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THIS PAPER DEALS with the interaction of thermal radiation with free convection,
laminar boundary-layer flow past a heated rotating axisymmetric round-nosed body
of uniform surface temperature. The fluid considered is a gray, absorbing-emitting but
nonscattering medium, and Rosseland approximation is used to describe the radiative
heat flux. The difficulty of having a unified mathematical treatment of this problem is
due to the nonsimilarity nature of the governing equations arising from the buoyant
force-field and the transverse curvature of the body. The important parameters of this
problem are the Planck number, Ry, the buoyancy parameter, A, and the wall to free
stream temperature ratio, #,,. Numerical solution of the boundary-layer equations are
performed using the Keller-box method as well as the local nonsimilarity method. The
theory is applied to a rotating hemisphere for a gas with Prandtl number of 0.72. The
effects of the parameters A\, Ry and #,, are shown on the velocity and temperature
profiles, as well as on the local skin friction coefficient and local rate of heat transfer.

Notations

a Rosseland mean absorption coefficient

f dimensionless stream function

g acceleration due to gravity

gz component of the acceleration due to gravity in the z direction

Gr Grashof number

S(x) funetion of z denotes sine of the angle between the acceleration
vector and a component normal to the surface of the body

k thermal conductivity

L characteristic length

Nu Nusselt number

Pr Prandtl number

R4 Planck number or the conduction-radiation parameter defined in

Eq.(2.13)
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Re Reynolds number

R radial distance from a surface element to the axis of symmetry

448 temperature of the fluid in the boundary-layer

Ty surface temperature

Teo temperature of the ambient fluid

uw velocity component in the z direction

U, reference velocity

v velocity component in the y direction

w velocity component in the rotation direction

T coordinate measured from the stagnation point along the surface
of the body

Yy coordinate normal to z

z

Greek letters
(43

coordinate measured in the rotation direction

thermal diffusivity

Je] thermal expansion coefficient

n similarity variable defined in Eq. (2.15)

4 non-dimensional temperature

[ ratio of the surface temperature to the ambient temperature
defined in Eq. (2.13)

v kinematic viscosity

A buoyancy parameter defined in Eq. (2.12)

p density of the fluid

£ transformed coordinate defined in Eq. (2.15)

Q angular velocity

TuTe, skin friction coefficients in the z- and z-directions, respectively

a Stephan-Boltzmann constant

T scattering coefficient

P stream function

1. Introduction

THE THERMAL RADIATION EFFECTS on free convection flow are important in
the context of space technology and processes involving high temperatures, and
very little is known about the effects of radiation on the boundary-layer flow of
radiating fluid past a body of general geometry. The inclusion of thermal radia-
tion effects in the energy equation leads to a highly nonlinear partial differential
equation. In absence of the effect of radiation, investigations have been made on
the laminar heat transfer from rotating axisymmetric round-nosed bodies either
for forced convection or for natural convection in refs. [1-5]. The density differ-
ence arising as a result of temperature difference gives rise to a buoyancy force.
The neglect of buoyancy effect on forced convection heat transfer may not be
justified when the velocity is small and the temperature difference between the
surface and ambient fluid is large. It may be expected that this buoyancy force
will affect the momentum and the heat transfer.
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Several authors [6-11] have discussed the effect of buoyancy forces on non-
rotating bodies. For rotating bodies, LEE et al. [5] have investigated the laminar
boundary-layer and heat transfer in forced flow, neglecting the buoyancy forces.
They have used MERK's [10] series, modified by CHAO and FAGBENLE [11],
and their results compare favorably with previous theoretical and experimental
studies, SUWONO [12] considered the problem of buoyancy effects on the flow
and heat transfer in rotating axisymmetric round-nosed bodies for both aiding
and opposing flows. He has shown that spinning a vertical axisymmetric body
in a convective flow, the fluid near the surface is forced outwards in the radial
direction due to the presence of centrifugal force. Application of this idea in order
to develop rotating systems for enhancing the heat transfer rate is important in
the analysis of the rotary machine design. The problem posed by Suwono [12]
has later been investigated by HOSSAIN et al. [13] for a viscous and electrically
conducting fluid, using the implicit finite difference method.

The majority of studies on interaction of thermal radiation and natural con-
vection have been confined to the case of a vertical semi-infinite flat plate [14-
20]. HossAIN and TAKHAR [21] have analyzed the effect of radiation on the
forced and free convection flow of an optically dense viscous and incompress-
ible fluid past a heated vertical flat plate with uniform free stream velocity and
surface temperature using the Rosseland diffusion approximation, which leads
to nonsimilarity solutions. The convection-radiation effects on free convection
boundary-layer flow from an inclined surface with small angle of inclination to
the horizontal has been investigated by HOSSAIN et al. [22]. In this analysis,
solutions are obtained in the upstream, the downstream and the entirely mixed
regimes. Very recently, HOSSAIN and ALIM [23] have studied the problem of
natural convection interaction in the boundary-layer flow along a thin vertical
cylinder employing two methods, namely, the implicit finite-difference method
and the local non-similarity method, taking up terms to the third level of trun-
cation.

The purpose of the present paper is to investigate the effect of the conduction-
radiation interaction on the laminar free convection flow of an optically dense,
viscous incompressible fluid with heated rotating axisymmetric round-nosed bod-
ies of uniform surface temperature. The difficulty of having a unified mathemat-
ical treatment of this problem is due to the nonsimilarity nature of the governing
equations arising from the buoyant force-field and the transverse curvature of the
bodies. Numerical simulations of the boundary-layer equations are performed us-
ing the implicit finite-difference method, known as the KELLER-box (see CEBECI
and BRADSHAW [24]) method, as well as the local nonsimilarity method, taking
terms up to the second level of truncation. The results are then applied to the
case of a rotating hemisphere.
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2. Basic equations

Consider the steady free convection boundary-layer flow over a rotating ax-
isymmetric round-nosed body, which rotates with the constant angular velocity
Q around its vertical axis of symmetry in an optically dense, viscous and in-
compressible fluid of constant ambient temperature To,. It is assumed that the
surface of the body has the uniform temperature T),, where Ty, >T. Let z,y
and z be a non-rotating orthogonal curvilinear coordinate system with the z-
coordinate measured from the lower stagnation point along the surface of the
body, y measured normal to z and z measured in the rotation direction, as shown
in Fig. 1. It is also assumed that the radiative heat flux in the z-direction is neg-
ligible in comparison with that in the y-direction (see SPARROW and CESS[19]).

\4s

Ty

F1G. 1. Physical model and coordinate system.

du Jv udr
(2.1) §+6_y+;£_0‘

ou du wdr %u
(2.2) Uz + Ua i UW + g:8(T — Teo),

(2.3) @_f.vai’.*.ﬁﬁ_yi‘ﬂ
' Yor Ty T r dz oy
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(2.4) u@_l_ or v 0 [( i 160T° )3_’1“]
' 4 3k(a+0s)) 9y’

oz dz EE;;
where u, and w are the velocity components along the z,y and z axes, T is the
fluid temperature, g5 is the z-component of the local gravitational acceleration
vector in the direction of increasing z, r(z) is the radial distance from the axis
of symmetry to the surface of the body, Pr is the Prandtl number; p, 3, v, a, o,
o, are, respectively, the fluid density, thermal expansion coefficient, kinematic
viscosity of the fluid, Rosseland mean absorption coefficient, Stefan-Boltzmann
constant and the scattering coefficient, respectively. We assume that g, = ¢S(z)
where S(z) is a non-dimensional function of z and g is the constant gravitational
acceleration. Radiation effects are considered here using the Rosseland diffusion
approximation (see SIEGEL and HOWEL [25]). Under this approximation, the
situation is not valid where scattering is expected to be non-isotropic as well as
in the immediate vicinity of the wall.
The boundary conditions to be satisfied by Eqs. (2.1) - (2.4) are
oe=0=10; w=rf), T'=T, aty=0,
(2.5)
u—0, w—=0, T—=>T, asy— oo,

where (2 is the angular velocity.
We now define the following non-dimensional variables:

&=z/L, j=Re?(y/L), F=r/L,

(2.6) i=

e

JU @ = Re'?(v/U), v =w/U,

0= (T - Too) /(T — Teo),

with L and U = L) being reference length and reference velocity, respec-
tively. Substituting these variables into Eqgs. (2.1) - (2.4) and dropping the bar
for brevity, we get

Ju Ov  wudr
(2.7) a'l"a;'l-;a—ﬂ,
2 2
(2.8) o I L e R

9z " Oy rdz 0y

oz 08y+rd:n =
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00 9 1 0 a0

and the boundary conditions (2.5) become
(211) u=v=0,w=r,0=1aty=0,u—0, w—0, 8> 0asy— oo,

where A\, Gr and Re are the buoyancy parameter, the Grashof number and the
Reynolds number which are defined by
Gr _ gB(Ty — Tl UL

(212) A= @, Gr = e 3 Re=—;—

Also the parameters R4 and K in Eq. (2.10) are defined as

0TS, .
(2.13) Rd_-k(a+as)’ K——T;—l—ﬁw—l(say),

and they are known as the Planck number and the surface temperature parame-
ter, respectively. Further, in Eq. (2.13) 8,, is the ratio of the surface temperature
to the temperature of the ambient fluid. Throughout the present investigation
we assume that K > (. However, when the wall temperature T, is very close to
the ambient temperature Ty, (i.e., K = 0), the energy equation (2.10) takes the
following form (see, ALl et al. [26]):

86 39 1 329

We now introduce the new coordinates (£,7) in place of the non-dimensional
coordinates (z,y) defined as

(2.15) £=/[="(rr)]3dw= fr=*‘2(2§m
0

along with the non-dimensional functions:

1/2 (2¢)1/2
(2.16) ((z,y) = (2)7°f (&), wlz,y) = —=—h(&n),
where 1 is the stream function and is defined in the usual way as
s S
(2.17) u—ray,v— 9"
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Using these transformations, the momentum and energy Egs. (2.8) - (2.10) can
be written in the following form:

d d
218) £+ 15" = PO (12~ 1) +2Q0 = 2% (15 - 15 ).
" ' il ah,_ ,0f
(2.19) h" + fh' = 2P(€) f'h = 2¢ (f % h 6‘6)
‘ 4 3] o]’ , ,00 0f
(2.20) [{1+§Rd(1+f{9] }9] + Prf@ -2Pr§( % 636)

subject to the boundary conditions (2.11) which become

f({,O) = f’(gio) =0, h({,O} =1, 9({:0) =1,

(2.21)
f’(es (XJ) = 0: h‘(ér CXJ) = 6‘(5, OO) = 0)
where
K
(222) P -2Z Qo =28

Here primes denote partial differentiation with respect to 7. If the wall tempera-
ture T}, is very close to the ambient temperature T, the energy Eq. (2.20) takes
the form:

(2.23) (1 + %Rd) 0" + Prf0' = 2Pr¢ (f o e’af)

T

Once the solution of Eqs. (2.18) - (2.23) is known, it becomes important from
the experimental point of view to determine the physical quantities like skin
friction coefficients and the local heat transfer at the surface of the body. These
quantities are given by

3
(224)  Re'’r, = (zg)z,gf”(e ,0), Relf‘*fz~(2£)1;2 '(6,0),
and
2
(2.25) NuRe /2 = (25")1/,2 (1+§Rd(1+K)3) 0'(¢,0),

where 7, and 7, are the skin friction coefficients along the z- and z-directions,
and Nu is the local Nusselt number.
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3. Application to a rotating hemisphere

As an example, in this section, we discuss the application of the present
analysis to the case of a rotating hemisphere of radius R with the rotating axis
being parallel to the gravitational vector g. If we select R as the reference length,
i.e. L = R, we then have the following non-dimensional variables:

(3.1) r(z) =sing, K(z)=sinz, {= (cos:":z: - 3cosx+2) g

o =

Substituting (3.1) into Egs. (2.18)-(2.20), we get

(32)  f"+ff" - P(z) (f? - h?) + AQ(2)8 = 221 (=) (ffg_’: - f”%) ,

(3.3) W' + fh' — 2P(z) f'h = 2z1(z) (ffa" & hrﬂ) ,

oz dzr

! 6
(3.4) [{1 + gﬂd(l + K9)3} 9’] + Pr f0' = 2Pr zI(z) ( ‘g—e — 9‘%) ,

subject to the boundary conditions

f(§,0) = f'(£,0) =0, h(£0)=1, 6(0)=1,

(3.5)
f’(‘fv 00) =0, h(E! OO) = 9({! DO} =0,
where P(z), Q(z) and I(z) are now given by

2cosz
3sintz

P(z) (cos®z —3cosz +2),

2 (cos®*z — 3cosz + 2)

(3.6) Qlz) =3 1 ;

3 sin® z

I(z) (00331—3c031:+2)
z) = 2
3zsind z

We notice in passing that, when the conduction-radiation is absent (i.e., Ry = 0),
Eqgs. (3.2) - (3.4) reduce to those reported by Suwono [12].
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4. Numerical solution

In the absence of the effect of thermal radiation (i.e. R4= 0), the partial
differential Eqs. (2.18) - (2.20) subject to the boundary conditions (2.21) were
solved by SUWONO [12]| using Gortler’s series method for small values of £ (i.e.
£ < 1), and the results were then applied to the case of a rotating hemisphere.
Here we are solving the transformed Egs. (3.2) - (3.4) subject to the boundary
conditions (3.5) numerically following two distinct methods, namely: the implicit
finite-difference method, known as Keller-box method (see CEBECI and BRAD-
SHAW [24]), and the local nonsimilarity method, respectively. The latter method
has been recently used very efficiently by HossAIN and ALim [23]. The results
obtained by employing these method are compared with those of SuwoNoO [12]
for the case when the radiation is absent (i.e. Rg = 0).

4.1. Keller-box method

To employ this method, the system of partial differential Eqgs. (3.2)-(3.4) is
first converted to a system of seven first-order partial differential equations by
introducing new unknown functions of n derivatives. This system is then put into
a finite-difference form in which the nonlinear difference equations are linearized
by the Newton’s quasi-linearization method. The resulting linear difference equa-
tions along with the appropriate boundary conditions are finally solved by an
efficient block-tridiagonal factorization technique. The details of the computa-
tional procedure have been discussed by HOSSAIN et al. [8,16-19] and will not
be repeated here. We note that for initiating this method, the profiles at z= 0
(the lower stagnation point of the hemisphere) for the functions f (5), g () and
0(n) and their derivatives are obtained from the exact solutions of the similarity
equations:

(4.1) f’”+ff”+%(f’?~h2)+%w=0,
(42) hﬂ." +fhﬂ' = ffh»" — 0’

4 [
(4.3) Hl + §Rd (1+ K6)3} 9’] + Prfe’ =0,

which are obtained from Egs. (3.2)-(3.4) as z — 0. The appropriate boundary

conditions to be satisfied by Egs. (4.1)—(4.3) are
f(0) = f'(0) =0, K(0)=1, 6(0)=1,
(4.4)
f'(00) =0, h'(c0) = 6(c0) =0,
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4.2. Local nonsimilarity method

The formulation of the local nonsimilarity method for heat transfer problems
has been first given by SPARROW and YU [27]. More extensive and successful use
of this method has ben made recently by HOSSAIN et al. [23, 28|. With reference
to the present problem, we derive here the equations up to the second level of
truncation. To do it, we introduce the following functions:

a0

(45) Fem=2 can=2" o@n=5.

dz’ oz
The governing Egs. (3.2)-(3.4) can then be written as

(4.6) "+ £f" + P(z) (f? - ¢°) + 2Q(2)8 = Li(z) (f'F' — f'F),

(4.7) W' + fh' — 2P(z)f'h = 221, (z) (f'G — K'F),

(4.8) [{1 + %Rd (1+ Kﬁl)3} 9'] + Prf0' =PrI(z) (f'© — 0'F),

subjected to the boundary conditions.

The equations for F,G and © can be derived by taking the derivatives of
Eqs. (4.6) - (4.8) with respect to = and neglecting the terms with the derivative
functions F, G and © with respect to z. To this end, we get

(4.9) F" 4 fF" + (1 +2Lx(z)) f'F — (2P(z) + I (z)) f'F’ + 2P(z)9G
— Pi(2) (f* = ¢°) + A (+Q(2)0 + Q1(2)6) = Li(z) (F* - FF"),

(4.10) G"+ fG'+ (1 + L(z)) K'F — (2P(z) + Ix(z))f'G — 2Py (z) f'h
= I,(z) (F'G - G'F),

(4.11) {1 4+ ng 1+ K6)3} ©" + 4Ry (1 + K6)2 0"

+8RyK (14 K0) [(1 + K0) 00’ + K8?0] + Pr [fO' + (1 + I5(z)) 6'F)
— Prly(z)f'g = Prli(z) (Ff© — ©'F).
The boundary conditions to be satisfied by the equations for F,G and © are
F(z,0) = F'(z,0) = G(z,0) = ©(z,0) =0,

(4.12)
F'(z, ) = G(z,00) = O(z,00) =0,
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The functions P(z) and Q(z) in Egs. (4.6) - (4.11) were defined in the relations
(3.6) and the other coefficients Pj(x), Q1(x), I1(x) and Ip(x) are given by
4(cosz — 1)*
Pi(z) = ( - 5 )
3sin”

Qi(z) = 0.5926 (cos’ z — 6 cos® z + 8cos z — 3)

. 4 1
(4.13) 2sin*
3((:033:.:—3(:03:::-!-2)
II(:'I:): 2si 3 1
sin” x
dl 9 (cosz — 1)?
I(z) = — = (____)_

dr 2 2sin’z
Equations (4.6) - (4.11) are coupled and highly nonlinear. The numerical so-
lution of these equations has been obtained for some values of the involved
parameters A, Ry 0, and Pr using the Nachsteim-Swigert iteration technique
together with the sixth order Runge-Kutta-Butcher, initial value solver, see
HOSSAIN et al. [16-19)].

5. Results and discussions

Here we discuss the effects of thermal radiation on free convection boundary-
layer flow characteristics of an optically dense fluid in a rotating hemisphere by
two distinct methods, namely, the Keller-box method and the local nonsimilarity
scheme with second level of truncation, respectively. The numerical results for
the velocity components u and w along the z- and z-directions as well as for
the local skin-friction coefficient Re'/?7, in the z-direction and the local Nusselt
number Nu/Re'/?, are obtained for some values of the involved parameters A,
Ry and 6, for a heated surface only (T,> Ts) with Pr = 0.72. It should be
noted that for both CO,— air in the temperature range 100 =~ 650°F (with
the corresponding Prandtl number range 0.76 ~ 0.6) and NHj - vapor in the
temperature range 120 =~ 400°F (with corresponding Prandtl number range 0.88
=~ (.84) at 1 atm, the value of the parameter R4 varies approximately from 10
to 30; whereas for water vapor in the temperature range 220 =~ 900°F (with the
corresponding Prandtl number Pr & 1.0), the value of R, lies between 30 to 200
(see CESS [14]).

As we have mentioned before, in the absence of the effect of conduction-
radiation (i.e., Ry = 0), the present problem has been studied by Suwono [12]
using Gortler’s series expansion method. He showed the effect of the buoyancy
parameter A on the flow and heat transfer characteristics at some selected values
of ¢-positions in theinterval [0, 7/2]. Comparison between the present and
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Suwono’s results, interval [0, m/2] obtained in terms of the local skin friction
coefficient in the z-direction Re'/27, and the local Nusselt number Nu/Re!/?
are shown in Fig. 2 (a) and 2(b), respectively, for the values of the buoyancy
parameter A=0.1, 0.5 and 1.0 with Pr=0.72. It can be seen from these figures
that the results obtained using the, Keller-box method, are very close to those
of the local nonsimilarity method. They are also in good agreement with the
results reported by SUwoONO [12]. However, the results obtained by the Keller-
box scheme are more accurate than the other methods because this method does
not require any approximation.

Further results are obtained for Ry = 1.0 and 20.0, but for 6,,=1.1, 1.5, 2.0,
2.5 at selected axial positions ¢ in the range [0, 7/2| with A=1.0 and Pr=0.7 by
the Keller-box method only. Figure 3(a) illustrates the variation of the local skin
friction coefficient 7, Re'/? as a function of ¢, and Fig. 3(b) represents that of the
local Nusselt number NuRe1/2 for 6,=1.1, 1.5, 2.0, 2.5. The solid lines show
the values of the mentioned physical quantities for Ry = 1.0, while the broken
lines are those for Ry = 20.0. It is seen from these figures that an increase in the
radiation effect leads to decrease in the local skin friction coefficient 7, Re'/2. On
the other hand, this leads to increase in the value of the local Nusselt number
NuRe~'/? at every station of the angular distance ¢ in the range [0, 7/2]. This
tendency is higher for the skin friction coefficient and is less for the local Nusselt
number when the value of ¢ increases. Further observations drawn from these
figures are that values of both the local skin friction and the local Nusselt number
at every ¢ station increase, owing to an increase of the values of the parameter @,,.

Representative velocity and temperature profiles are shown in Figs.4 to 6
in which the non-dimensional velocity components u and w as well as the non-
dimensional temperature profiles # are plotted against 7 for some values of the
conduction-radiation parameter Rz = 0.0, 1.0, 10.0 and 20 and the surface tem-
perature parameter f#,, = 1.1, 1.5 2.0 and 2.5 with ¢ = 30° and 60°, and the
buoyancy parameter A=1.0. It can be seen from these figures that the transverse
velocity profiles u and the temperature profiles @ increase with the increase of
the parameters Ry and @, at all values of ¢. On the other hand, the increase
in the value of the parameters 0,, and Ry leads to decrease in the value of the
circumferential velocity profile w. We also see that both the momentum and the
thermal boundary layer thickness increase owing to the increase of the parame-
ters Ry and 6,,. However, it is important to notice that the present results are
available only for values of the angle ¢ < 90°. For increasing values of the angle
¢ and, in particular, at ¢ > 90°, the solution of the governing equations becomes
unstable. Unfortunately, we are not able to compare the present results with any
experimental data since we are not aware of any existing experimental results
for the present problem.
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6. Conclusions

Effect of the radiation-conduction interaction on free convection boundary-
layer flow over rotating axisymmetric round-nosed bodies of uniform surface
temperature of a gray, absorbing-emitting but nonscattering fluid medium with
Rosseland approximation, has been analyzed. The nonsimilarity equations gov-
erning the flow and heat transfer have numerically been solved employing the
implicit finite difference method known as the Keller-box method and the local
nonsimilarity method. Solutions are obtained for different values of the perti-
nent parameters, such as the Planck number (radiation-conduction parameter)
R4, the surface temperature parameter #,, and the buoyancy parameter A. From
the present investigation, the following conclusions may be drawn:

(1) Increase in the radiation parameter Ry leads to decrease of the local skin
friction coefficient 7, Re'/?

(ii) The rate of heat transfer Nu/Re'/? increases owing to the increase of the
parameters Ry and 6y,

(iii) Both the tangential velocity u and the temperature 6 profiles of the
fluid increase, whereas the circumferential velocity w profiles decrease due to the
increase of either of the value of the parameter R, or 6,,. Furthermore, increase of
the values of the parameters Ry and 6,, leads to increase in both the momentum
and the thermal boundary layer thickness.
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