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MATERIAL INSTABILITIES in fiber-reinforced nonlinearly elastic solids are examined
under plane deformation. In particular, the materials under consideration are isotropic
nonlinearly elastic models augmented by a function that accounts for the existence
of a unidirectional reinforcing. This function describes the anisotropic (transversely
isotropic) character of the material and is referred to as a reinforcing model. The
onset of failure is signalled by the loss of ellipticity of the governing differential equa-
tions. Previous work has dealt with the analysis of specific reinforcing models and
has established that the loss of ellipticity for such augmented isotropic materials re-
quires contraction in the reinforcing direction. The loss of ellipticity was related to
fiber kinking. Here we generalize these results and establish sufficient conditions for
the ellipticity of the governing equations of equilibrium for more general reinforcing
models to be guaranteed. We also establish necessary conditions for failure of ellip-
ticity. The incipient loss of ellipticity is interpreted in terms of fiber kinking, fiber
de-bonding, fiber splitting and matrix failure in fiber-reinforced composite materials.

Attention is restricted to incompressible materials in this paper.

Key words: Fiber failure, fiber kinking, fiber de-bonding, fiber splitting, matrix

failure, loss of ellipticity, reinforcing models, anisotropy.

1. Introduction

FAILURE MECHANISMS in composite materials which consist of an isotropic base
material with unidirectional reinforcement have received increased attention in
the last few years. These failure mechanisms include fiber kinking [1- 8|, fiber
splitting [9], fiber de-bonding [10] and matrix failure [11-12]. These analyses
provide different theories to capture and explain the failure modes for the mate-
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rials under consideration. However, a unified approach to the prediction of fiber
instability or fiber failure in fiber-reinforced composite materials is lacking.

In this paper, our objective is to present a continuum-mechanical model in
the setting of nonlinear elasticity theory that captures and predicts the material
instabilities mentioned above for particular fiber-reinforced materials. For this
purpose, a sufficiently general (transversely isotropic) strain energy depending
on deformation invariants that penalize deformation in a particular, direction,
serves as the material model. The onset of failure is heralded by the loss of
ellipticity of the governing differential equations [6 - 8|.

For a given strain-energy function the loss of ellipticity condition determines
both the deformation associated with the existence of surfaces of weak disconti-
nuity and the direction of the normal to that surface. Surfaces of weak discon-
tinuity (or weak surfaces) are surfaces across which the second derivative of the
deformation field is discontinuous, while across a fully developed (or strong) sur-
face of discontinuity the first derivative (i.e. the deformation gradient) suffers a
finite jump. In the present analysis we relate the angle between the weak surface
normal and the fiber-reinforcement direction to a particular failure mechanism.
The argument is summarized as follows. Under fiber contraction the onset of
fiber kinking is associated with weak surfaces that lie close to the normal to the
direction of fiber reinforcement [1]. Thus, if the loss of ellipticity analysis yields
a weak surface perpendicular to the fiber under fiber contraction, the associ-
ated fiber failure is identified as fiber kinking. By contrast, for fiber de-bonding
the angle between the weak surface and the fiber reinforcement is close to zero
[10]. For fiber kinking combined with fiber splitting, the simultaneous existence
of weak surfaces close to and normal to the fiber direction is required [9]. Ma-
trix failure arises under fiber ertension and is associated with weak surfaces
perpendicular to the fiber reinforcement [11-12]. These various possibilities are
depicted in Fig. 1.

Constitutive equations that suffer a loss of ellipticity have been studied in
a variety of contexts (see, for example, [6-8] [13-20]). In particular, the loss
of ellipticity of some particular transversely isotropic nonlinear elastic materials
under plane deformations has been examined in |7, 8, 18, 19]. The procedure used
in these analyses is the following. An isotropic base material is augmented by a
uniaxial reinforcement in what is referred to as the fiber direction. The plane of
deformation contains the fiber reinforcement. In |7 - 8] and [18] the isotropic base
material considered is a neo-Hookean material (incompressible), while in [19] it
is the special Blatz-Ko material (compressible). In each case the same reinforcing
model was used to characterize the anisotropy of the constitutive equation: the
so-called standard reinforcing model. As is well known, the neo-Hookean model
retains ellipticity at all deformations. By contrast, the Blatz-Ko material loses
ellipticity at sufficiently large deformations both in tension and compression
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(see, for example, [16]). Nevertheless, these papers conclude that the standard
fiber reinforcement “weakens” the material in fiber compression since the loss of
ellipticity involves fiber contraction, while it “strengthens” the material in fiber
tension. In tension the loss of ellipticity can be avoided for a reinforcement of
sufficient strength. Furthermore, the analysis of [7- 8| interpreted the loss of
ellipticity in terms of kink-band phenomena for fiber-reinforced materials. Here,
we follow the same procedure and define the strain energy as consisting of an
isotropic base material augmented by a reinforcing model. For the latter, two
general classes of functions are examined.

Kink band

Kink band  Fiber splitting

Fiber reinfi t Woeak surfaces 5
1ber reinforcemen Fiber reinforcement Wik wobon

FIBER KINKING FIBER KINKING

AND
FIBER SPLITTING
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FiG. 1. Kinematics of fiber kinking, fiber kinking with fiber splitting, fiber de-bonding and

matrix failure in fiber reinforced composite materials. The boundary of the kink band in the

incipient fiber kinking mechanism is interpreted as a weak surface and is close to the normal
direction of the fiber reinforcement (upper left figure). In the fiber kinking combined with
fiber splitting there is also a weak surface in the direction of the fiber reinforcement (upper

right figure). Fiber de-bonding is associated with weak surfaces close to the fiber
reinforcement direction (lower left figure). Matrix failure is associated with weak surfaces
normal to the fiber reinforcement (lower right figure

In three dimensions, two independent deformation invariants, denoted I
and I, are sufficient to characterize the anisotropic nature of a transversely
isotropic material. These are additional to the usual three invariants Iy, Is, I3 of
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the Cauchy-Green deformation tensors required for isotropy in a compressible
material (for an incompressible material I3 = 1). The invariant I represents the
square of the stretch in the direction of the fiber reinforcement. The standard
reinforcing model is a quadratic function that depends only on I4. The invariant
I is also related to the fiber stretch but additionally registers the reaction of the
reinforcement to shear deformations and to deformations of surface area elements
normal to the fiber direction. Under plane deformations with the fiber direction
in the considered plane Iy and I5 are no longer independent and the material
response depends only on I (= I3) and I4 (in the case of incompressibility). The
ellipticity analysis for a general strain-energy function restricted to the plane in
question then depends on only one anisotropic invariant. Nevertheless, each of
Iy and Is will be considered separately in the reinforcement model since each
adds a distinct anisotropic character to the isotropic base material.

The paper is organized as follows. In Sec. 2, the material model is introduced
and the ellipticity, strong ellipticity and loss of ellipticity conditions for the
governing differential equations are summarized. Specialization to plane strain
is discussed in Sec. 2.5. In Sec. 3, the ellipticity status of a general reinforcing
model depending on I4 is established. It is shown that failure of ellipticity is
to be expected in fiber compression. In particular, under fiber contraction the
incipient loss of ellipticity is interpreted in terms of fiber kinking. Failure can
also occur in fiber extension if the reinforcing model loses convexity, in which
case fiber de-bonding is an appropriate interpretation of the associated failure
mode. Convex reinforcing models are discussed briefly in Sec. 3.2. The analysis
in Sec. 3 is carried out for a general fiber-reinforcement orientation within the
plane of deformation. This allows us, additionally, to make a qualitative analysis
of the ellipticity status of a reinforcement consisting of two fiber families in the
plane of deformation. This is discussed in Sec. 3. 3.

In Sec. 4, our study focuses briefly on the invariant I5. Under fiber contraction
it is found that failure of ellipticity may occur in two different modes, which may
be associated with fiber kinking and fiber splitting. In fiber extension under a
suitable simple shear deformation, de-bonding is again a possible failure mode if
the reinforcing model is non-convex. A weak surface may also arise perpendicular
to the fiber direction and this is interpreted as matrix failure. These examples of
failure modes are not exhaustive. Fiber de-bonding and matrix failure are also
possible failure modes under fiber extension if the base material loses ellipticity,
whether or not the reinforcing model is convex. In Sec. 5 we summarize and
discuss briefly the results obtained in the previous sections.
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2. The material model and ellipticity

2.1. Description of the deformation

Let X denote the position vector of a material particle in the stress-free ref-
erence configuration and let x denote the location of the particle in the deformed
configuration. The deformation gradient tensor dx/9X is denoted F. The left
and right Cauchy-Green deformation tensors, respectively B and C, are given by

(2.1) B =FF’, C=F'F,
and the principal (isotropic) invariants of C (equivalently of B) are defined by
(2.2) Li=txC, L=IL tr(C_'), I3 = det C.

Let the unit vector A define the direction of fiber reinforcement in the un-
deformed configuration. The combination of A and C introduces two additional
(in general independent) invariants, denoted Iy and I5, which are defined by

(2.3) I;=A-(CA), Iy=A-(C%A).
Let the vector a result from the action of F on A, so that
(24) a= FA

For a homogeneous deformation a is the image of A in the deformed configura-
tion. On use of (2.4) and (2.1) we may therefore write (2.3) as

(2.5) I4y=a-a, I;=a-(Ba).
In terms of the principal stretches (Ay, Az, Az) of the deformation we have

(2.6) L=X+XM+3] L=LM*+X%+)3%), IL=XA3,
(2.7) Iy=NA2 + 242+ \3A2 =a? + & + &3,

(2.8) Is = M A2 + M A2 + 2542 = Aa? + A2a2 + A2a3

where (A;, A2, A3) are the components of A referred to the principal axes of C,
and (a1,az,a3) those of a referred to the principal axes of B. It is clear from
the above that /T4 is the stretch in the direction A of the fiber reinforcement.
Therefore the invariant I4 registers deformations that modify the length of the
fiber. The invariant I5 has no similar simple interpretation in general and it
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depends on both changes in the fiber length and shearing strains. However, the
following connection is of interest. From the Cayley-Hamilton theorem for C,
namely

(2.9) G- LiC 4+ LC-RI=6,
we obtain
(2.10) Iy=NLI;— L+ A-(C*A),

where I is the identity tensor and C* = I3C~! is the adjugate of C. Since a
reference surface area element of unit magnitude with normal in the direction
A transforms to /I3F~TA (Nanson’s formula), the final term in (2.10) is in-
terpreted as the square of the ratio of deformed to undeformed surface area
elements and could be used as an alternative to I5 as a measure of the influence
of reinforcement.

2.2. Strain energy and stress

According to SPENCER [21], for an elastic material without internal con-
straints the most general strain-energy function for a homogeneous transversely
isotropic nonlinear elastic solid depends only on the invariants (I, Iy, I3, Is, Is).
In this paper we focus on incompressible elastic materials, so that I3 = 1 and
hence

(2.11) Aidgds = 1.

As a result only four independent invariants remain, and we write the strain
energy per unit reference volume as

(2]‘2) W = W(IUI?sI‘l!If))'

The nominal stress tensor S is calculated from the strain energy W in the
form

2.13 S=— -pF7l,

(2.13) 5F P

where p is the Lagrange multiplier associated with the incompressibility con-
straint det F = 1. To make this explicit in respect of (2.12) we require the
formulas

311 812

. — =T L _ornpt _opTppl
614 315
: — =2 FA, — =2(AQFCA +C
(2.15) 3F AQFA, —2=2A0® +CA®FA),
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and hence

(2.16) S = 2W,FT 4+ 2W,(I,1 — C)FT + 2W A ® FA
+ 2W5(A®FCA + CA®FA) —pF 1,

where the subscripts 1, 2,4, 5 on W indicate differentiation with respect to Iy, I, Iy, I5,
respectively, and I is again the identity tensor.
The corresponding expression for the Cauchy stress tensor o = FS is

(217) o =2W,B +2W,(I1;1-B)B +2W,;a®a
+ 2W;5(a® Ba+ Ba®a) — pl,

The energy function and the stress must vanish in the reference configuration
(where I = Iy = 3 and Iy = Is = 1) and it therefore follows that

(2.18) W(3,3,1,1) =0, 2Wi(3,3,1,1) +4W2(3,3,1,1) —po =0,

(2.19) Wiy(3,3,1,1) +2Ws(3,3,1,1) =0,

where py is the value of p in that configuration. Conditions on the second deriva-
tives of W at (3,3,1,1) for consistency with the classical linear theory of trans-
versely isotropic elasticity may be obtained but we omit the details here for
the three-dimensional case. For the simpler case of plane strain the appropriate
connections will be noted in Sec. 2.5.

2.3. Equilibrium and ellipticity

The equation of equilibrium in the absence of body forces has the form
DivS = 0 and may be written in the component form

(2.20) Aaiﬂjxj‘ﬂﬁ =y p,i = 01
where

PwW
2.21 i = e
(e.21) Aaip OF,a0F;5’

Greek indices being associated with the components of X and Roman indices
with those of x. The subscripts following a comma indicate differentiation with
respect to the relevant coordinate.
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The linearized equations governing a small incremental deformation super-
imposed on a homogeneous finite deformation have a similar structure to (2. 20)
and may be written

(2.22) Aaigitjes —Pi =0,

where u, with components (u;,us,u3), is the incremental displacement and p is
the corresponding increment in p. The incremental incompressibility condition is

(2.23) divu = 0.

If we regard u as a function of the deformed position x and we introduce the
updated version Agpig; of the components Aq;g,, then the incremental equations
may be written

(2.24) Aopigjtjpg = Pi = 0,

where (see, for example, [23])

(225) AOpiqj = FpanﬂAoiﬁj‘
Now consider incremental deformations of the form

(226) u= meikn‘x’ ﬁ - q eiku-x'

where m is the amplitude vector, & is the ‘wave’ number and n is a constant
unit vector. On substitution into the Eq. (2.24) this leads to

(2.27) Q(n)m + ign = 0,

where the acoustic tensor Q(n) has components defined by
(2.28) Qij = Aopiginpny,

and the vectors m and n satisfy the orthogonality condition
(2.29) m-n=0

resulting from the incompressibility constraint (2.23)
It follows that for an incremental deformation of the form (2.26) to be ad-
missible the equality

(2.30) Aopiginpngmim; = [Q(n)m] - m = 0

must hold, where, without loss of generality, m has been taken to be a unit
vector. For a non-trivial solution this equation, together with (2.24), defines a
pair of (unit) vectors m and n.
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If the Eqs. (2.20) (or 2.24)) are elliptic then no such solutions exist. The
condition for ellipticity is that

(2.31) Aopiginpngmim; # 0

for all vectors m # 0, n # 0 such that m-n = 0.
A stronger requirement is the strong-ellipticity condition

(2.32) Agpiginpngmim; >0 m#0, n#0, m-n=0.

The analysis of Eq. (2.31) for specific forms of the energy function W fur-
nishes the ellipticity status of that particular strain energy. A deformation gradi-
ent F satisfying (2. 31) for every pair of unit vectors m and n such that m-n =0
is said to be an elliptic deformation for that W. If all possible deformations for a
particular material are elliptic then the material itself is referred to as an elliptic
material (the isotropic neo-Hookean material is an example of an elliptic mate-
rial). On the other hand, if, for some pair of orthogonal unit vectors m and n, a
deformation gradient F satisfies Eq. (2.30), then the deformation is said to be
non-elliptic for that material model. Furthermore, the unit vector n is identified
as the normal vector to a surface (in the deformed configuration), referred to as
a weak surface, across which some of the differentiability properties required in
the derivation of the equilibrium equations are not satisfied by some or all the
variables involved. The pre-image of n is N = F''n, which is not

2.4. Reinforcing model

If an incompressible isotropic elastic material is reinforced with unidirectional
reinforcing then the augmented strain-energy function may be written

(2.33) W =W, I, Is,Is) = Wiso(I1, I2) + Wi (14, I5).

The first term in (2.33) represents the isotropic base material, while the sec-
ond term is the so-called reinforcing model, the subscript standing for  fiber”
reinforcement. This strain energy must be consistent with the conditions (2. 18)
and (2.19).

In what follows we shall restrict Wy to functions that depend only on one
invariant. Section 3 will be concerned with Iy reinforcement and it will be con-
venient to write Wgy(I4,Is) = F(I4), while in Sec. 4 the focus will be on I3
reinforcement and we will write Wy, (14, Is) = G(I5).

In the literature (see [18] and [19]) use has been made of the so-called standard
reinforcing model defined by the function

(2.34) F(Iy) = a(ly—1)%, F'(I}) =2a(I3 - 1), F"(I3) = 2a,
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where a > 0 is an anisotropy parameter which is a measure of the strength (or
degree) of anisotropy. The standard reinforcing model penalizes deformation in
the fiber direction and is a convex function of I. In [18]-[19], for a sufficiently
large, loss of ellipticity was found in fiber compression, i.e. for Iy < 1. On the
other hand, the considered materials gain stability in fiber extension. In Sec. 3
we generalize these results and provide a unified derivation of necessary and
sufficient conditions for the ellipticity status of F'(I4), regardless of the fiber
orientation in the plane of deformation.

At this point we note that the contribution of the term Wj to the Cauchy
stress (2. 17) gives a traction component 2I;Wy in the deformed fibre direction.
Thus, for the reinforcing model F(I;) this contribution is positive (negative) in
fiber extension (contraction) provided

(2.35) F(Lg>0(<0) for L>1(<1), F({l)=0
It may also be appropriate to take
(2.36) F'(I4) > —oo(occ) as Iy — 0(00),

although we note that the standard model Eq. (2.29) does not satisfy the lower
of these limits. Similarly, the contribution of the term W5 to the Cauchy stress
gives a traction component 4/5W;5 and hence, for the reinforcing model G(I5),
the traction in the fiber direction is positive (negative) according to whether Iy
is greater than or less than unity, provided

(2.37) G'(Is) >0(<0) for Is>1(<1), G'(1)=0.
Analogously to (2.36) we take
(2.38) G'(Is) = —oo (o) as I — 0(o0).

We emphasize that I5 > 1 does not in general correspond to fiber extension. In
what follows we shall adopt the inequalities (2. 35) - (2. 38).

2.5. Restriction to plane strain

Our concern in this paper is the ellipticity analysis of the materials introduced
above under the plane strain restriction, with the fiber reinforcement lying in the
considered plane. We aim to derive conditions on F(I4) and G(I5) that provide
a qualitative understanding of the ellipticity status of the model (2. 33).

We take the plane in question to correspond to the (X, X2) coordinate plane
so that the basic finite deformation is such that z3 = X3 with (z;,zy) indepen-
dent of X3. The incremental displacement field u is then such that uz = 0,
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with (u;,us) depending only on z; and zg. It follows that Fi3 = Fo3 = F3 =
F33 = 0 and F33 = 1, and, for the components of C, Cj3 = Cs3 =0 and C33 = 1.

The out-of-plane principal stretch is now A3 = 1 and, by incompressibility,
A1A2 = 1. Hence, the invariants (2. 6) reduce to

(2.39) L=L=XM+)+1 L=1

The fiber direction A lies in the (X, X3) plane, and therefore
(2.40) Io = N2A2 + D342, Iy =A% + 2342
The important connection

(2.41) L=k -1} —1

then follows, while the specialization of (2.10) leads to

(2.42) A (CA)=5L-1;-1.

Thus, when restricted to plane strain, the strain, energy W (I, I, Iy, I5) of a
fiber-reinforced incompressible elastic material (i.e. a transversely isotropic in-
compressible elastic material) can be represented in terms of two independent
invariants, and we write

(2.43) W (I, It) = W(Ih, I, Iy, (I, — 1)1 — 1).

Let F now denote the in-plane restriction of the deformation gradient. We
then have
oIy

S
Oh o7 Pi_onewa
9F ' BF G,

specializing (2. 14); and (2. 15);. The corresponding plane restriction of the nom-
inal stress tensor is then given by

(2.44)

(2.45) S = 2W,FT + 2W,A @ FA — pF !,

where, in general, p differs from the p in (2. 16). Note that the only out-of-plane
component of nominal stress (S33) has to be calculated from (2.16) and is not
given by (2.45).

Restrictions on W in the reference configuration analogous to those given for
W in (2.18) and (2.19) are

(2.46) W(3,1) =0, 2W;(3,1)—po=0, Way(3,1)=0,

where pg is the value of p in the reference configuration.

http://rcin.org.pl



536 J. MERODIO and R. W. OGDEN

Comparison with the corresponding classical linear theory (see, for example,
[22], p. 160) shows that

(2.47) 2W1 (3, 1) + W44(3, 1) = (611 + Cc33 — 2(:13)/4, W} (3, 1) = 044/21

where ¢;1, 13, €33, c44 are the constants arising in the classical theory (this no-
tation being appropriate for reinforcement aligned in the z3 direction).
For the W defined above the components of Aq,ig; are explicitly

(248)  Aaig; = AW FiaFjg + 2W10;500p + AW14(Fia Fja Ap + FigFin Aa) A,
o 4W44Fi7Fj§AﬂA5A7A§ + 2W4 AﬁAﬁéﬁ,
and, by use of (2.25), the updated version of this is given by
(2.49)  Aopigj = 4W11 BpiByj + 2W16:j By + 4W14(Bpiajag + Byjaiay)
+ 4W44apaqa,-aj + 2W4aﬂaq6ij.

In (2.48) and (2.49) and henceforth, the indices take the values 1 and 2 only.
In terms of components of m and n referred to the principal axes of B, the
strong ellipticity condition (2.32), specialized to two dimensions, becomes

(2.50) 2Wi1 (A2 — A2)%n2nd + Wi (\2n? + A2nd)
B 4W14(/\% - /\%)nlng(nlm + ﬂgag)(nga] - nlag)
+ 2W44(n1m 4 ngag)z(nga] — n;a-z)2 + Wy (nyay + ﬂQGz)z > 0,

where the orthogonality m - n = 0 has been used to write m; = ng,mp = —n;.
The inequality (2.50) must hold for all (n;,n3) such that n? + n2 = 1. For
the special case of an isotropic material this inequality reduces to

(2.51) 2W11 (A2 — A2)2n2n2 + Wy (A3n? + A2n2) > 0,
for all considered (n;,ns), and this can be rearranged as
(2.52) (I + 1)[Wq + 2(11 = 3)Wn|nini + Wi(Ain? — Mend)? > 0.

It then follows immediately that necessary and sufficient conditions for this to
hold are

(2.53) Wy>0, 2(I;-3)Wu+W;>0
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(see, for example, [20]; alternative (and equivalent) inequalities in terms of the
stretches can be found in [23]). In general, however, the inequalities (2.53) are
not necessary, and certainly not sufficient, for (2.50) to hold.

It is interesting to note that when evaluated in the reference configuration,
the inequality (2.50) reduces to

(2.54) Wi(3,1) + 2W44(3, 1)(nya; + noag)?(nga; — nyag)? >0

for all unit vectors (n;,ny), with a = A. For this to hold, the necessary and
sufficient conditions are easily seen to be

(2.55) Wi(3,1) >0, 2W;(3,1) 4+ Wis(3,1) > 0.

We assume that the inequalities (2.55) hold. Thus, by continuity, strong
ellipticity holds in some neighbourhood of the reference configuration and on
any path of deformation from the reference configuration strong ellipticity holds
until a deformation is met at which strong ellipticity just fails. This happens
(if at all) when a point is reached at which strict inequality is replaced by

(2.56) 2Wi1 (A2 — A2)2n2n2 + Wi (A2n? + Ain2)
+ 4W14(,\ - Ag)nmz(nlal + ngag)(nga; — nyay)
+ 2W4,;(nlal ot ﬂ2(12)2(n2a1 —_ n1a2)2 + Wq (nyay +ﬂ202}2 >0

with equality holding for one or more unit vectors (n,ns).

3. The effect of I; reinforcement
3.1. Reinforcing model

With the restriction to plane strain we now consider the strain energy
(3.1) WL, I4) = Wiso(I) + Wi (1)

in which an isotropic base material with strain energy Wis,(I;) is augmented by
the reinforcing model Wy, (I4) = F(I4). This is the plane strain specialization of
(2.39) with I5 omitted. For this separable form of energy (the dependence of W
on I; and I being decoupled) the strong ellipticity condition (2.50) reduces to

(3.2) 2Wi1 (A2 — A2)%nind + Wi (\In? + A2n3)

+ (a-n)[W; + 2(a x n)?Wy] > 0.
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We note that (A2 —A3)? = (I; —3)(I; +1) and that the first two terms in (3.2) are
independent of A and Iy. The third and fourth terms depend on the deformation
through a = FA and 4.

We now assume that the isotropic base material satisfies the strong ellipticity
inequalities (2.53). (The effect of relaxation of one or more of these inequalities
will be discussed later.) Then

(3.3) so(1) >0, Wig,(I) + 2(I) — 3)Wigo(5h) > 0,

the prime indicating differentiation with respect to I;. Note that in the reference
configuration the inequalities (3. 3) reduce to the single inequality Wi, (3) > 0.

With reference to (3.2) we see that since n may be chosen so that a-n = 0,
the ellipticity status of the model (3. 1) depends on the sign of

(3-4) Wi + 2(a x n)*Wyy = F'(I4) + 2(a x n)?F"(I),

where a prime denotes differentiation with respect to 4. In view of (2.48)3 we
have F'(1) = 0. Since we may choose n so that a x n = 0, it is clear that for
(3.4) to be non-negative it is necessary that F'(Iy) > 0. If also F”(I4) > 0 then
(3.4) is non-negative for all (n;,ny). If, on the other hand, F"(I;) < 0 then

F'(I4) + 2(a x n)2F"(I4) > F'(I3) + 214F" (1).
It follows that (3.4) is non-negative if and only if
(3.5) F'(I4) 20, F'(L4) +2L4F"(I4) 2 0.

Thus, sufficient conditions for (3.2) are clearly (3.5) together with (3. 3).

3.1.1. The ellipticity status of F(I;). Here we are concerned with the ellipticity
status of the reinforcing model F(I) and its influence on the overall ellipticity
of the energy function (3.1). Without loss of generality we may take F(1) = 0.
Hence, recalling (2.35), the restrictions on F' in the reference configuration are

(3.6) F(1)=0, F'(1)=0, 2W.,(3)+F"Q1)>0,

the latter following from (2.55). This is certainly satisfied if F”(1) > 0, which,
in fact, follows from (2. 35).

Because of the factor (n - a)? in (3.2), in isolation from the isotropic base
material, F'(I4) always loses ellipticity since n may be chosen so that n-a = 0.
For all other n, the contribution of F' to (3.2) is strictly positive if and only if

(3.7) F'(I)) >0, F'(I) + 2I,F"(I;) > 0.
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Of course, the first of these inequalities fails in the reference configuration,
while strict inequality in the second is also lost in the reference configuration
iEFY1) = 0.

We note here that the terms involving I4 in (3.2) may be written as

(3.8) Li{(a-n)*F'(I;) + (&- n)?(a x n)*[F'(I4) + 214F" (14)]},

where & = a/|a|. It is useful to consider (3.8) as quadratic in z = (n - &)* with
0 <z < 1. Then, (3.8) is written simply as

(3.9) f(z) = —az® + (a + b)z,
where
(3.10) a=2IF"(Ly), b=ILF'(IL).
(a) a=0 (b) a<0
f(z) N f(z) (i)
9 1

(ii)

(iii)

FiG. 2. Properties of the function f(z) for z = (n-4a)%: (a) a > 0 with (i) b > 0, (ii)
b<0,a+b>0,(iii)a+b<0;(b)a<0with (i)a+b>0,(ii)) b>0,a+b <0, (iii) b <0.

Noting that f(0) = 0, f(1) = b and f’(0) = a + b we show the behaviour of
f(z) in Figs. 2(a) and 2(b) for @ > 0 and a < 0 respectively. It is clear from
Fig. 2(a) that for F"(I4) > 0 the expression (3. 8) first becomes negative as soon
as F'(I4) becomes negative, and that it is negative for a range of values of z
near 1 (i.e. where n is nearly parallel to a) provided F'(I;) +2I4F"(14) > 0. For
F'(I4) + 2I4F"(14) < 0 it is negative for all z € (0,1]. Figure 2 (b) is applicable
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for fiber extension. The expression (3.8) first becomes negative (near z = 0)
as F'(I4) + 21,F"(1;) changes from positive to negative, which is relevant for
functions F' that are non-convex (F"(I4) < 0 for some Iy).

For the standard reinforcing model (2.34), F'(I4) > 0 if and only if Iy > 1,
while F'(I4) + 214F"(I4) > 0 if and only if Iy > 1/3. Deformation gradients F
satisfying Iy < 1/3 are not of interest since ellipticity will be lost at a larger
value of Iy < 1 on a path from Iy = 1.

3.1.2. Overall ellipticity. Our goal is to determine the set of deformation gradi-
ents, denoted E, containing the undeformed configuration for which it is possible
to construct a parametrized family of (plane) deformation gradients F such that
ellipticity of W is not lost at an intermediate deformation on a path of defor-
mation from the undeformed configuration. We refer to E as the effective elliptic
region for W. Since we assume that strong ellipticity holds in the reference con-
figuration it follows that strong ellipticity holds within E. The boundary of E,
denoted OE, is defined by the loss of strong ellipticity condition, i.e. by the set
of deformation gradients F for which (2.56) holds for one or more unit vectors
n with (2. 50) holding for all other n. This boundary is therefore associated with
breakdown of (strong) ellipticity. Since the isotropic base material is assumed to
be strongly elliptic it is clear that a necessary condition for the breakdown of
ellipticity of an elliptic isotropic nonlinearly elastic solid augmented with F(I4)
is that, for F € E, either F'(I3) < 0 or F'(I4) + 21, F"(I;) < 0 on some path of
deformation before the boundary 9E is reached.

It is worth pointing out here that (3.2)is guartic in the components (n;,ng)
and can be rearranged as a quartic in a single variable (e.g., nj/ny) with values
between —oo and +o00. Necessary and sufficient conditions for such a quartic to be
positive can be written down explicitly, but they are extremely complicated and
not easy to interpret. It is therefore appropriate to examine the influence of (3.8
on the inequality (3.2). This is particularly important for strong reinforcement
in which the magnitude of (3.8) dominates (3.2).

At this point it is appropriate to consider the ellipticity status of Wi, on the
same basis as that of F' and we write the left-hand side of (2.51) as

(3.11) i(z) = —azl+ (a+b-c)z +e,
where again z = n? and the notation a, b, ¢ is defined by
(312)  a=2(L +1)(h - 3)Wig,(I1), b= MNWi,(N), c=Wg (L),

the definitions of a and b being different from those appearing in (3. 10). Figure 3
shows the behaviour of #(z). In Fig. 3(a) b > 0 (and hence ¢ > 0). Strong
ellipticity holds for the upper curve, corresponding to a > 0 (i.e. W7 (1) > 0),
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and the middle curve, for which @ < 0 but Wi (I,)+2(I, —3)W,L, (1)) is positive.
Ellipticity is lost as the latter term passes through zero, and the lower curve
corresponds to W, (I1) +2(I; — 3)W, (I,) < 0. In Fig. 3 (b) we have b < 0 (and
¢ < 0) and i(z) is negative except for an intermediate range of values of z when

a > 0 and Wl:m(.r;) +2( - 3)Wi':0(1rl) > 0.
(a) >0 (b) b<0
i(z) /\ a>0
T 1
\‘\‘ G330 >
‘ T 1 .
e e S T a2l

F1G. 3. Properties of the function i(z) for z = n?: (a) b > 0; (b) b < 0. In each case there is a
maximum if a > 0 and a minimum if a < 0.

REMARK 1. Weak surfaces cannot be aligned with the fiber reinforcement
axis since then we would have n-a = 0 and, because of the assumed strong
ellipticity of the isotropic base material, the inequality (3.2) holds, as indeed
does (2.50). Weak surfaces are the only possible carriers of discontinuity for the
equilibrium Egs. (2.22) or (2.24). Therefore, no surface of discontinuity, either
weak or fully developed (i.e. strong 7, 8]) can be aligned with the fiber direction.
In [7], for the standard reinforcing model, this result was established for weak
and strong surfaces with a particular deformation on one side of the surface,
namely a deformation for which the (reference) fiber direction is a Lagrangian
principal direction (i.e. an eigenvector of C).

REMARK 2. If F"(I;) > 0, fiber kinking, is the relevant failure mechanism
under compressive strain in the fiber direction (I4 < 1). It suffices to show that
the weak surface at breakdown of ellipticity is normal to the fiber. If n is parallel
to a then (3. 8) reduces to

(3.13) LiF'(Ly),
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which is easily shown to be the least value of (3.8) whatever the sign of F'(I;) +
2I4F"(I4). However, with reference to Fig. 2 (a) we see that (3.8) first becomes
negative on a path of deformation from the reference configuration (where Iy = 1)
as Iy decreases with F'(Iy) + 2I4F"(I;) > 0 and this negative value decreases
with I4. Thus, breakdown of ellipticity occurs as I decreases from 1 when the
negative value of Iy F'(I) balances the positive value of the first pair of terms in
(3.2) with n = a. If a is an eigenvector of B then this happens for ny = 0 and
(3.8) reduces to I4F'(I4) + AW/ (I,). Since, by strong ellipticity of the base
material, W (I,) > 0, this will vanish for some Iy < 1 even for reinforcements of
moderate strength. For very strong reinforcement it will vanish for I4 close to 1.
Suppose the deformation consists of a simple shear of amount  in a direction
normal to the reference direction of the fiber superimposed on a pure shear with
stretch A in the same direction. For simplicity, let A = e,. Then, the components
of the deformation gradient are

A0
and
(3.15) 3Tk = ( T"A ) .

Since n = a the angle, @ say, that the weak surface makes with the e, axis
(measured counterclockwise) is given by tanf = —1/v, while Iy = A\?(1 + 7?).
Clearly, as 7 increases A must decrease in order to maintain Iy < 1. If ¥ > 0 then
7/2 < 6 < 7 while if v < 0 we have 0 < 6 < 7/2. Thus, as 7y increases from 0
the weak surface rotates from the vertical (aligned with e) counterclockwise (as
does the fiber with changing deformation), and if y decreases from 0 the surface
rotates clockwise. We emphasize that larger values of |y| require smaller values
of A for loss of ellipticity.

REMARK 3. If F"(I4) < 0 and F'(I4) 4+ 2I4F"(14) > 0 then there can be no
loss of ellipticity, but if F'(I4) + 2I4F"(I;) < 0 then the (negative) minimum
value of (3.8) is

(F! + 21, "

(3.16) T

whether F/ > 0 or F' < 0, and it occurs for

F'+ 21, P
(3.17) (n 2 3}2 = T,;l
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(see Fig. 2(b)). Loss of ellipticity occurs first, however, in fiber extension with
F'(I3) > 0 when F'(I4) + 2I4F" (1) passes from positive to negative. This, of
course, requires loss of convexity of F.

Thus, in fiber eztension (14 > 1) ellipticity can fail, if again a is an eigenvector
of B, when n - a is small since the negative contribution to (2.45) then balances
the positive contribution due to Wi, provided the reinforcement is sufficiently
strong. In this case the weak surface is close to parallel to the fiber direction and
the relevant failure mechanism can be interpreted as de-bonding.

It is interesting to note that in this case the contribution of F(I4) to the
component of nominal traction, s say, in the fiber direction is, from (2.45),
21,/*F'(I;). Hence, ds/dIy = I} “*[F'(I4) + 21, F"(I,)] and thus failure of ellip-
ticity is associated with s passing through a maximum during fiber extension.

Figure 4 shows a schematic of the possible failure mechanisms for Iy < 1 and
I4 > 1 and the associated properties of F'(Iy).

A
F(l4)

Loss of ellipticity for Loss of ellipticity for
F'(Iy) < 0 with Fi(1)+2 L F'(L) < 0
F'(19)+2 LF'(1s) >0 with F'(Iy) > 0

"\..____’

B i

H
i fiber

Weak surface i fiber Weak surface
H

FiG. 4. Loss of ellipticity associated with the properties of F(I4) in the case of a strongly
elliptic isotropic base material. Under compression in the fiber direction, the associated weak
surface is normal to the fiber as appropriate for the fiber kinking mechanism. Under fiber
extension, the weak surface is close to the fiber direction, as in fiber de-bonding.

REMARK 4. As discussed previously, for n - a = 0 ellipticity cannot fail if
Wiso is strongly elliptic. However, it is worth noting here that if Wi, is allowed to
lose ellipticity then this can happen for n such that n-a = 0, i.e. when the weak
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surface coincides with the fiber direction. This is independent of the properties
of the reinforcing model F(I4) and is not therefore depicted in Fig. 4.

3.2. Ellipticity of convex I; reinforcement

In this section we are concerned with convex reinforcing models, so that
F"(I;) > 0. Suppose that F(I4) = af(l4), where a(> 0) is an anisotropy
parameter, as in the standard reinforcing model (2.34), then loss of ellipticity
requires fiber contraction since F'(I;) > 0 and F"(I;) > 0 in fiber extension.
Furthermore, the breakdown of ellipticity for the considered materials, i.e. models
with an elliptic isotropic base material, satisfies a nesting property with respect
to the parameter a. The result is stated as follows.

PRoPOSITION. If F is on the ellipticity boundary 9E for a; and as > o
then F ¢ E for ay.

P r o o f. This follows easily from (3.2), which we now write as

(3.18) 2Wit(I1)(A? — A3)?nin3 + Wi, (I1) (Nin? + Ajn3)
+ afa-n)?[f'(I4) + 2(a x n)%f"(14)] > 0.

By hypothesis 2W;y (I1)(A} — M)2nind + WL (1)) (Ain? + A3n3) > 0. Now
consider that the left-hand side of (3.17) vanishes for the deformation gradient
F when a@ = a; and for a specific n, but is otherwise non-negative. It follows
that for this F and n the left-hand side of (3.17) is negative for s > ;. Hence,
F ¢ E for a = ap.

In [18] this nesting property of F giving rise to the breakdown of ellipticity
was illustrated for the standard reinforcing model (2.34) by reference to plots
in (C11,C\2, a)-space. Furthermore, it may be shown that the asymptotic form
of the breakdown of ellipticity curves in (Cyy, Ci2, @)-space as « and Cja — 00
is Iy = C1; — 1/3. We recall that in Sec. 3.1 it was noted that Iy = 1/3 is
associated with vanishing of F'(I4) + 2I4F" (14) in respect of (2.34).

If the isotropic base material is non-elliptic, however, then the effect of the
anisotropic parameter is as follows. Two possibilities have to be considered de-
pending on the fiber stretch. If the fiber is under contraction then the nesting
property is as in the case of an elliptic base material. If the fiber is subject to ex-
tension with a deformation gradient F, then if F € E for ay, then F € E is elliptic
for ag > ;. Therefore, deformation gradients giving rise to breakdown of ellip-
ticity are nested with respect to a in fiber contraction, while the elliptic regions
are nested with respect to a in fiber extension. This allows us to conclude that an
elliptic isotropic base material augmented with a convex reinforcing model gains
stability in fiber extension while it is weakened in fiber contraction. Similarly,
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as « increases, i.e. as the degree of anisotropy increases, the solid becomes more
stable in fiber extension, but less stable in fiber compression.

3.3. The case of two reinforcing models

The general analysis above does not depend on the fiber orientation in the
plane of deformation. This allows us to consider simultaneously the qualitative
effect of more than one fiber direction on the ellipticity status of an augmented
isotropic base material. The undeformed angles of the fibers have an important
role since a deformation gradient F may generate contraction in one of the fibers
and extension in the other, for example. The analysis could include several fibers
and several reinforcing models. However, here we focus on the simple case of two
fibers and the influence of their relative orientation under a deformation gradient
corresponding to (plane) pure homogeneous strain. Thus,

(3.19) F=)l ®¢ +)\_leg @ es,

where ey, ey are the (in-plane) Cartesian unit basis vectors.

Let the fibers be defined by the convex reinforcing models F} (Igl)) and
F(1{?) so that Wy, = Fy(IS"V) + Fy(1{?). Without loss of generality we take
fiber 1 to be aligned with e; in the undeformed configuration and hence L{‘” = A2,
Let the direction of fiber 2 be given by the angle ¢ relative to the e; direction in

the undeformed configuration. Because of symmetry it is sufficient to consider
0 < ¢ < w/2. Then, we have

(3.20) I = X2 cos? ¢+ A~ 2sin? ¢,

A preliminary step is to consider for which angles ¢ fiber 2 is in contraction or
extension for a given A. We consider separately the ranges of angles 0 < ¢ < w/4
and 7/4 < ¢ < w/2. Then it is easily seen that, for 0 < ¢ < 7/4,

if 0<A<tang or A>1 then I{¥>1,
(3.21)
if tang<Ai<1 then I¥ <1,

with If} = 1 corresponding to tan¢ = A. For n/4 < ¢ < 7/2 the corresponding
inequalities are

if 0<A<1 or tan¢ <A then If] >4
(3.22)

if 1<A<tan¢ then I‘Em <Dl

with again ‘,‘gz) = 1 corresponding to tan¢ = A.
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For this double reinforcement the strong ellipticity inequality (3.2) becomes

(3.23) 2Wig, (1) (A — A3)%nins + Wi, (I1)(Ainf + Ajn3)
+ (a-n)? (Wi, (14) + 2(a x n)*WEL(1)] > 0.

If A < 1 then fiber 1 is under contraction and FI(I‘EI’} is non-elliptic and con-
tributes a negative quantity IsF(I\") to (3.23) when n x e, = 0. If fiber 2 is in
extension it contributes a positive term to (3.23) and counteracts the effect of
fiber 1. If it is of sufficient magnitude this may have the effect of restoring strong
ellipticity. On the other hand, if fiber 2 is under contraction then it contributes
a negative term to (3.23) and enhances the prospects of loss of ellipticity. It
follows that compared with the material with a single reinforcement, the doubly-
reinforced, material gains stability if fiber 2 is such that #/4 < ¢ < m/2. For
A > 1, the opposite state of affairs applies: fiber 1 is in extension and contributes
a positive term to (3.23). Then, if fiber 2 is under contraction its contribution
to Whp is such that ellipticity may be lost, but if fiber 2 is extended then Wiy,
is strongly elliptic. The loss of ellipticity can be avoided if fiber 2 is such that
0<¢<7/4

4. The effect of I; reinforcement

In this section we consider the reinforcing model

(4.1) W (I, 1) = Wiso(I1) + Win(I5),

where I; has been replaced by I5 in (3.1) and we recall that Iy = (I; —1)I; — 1.
Thus, while in (3.1) I, and I4 are decoupled in (4.1) there is a coupling of I
and Iy through I5. For convenience, we write G(I5) = Wy, (I5) and we analyze
the reinforcing model G(I5), again with the restriction to plane deformations.
We will show that no particular property of the reinforcing model enables loss
of ellipticity of G(I5) to be avoided, unlike the situation for F(Iy).

The domain for I5 is 0 < Iy < oo and the condition I = 1 is satisfied in
many configurations (in addition to the undeformed configuration) depending
on the fiber orientation in the undeformed configuration. It necessarily entails
fiber contraction since, without loss of generality, if we consider A = e; then,
Is = C} + C? =1 if and only if Iy = Cy; < 1 provided Cja # 0 and therefore
necessarily involves the shearing indicator Cjs. It is worth noting that in general
(in plane strain) it follows from the connection (2.41) that Iy > 1 implies I5 > 1
while /5 < 1 implies Iy < 1 (in particular, note that Is = 1 implies Iy < 1, with
equality if and only if the material is undeformed). These implication do not go
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the other way. This can be seen by noting that the counterpart of the expression
(3.20) for I, obtained by replacing A by A?, is

(4.2) Is = M cos? ¢ + A~ sin? ¢.
Thus, by reference to (3.21) and (3.22), for 0 < ¢ < 7/4,
if 0<A<y/tan¢g or A>1 then I5>1,

if ytang< A<l then I5<1,
and for 7/4 < ¢ < m/2:

(4.3)

if 0<A<1 or +/tang<A then Iz>1,

if 1<A</tan¢ then I5<]1,

with Is = 1 corresponding to tan ¢ = A? in each case.
On substitution of (4. 1) into (3.2) we obtain

(4.4)

(4.5)  2Wigg(11) (A} — A3)*ning + Wig (1) (Afn + Ajn3)
+ 2G"(Is) [Is(A2 = A2)ning + (I, — 1)(n - a)(a x n)3]”
+ G'(Is) [(I - 1)(n - ) + Li(A3n? + A2n3)
+4(A} — M)ning(n - a)(a x n)3] > 0,

where (a x n)3 = ajng — agn,.
We note two special cases of (4.5). First, we note that if n-a = 0 then the
terms in G in (4.5) reduce to

(4.6) 2G" (Is) [Ia(N — Az)nlngl + LiG'(I5)(Min? + Ain3),
while if n x a = 0 they reduce to
A7) 2G"(Is) [La(A3 = AD)ning]” + LG (Is)(A3n? + A3nd + A2 + 23).

REMARK 5. In Sec. 3.1 it was pointed out that F(I;) does not admit a weak
surface aligned with the fiber direction. This is not the case for G(I5), as we now
show. We recall from (2.37) that G'(I5) < 0 for Is < 1. Thus, if either ny = 0 or
ny = 0, for example, the expression (4.6) is negative when I5 < 1, in which case
Iy < 1 and the fiber is under contraction. Thus, ellipticity can fail for I5 < 1. If
np = 0 (ap = 0) this corresponds to a weak surface parallel to the fiber direction
and may be associated with fiber splitting [9].
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REMARK 6. The case of (4. 7) with np = 0 and ap = 0 may be associated with
a weak surface normal to the fiber direction. Thus, failure of ellipticity under
fiber contraction can correspond to fiber kinking, as for the F'(I4) reinforcement.

REMARK 7. If the degree of anisotropy is sufficiently strong then the terms
in G dominate the left-hand side of (4.5) and hence loss of ellipticity cannot
be avoided under contraction if Iy is sufficiently small. Deformations satisfying
Is = 1 involve Cy; < 1 and Cy9 # 0 simultaneously. We can therefore conclude
that for deformation gradients satisfying Iy = C}; < 1 and I5 < 1 the material
is expected to lose ellipticity.

REMARK 8. Note that the coefficient of G'(I5) in (4.5) is not sign definite,
so that failure of ellipticity can occur even if G”(I5) > 0, i.e. if G is convex.

For the special case when a is an eigenvector of B the behaviour of the terms
in G in (4.5) can be seen as follows. Let a be the first eigenvector of B. Then,
n-a=mn; and (4 x n)3 = ny and the terms in G may be written as

(4.8) g(z) = —az® + (a + b)z +c,
where z = n? and

(4.9) a = 4142\ 14G" (I5) + (A — A3)G'(Is)),

(4.10) b=2LAG (I5), c=LA3G'(I5).

Note that the definitions of a,b and c differ from those in (3. 12).

Figure 5 shows the behaviour of g(z), which is very similar to that of i(z)
shown in Fig. 3 except that a, b, ¢ are different. Figure 5 (a) corresponds to fiber
contraction and it is clear that the negative contribution of the terms in G to
(4.5) near z = 0 and z = 1 will balance the positive contribution from strongly
elliptic Wig, whenever the reinforcement is sufficiently strong. In fiber extension,
corresponding to Fig. 5(b), loss of ellipticity requires @ < 0, but this is not
sufficient since the minimum value of g(z) must be negative. If this is the case
then loss of ellipticity occurs at an intermediate value of z. It follows from (4. 6)
and (4.7) that the weak surface is neither close to the fiber axis nor close to
the normal to the fiber. It is not clear how to interpret the associated failure
mechanism in this situation.

An illustration of a possible situation in which a is not an eigenvector is
provided by simple shear. Consider, in particular, a simple shear deformation in
which the direction of shear is perpendicular to the undeformed fiber direction.
For definiteness we take A = e and consider the simple shear with amount of
shear 7 so that a = ye; +e; and hence Iy = 1+42, Is = 1+ 372 ++*. Ifa-n =0
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then n = (—e; + yez)/v/Is and the contribution of the terms in G to (4.5) is
then

(4.11) 2G" (Is)y* (72 + 4) + G'(Is) (A + ¥*A72).
(a) <0 (b) >0
g(I) /\) 0 Q(I) a>0
0 z 1
a>0
a<0
T
| SR A

FiG. 5. Properties of the function g(x) for z = nf.

REMARK 9. It follows from (4.11) that for a simple shear deformation in
which the direction of shear is not parallel to the fiber direction (and, in par-
ticular, when it is perpendicular to the fiber direction) a necessary condition
for loss of ellipticity (if the base material is strongly elliptic) is G"(I5) < 0. In
this case the weak surface is parallel to the fiber direction and de-bonding is the
appropriate failure mechanism.

REMARK 10. If, instead of a-n = 0, n is parallel to a then a similar situation
to that described in Remark 9 ensues. In this case the weak surface is perpen-
dicular to the fiber direction and the appropriate failure mechanism is matrix
failure.

REMARK 11. If the isotropic base material loses ellipticity with Wi becom-
ing negative then overall ellipticity can fail either forn-a=0ornxa = 0.
With reference to (4. 5), it can be seen that this can occur for G'(I5) and G"(I5)
with appropriate signs.

Figure 6 shows a schematic of the possible failure mechanisms for /5 < 1 and
I5 > 1 and the associated properties of G(I5).

5. Discussion and Summary

This analysis has been motivated by instability phenomena in fiber-reinforced
composite materials and has focused on failure prediction. The materials con-
sidered are isotropic base materials augmented by a function that accounts for
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4| Loss of
G(I
'S ellipticity for Loss of
G'(Is)<0 ellipticity for
(sufficient) G'(Is)>0
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+ surface
ﬁbef { *
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F1G. 6. Loss of ellipticity associated with G(Is) for the case of a strongly elliptic isotropic
base material.

the existence of fiber reinforcement (the reinforcing model). The onset of failure
is associated with loss of ellipticity of the governing differential equations. A de-
tailed analysis of the ellipticity status of the I4 reinforcing model has been given.
In particular, in Sec. 3 simple conditions that guarantees the ellipticity of the
I4 reinforcing model has been determined. It was found that loss of ellipticity
(and hence fiber failure) is expected under fiber contraction. Fiber failure may
also occur under fiber extension if the reinforcing model is non-convex. In Sec. 4,
the I reinforcing model has been considered briefly and its effect on the loss of
ellipticity has been illustrated in some simple cases. We have indicated how the
breakdown of ellipticity may be related to different fiber failure mechanisms.

It should be emphasized that we have focused on instabilities associated
with loss of ellipticity in a homogeneous material homogeneously deformed so
that boundary conditions are not involved. We have not considered other types
of instability such as buckling, which, under appropriate boundary conditions,
may be initiated prior to loss of ellipticity.
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