging (S2) and diverging (S,) wave initiated
from £, and the reflected wave (S5, ).

Now, according to (2.10),_, and the initial and boundary conditions, in the
whole region ahead of §; the solution is « = v = 0, while in the whole region
ahead of §5 the solution is u = 0,v = —V. On the other hand, if a plastic region

; 0 < : X
extends beyond the shocks, i.e., s =1, > 0, a simple analysis of the solution

in this case shows that the limit values of the strain € on §» (beyond the shock)
are rapidly increasing in time to infinity (at £ = 0) while v is rapidly decreasing
to —oo. The conclusion is then that beyond the shocks S; and §3 there has to
be a rigid region with g_e_ = 0 which implies u(¢, 7) = u(€) and v(&, 7) = v(7) in
that region. i

From now on the technique employed to calculate u, v,and s in a rigid region
is quite simple: equation (2.10), is integrated with respect to & between the
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boundaries of the region (where s = 1) to get an ordinary differential equation
for v(7). Consequently u(§,7) = u(£) can be calculated from its values on the
boundary of the rigid region. In order to illustrate this technique we perform the
explicit calculations for the first case.

We denote by “1” the region ahead of S;, by “2” the region ahead of S;, and
by “3” the region beyond the two shocks. The solution in the first two regions
can be readily obtained:

Region “1”
w(,7) =v(§7) =0, 7€ (0,min(l-§,¢E,)),
(3.1)
W(f,‘?‘) =0, { € (EO +7, 1)
Region “2”
H(EaT} =0 7€ (01 I]llll[l il ‘fo) 60))!
{32) ‘U(E,T) ==V { € (01 60 _T}a
w(é, 7)=-Vr.

It is interesting to observe that there is no unique solution for sin these two
regions, but this has no influence on the values of u and ». Furthermore, in order
to calculate the solution in region “3”, one only needs the values of s on S and
S2 (as s does not jump across these two shocks) which are equal to 1 for any
choice of the stress solution in regions “1” and “2”. Now, in order to calculate
v(€,7) = v(7) in region “3", Eq. (2.10) is integrated with respect to £ between
€& =¢&,—7and & =&, +7 (i.e., between S, and §y) to give

(33) 2{(€o+r) (6 —r )20

= (& +7)(su) (& +7,7) = (§, —7)(su)(§, —7,7)

where the values of u, v, and s are those of region "3". But s({,+7,7) =
$(€, —7,7) = 1, and from the jump relations across S and S» we have

ug(§, +7,7) = —v3(§, +7,7),
(3.4)
U3(£O =Ty T) == US(&O _T)T) e

Introducing (3.4) into (3.3), the following differential equation is obtained for
v(t):
dv T—§, |4

(3.5) i v(0) = —5
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with the solution

ofr) = L2,
The values of u(€,7) = u(£) are then determined by means of (3.4) and (3.5)

V(3¢ —
(36) we) =8 e g ng+n
while the stress s is calculated by integrating Eq. (2.10) with respect to £ from
£, =¢,—Tto& =€ (and & = € and & = €, +7 respectively) and using (3.5)
and (3.6); one gets

2 2. .2
(3.7) R L i

2£(3&, —€)
The expression of the deflection w(&,7) in region “3” may be calculated either
: w w £ Yaite
from u or from v since u = 3_6 and v = = The complete solution is then:
Region “3”
V(3§ —¢)
U\G,7) = 3
o)==
V(r —2&)
v 1 T = ]
jGai==r
3.8
( ) S(E, T) == 52 +3(£§ " T2)
' 2£(3&—¢€) ’
¥ 1 2 2
w(§,7) = 1{3(6 =gl =% 2%, (E ~(&o—7] ) }

1
At this stage one has to treat separately the cases £, < 1-§, (i.e., &, < 5) and

E,>1-&, (Le, &> %) as they depend on which one of the two shocks S and
S is the first to reach the boundary £ = 1 and the center { = 0, respectively.
Of interest here is the final shape of the membrane after all its points have
stopped, i.e., w(&,7) for 7 the smallest 7 with v(£,7) = 0 for all £ € (0,1).
Experiments show [6 | that under impulsive transversal loading, the transversal
velocity of the membrane v(£, 7) maintains a constant sign (which is negative in
the present notation). Therefore transversal velocity and acceleration do vanish
at the same time. In order to address the physical problem, the loading-unloading
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criterion must be introduced. It is assumed that whenever the instantaneous
velocity vanishes at a given point v(€,7) = 0, it must stay so for the duration
of the motion. Then a rigid region will propagate over the membrane until the
velocity vanishes at all points of the membrane; at that moment 7 calculations

ov :
are stopped, even if — > 0. The resulting deflections are called permanent

=
deflection of the membrane.
1

2; CaSE €, < )
The solution (3.8) for region "3" remains valid up to 7 = £, when S reaches
the center £ = (0 of the membrane. Then, at (0,£,) a rarefaction fan appears

1
in Region “3” for the stress s, with s(n) = —, n = —6-? n € (—o0,—1), ie.,
n T — Ko
between Sp and 7 = &,; this rarefaction wave will “kill” the shock wave S as
it makes s decrease from the value s = 1 to the value s = 0. Indeed, we now

have a Goursat problem for (2.10),_, at (0,£,), between 7 = &, (i.e., n = +00)
and £ = 0 (i.e., n = 0), with (su)(yn = 0) = 0 from the boundary condition

at £ = 0 and (u,v,s)(n = +o00) = (T,—Z,O) as the limit values calculated
from (3.8); but u can no longer be equal to zero at the center £ = 0 since

3 S
u(n = +o00) = T > 0 and the constitutive law does not allow ¢ to decrease, so

s(n = 0) has to vanish. Therefore S can not be reflected at (0,€,) as there exists
no wave mechanism which allows s(n) to increase from s = 0 at = +o0 to the
value s = 1 at » = 1 (and thus to permit a reflected shock wave to propagate)
and subsequently decrease from s = 1 at y = 1 to s = 0 at = 0. The only
wave that starts propagating at (0,§,) is a l'lorizontal acceleration wave 7 = £,

which has to change the sign of -a-; since a—j{e,go) given by (3.8) is negative
in the neighborhood of € = 0 while £ — 0 s(§,&,) = 0. This horizontal second
order wave gives rise to a vertical acceleration wave at (2€,,£,) where it meets
the shock S;. So for 7 € (§,,1 — &,) there are two new regions: “4” and “5” (see
Fig. 1), both of them being rigid regions and, following the same technique as
that employed to calculate the solution in region “3”, one gets

Region “4”

V —_
wer) = s,
PO o PR U R S R el
v 3 (60-{-7)2, 3 0/ 0 0/
3
$(6,7) = e—sD S

T (3& -8 (&+7)*
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3.9 ve v oy,
e wen) = o - g (38 +E-36)7),

Region 5"

&3
e, ) = 52,
2
“&”IgZEF r€(€n1—6) €€ (26,6 +7),
V€2
3.10 PSS! A
(3.10) o(6,7) =~
s
)= e
e R
s =ve (gt

Now the shock wave §) reaches the edge of the membrane at 7 =1 — ¢, and

is reflected as the shock wave §] while a horizontal acceleration wave 7 = 1—§,
. Js Os
is also generated at (1,1 — &,) in order to change the sign of — and make d—
T

increase again in time for 7 > 1 — €, in order to allow the propagation of Si.
The limit value of the derivatives at (1, —§,) in region “7” (see Fig. 1) is

e (e

5‘3

o
and therefore %tf = 0, = —1 and region “7” is again a rigid region with

i
v(€,7) =v(r) = 0 since v = 0 at the edge £ = 1. One can proceed further by
calculating the solution in regions “6” and “8” and then in region “7”. This gives,
respectively
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Region “6”
Vé
?&({,T) = 65 s
2 1 }
] T ] 2
(E ) E { (2 Eo =T )
(3.11) T€(1-¢&,2-3¢,) T€(2&,2—&,—7),
3
s(€7) = —

£2-¢-71)%

wen) =vef—-z+2-6-n}

£

Region “8”

(3.12)
u(E, 7) = V(3¢ E)'

4&,

- 2 1 = = =
9(617)_1/{0{(2_60_1_)2 2} ,06(0,2&0) TG(] '5012 350)1

i 4€3¢
A Ty T —

w(g,T) = vsé{z — 20l - eo—r)} - s {3 +e-36)).

Region “7”

u(l,7)=2VE re€(1-¢,2-3¢) £c(2-§-T1,1),
(3.13) v(€,7) =0 and w(£,7) =2V EX(E—-1),
€ (2 = 360!2 = EO) £ & (2£m l)s

It can be noted that v may now vanish in regions “6” and “8” so two subcases
should be considered.

2.1a For &, € (0, m) it is found that v(&,7) = 0 in regions “6” and “8”,
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with%=2—£o—v%<2—36,, and the final shape of the membrane is given by
( vV
AV DV E — g (B6+(E =36)7).€ € (0.2,)
(314) W(ﬁ,f')=< V&o {2(\/§_l 'g} 66[2501_\/:}
2 p— ———
2V E§,(€ 1),56(\/51

\

1. 1 iz : ; ‘@
2.1b For &, € (m, 5), v remains negative in regions “6” and “8” up to
T =2 — 3£, so one has to calculate the solution in regions “9” and “10”

Region “9”

ul, 7li= _V{sizo_ 5)1
UGS % (2 - ot~ 46} —3501:.2%5‘50) |
w{E‘ T) __(E JEU)
(3.15) 8¢,
b Gk 1 &
260 ( 3o(T 2+§0)IIIT == (45.«; = _9)

25 .
—4£2+4£2+¢£§—£a—2),

6(2“35(»2“50)) 56(0:2_60_7)'

Region “10”

u(é,7) = 42 {850 +6&,-36+6&,1n 265 }
v(&7)=0

3.16

e V rap 3 3 2 3
w(é,T) = 8¢ {36 —16&,}+1650,—12{,,—1250513[12;E

76(2_3&“2_{0}1 56(2_60_73260)
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The expression of v in region “9” implies that there exists a unique 7 €
(2 -3¢, 2—¢,) such that v(&,7) = 0 in region “9” and 7 is the solution of the
algebraic equation.

3 £ —17‘—{0
(3.17) 2u - 3ln,u—§+4fo, p= 3E, € (0,1).

The motion of the membrane does therefore stop before S} reaches the cen-
ter £ = 0 and the final shape of the membrane is given by w(&,7) calculated
from (3. 16 )4 for region “10” and (3. 15),, (3. 13 )4 for regions “9” and “7” respec-
tively, i.e.

(3.18) w(&,7)

2
_gg('f—%n}
V 72 {
iy "%, (T +2(250“1T—4£u+ 22 —8£g+2) £ (0, )
; (3 ~1665% + 1645 ~1245 ~12£,¢1 6) (—,2¢,)
8¢ €2 1663 ¢ & —12¢§ 0 n3e ) ¢e 7 &
(2VE(E-1), &€ (26,1)

2.2 CASE ¢, = 3
In this case, for the regions “1”, “2”, and “3” (see Fig. 3), the solution is the

same as for the case §; < . i.e., it is given by (3.1), (3.2), and (3.8) respectively

1 2
h = =,
where &, 5
Region “4™’
V(3 —2¢) 13
U(E,T)— 4 ) 76(212)3

1 3. 3-2 3
(3.19) U(§=T}=V(Z—T—§]H T)‘ PE(O»i‘—TL

w(é,7) = —E- (—52 +3¢ 272477 -5-3(27-3)In ; _227) !
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@
1 1
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@ ©
0 1 1 €=
c'o o E

Fic. 3. A special case of the wave solution shown in Fig. 2 in which £, = 1/2.

Region “7"?
3 3
u({,’r) =V (2 — EE + élnf) ,

(3.20) v(€,7) =0, TE(%,%) fE(g—T,l)r

w(é, 1) = g— (-3&2+2¢6 +1+6€1Ing).

13
There exists a unique value 7 € (5' 5) , i.e. before the shock wave S| reaches

the center £ = 0, such that v(£, 7) in Region “4”, namely 7, is the solution of the
algebraic equation

(3.21) 5n
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The membrane stops moving at 7 = 7 and its final shape is given by
(3.19); and (3.20),, that is

'8

Z(—£2+3§~21‘2+7f—5—3(21”—3)[113_22%),
o 3
(322) w(&,?) = | te(0.5-7),
Vv 3
|7 (-3¢ +26+1+6¢6Im¢), e (5—71).

23CasE §,=1

There is only one initially generated shock wave in this case, namely So,
starting at the edge of the membrane (see Fig. 4); the solution in region “2” is
given by (3.2) and

FiG. 4. Degenerated wave picture on the phase plane in the case of {, = 1 showing one
converging wave.

Region “2”

u(§,7) =V,

(€, 1) =0, T €(0,1),
3.23 =
( ) S(&T):lglr‘ fE(I—T,l),

w(§7) =V(€-1).
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The motion stops at 7 = 1 and the final shape of the membrane is therefore
given by

4. Discussion

Despite its apparent formal character, the present solution brings a wealth of
interesting information about transient response of thin plates. According to the
present wave approach, the deflected shape of the plate depends strongly on the
value of the dimensional radius of loading £, = Ry/R. There are three regions of
&, and in each of them a different set of equations describes the deflected shape. In
the region &, € (0,1/2v/2), Eq. (3.14) applies. Then the region &, € (1/2v/2,1/2)
is governed by Eq. (3.16). Finally, the solution for £ = 1 is given by Eq. (3.24).
A comparison of deflected shapes for five different values of the parameter &, is
shown in Fig. 5. It is seen that the smaller the dimensional radius of impulsive

£, =0.05 & =02 &, =0.35

Fic. 5. Dimensionless deflection profiles of the membrane for different values of the radius of
the impulsive loading.

loading &, is, the more localized deformations are around the plate center. It is
interesting to plot the dimensionless maximum central amplitude and (w/V') ..
versus the value of the parameter &,(Fig. 6).

It is seen that the above relationship is almost linear except for the initial
slightly curved portion. As mentioned earlier, the nonlinearity of the problem
comes not from the wave solution but rather from the unloading condition. For
the rigid-perfectly plastic material, unloading occurs whenever a velocity of the
given particle of the beam becomes zero. The equation of the unloading wave is
given by Eq. (3.17) which is a nonlinear algebraic equation. However, when the
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0.8

06}

0.4

0.2

0¢ 0.2 04 0.6 08 go

FiG. 6. A plot of the dimensionless maximum central deflection of the plate as a function of
the radius of the impassive loading.

unloading time 7 is plotted against the parameter £,, the unloading boundary is

seen to be composed of two portions of almost straight lines as shown in Fig. 7.

T

14

1.2

08¢t

06}

( 0.2 0.4 0.6 0.8 EJO
Fi1G. 7. The dependence of the so-called “time-to-rest” on the radius of the impulsive loading.

So far considered was the case when the amplitude of the initial velocity
V was independent of the radius of the impulsive loading. It is interesting to
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rearrange the solution and assume that the total impulse imparted to the plate,
defined by

(4.1) Viotal = w2V

is held constant. Under this condition, the dimensionless maximum central am-
plitude is no longer an increasing function as it was in the case shown in Fig. 6
but is a decreasing function of the parameter &, (see Fig. 8).

7

6

5

$ 1

3 / n&,

2}

1

0 92 04 6 0.8 &

FiG. 8. The dependence of dimensionless maximum central deflection on the parameter &,
for a constant value of the total applied impulse Vigtar -

Finally, it should be noted that the maximum slope of the deflected shape is
always constant in the range &, € (0,1/2) and is equal to w’ = 3V/4. Then in the
range &, € (1/2, 1) the slope will increase and assume a maximum value at §, = 1.
In the theory of thin membranes the radial strain is defined by ¢ = 1/2 (w')?.
With this definition and using the calculated slope, it is possible to make an
estimation on the maximum strain developed in the membrane as a result of the
impulsive loading. The membrane will fracture when the strain reaches a critical
value £y, that is when

32
(4-2) Veric = ?Ef
where V. denotes critical velocity to fracture.
In conclusion, it must be stated that the present analysis provides the first

closed form solution of the problem of impulsively loaded thin plates loaded by
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an explosive material distributed around the center part of the plate. TEELING-
SmiTH and NURICK [11] performed a series of tests of impulsively loaded thin
plates and determined experimentally the deflected shapes. A comparison of the
present theory with those tests will be done in a future publication.
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