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UsING AN EXAMPLE of transversal isotropy, the limit condition having an energy
interpretation for anisotropic bodies proposed by J. RycHLEWSsKI [11] has been illus-
trated. Transversal isotropy is characterized by the highest degree of symmetry, for
which the spherical tensor is not any more the eigenstate of the compliance tensor C.
In the case when the spectral decomposition of the compliance tensor C is taken as
a main energy-orthogonal decomposition, the limit condition representing a gener-
alization of the Maxwell-Huber-Mises condition is obtained. For a prescribed form
of the limit tensor H, the Mises condition is presented in the form of a sum of
elastic energies corresponding to uniquely defined energy-orthogonal parts of stress
with certain weights, representing the limiting values of those energies. The effect of
Burzyniski's condition on the form of anisotropy and on the limit condition is dis-
cussed. Experimental tests are proposed which could be useful in determining the
physical parameters describing the transversal isotropy.

1. Introduction

IN THE MECHANICS of continuous media, in formulating the constitutive equa-
tions, an important role is played by the conditions which limit the region of
applicability and validity of these equations. These are usually certain criteria
limiting the material strength measures, without any detailed analysis of the
state of stress. Hence, it may be the passage from linear to nonlinear elasticity,
the limit of appearing of the irreversible deformations (plasticity), appearing of
viscosity or other structural changes of the material.

Most of the known limit conditions have a definite energy interpretation, i.e.
they are certain limitations imposed on the energy (or its parts).

We are thus discussing the truly classical materials, in which the infinitesimal
strain € causes the stress o according to Hooke’s law

(1.1) e=C-a, =8¢,

(1.2) Co8=8cC=1Is,
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where the fourth-rank tensors C, S, lg are the compliance, stiffness and unit
tensors respectively, of certain symmetry. In indicial notation expressions (1.1)
and (1.2) assume the form:

(13) E5 = Ct'jkio'kls Tmn = Smm’jfzjs

1 e
(1-4) Si}'mnCmnki = Cijmnsnmk! = 5(611:"3'! nE 5'&!5}!:)-
From Hooke’s law (1.1) it follows that the elastic energy density ® is
given by

1 1 1
].‘ (b = - . = - . . = —F . S v E.
(1.5) (o) 20’5250025 €
In the case of isotropy, energy ® may be presented in the form of a sum of the
energy connected with the change of volume ®(oI) and the change of shape ®(s),
namely

(1.6) Slole Blol L bl s s =i,

1
where 0 = —tro and s = o — ol.

Hooke’s law (1.1) describes the behaviour of the material within the elastic
range, i.e. as long as the strength condition does not reach the critical value.

The objective of this paper is to formulate the limit condition for anisotropic
bodies.

M. T. HUBER [5], on defining the limit criterion for isotropic bodies, assumed
that only the distortion energy decided on passing of the material to the plastic
state, i.e. only the part ®(s) of the elastic energy ®(o) (1.6) enters the yield
condition. This concept of assuming the distortion energy to be responsible for
appearance of the plastic deformations, can be also found in the papers by
Misgs [16] and HENCKY [2].

The limit condition

(1.7) -1-<I>(s} <1, where h= k—2
‘ B el
is equivalent to

(1.8) s-s = 2k’

and is well known in the literature as the Huber-Mises-Hencky condition. It is
one of the most frequently applied conditions for isotropy.
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J. RYCHLEWSKI, on preparing the paper [12| for print, found a private letter
written by C. MAXWELL to Lord KELVIN in 1855 [7], suggesting that the condi-
tion of appearing of plastic strains is reaching of a certain limiting value by the
distortion energy ®(s). Hence RYCHLEWSKI, in his paper [12], proposed to call
the condition (1.7) the Mazwell-Huber-Mises limit state condition.

When the linear-elastic anisotropic bodies are dealt with, we must decide
upon a proper generalization of the Maxwell-Huber-Mises condition (1.7).

In case of anisotropic bodies, there is no physical reason to consider the
hydrostatic state as a state playing a decisive role in formulation of the strength
measures. For bodies with a definite type of anisotropy, the tensor characterizing
the anisotropic structure may prove to be the characteristic tensor. The spherical
part of the stress tensor may thus enter the limit condition.

When an arbitrary anisotropy (1.1) is considered, the decomposition of en-
ergy into the parts connected with the change of volume ®(oI) and the change
of shape ®(s) (1.6) is impossible.

From Eq. (1.5) it follows that for anisotropy (1.1)

(1.9) 20(0)=0-C-0=0’1-C-1+s-C-5+2I-C:s.
When
(1.10) I.C-s#0,

decomposition of the energy ®(o) into ®(olI) and ®(s) is not possible.

In the corresponding literature we can find the attempts of discriminating
the spherical parts of a stress tensor also for the anisotropic bodies. Huber’s
pupil, W. BURZYNSKI, in his Ph.D. dissertation [1], formulated the hypothesis
that there is no physical reason against the introduction of the decomposition of
the elastic energy into these two components ®(cI) and ®(s) (1.6) in the case
of anisotropic bodies as well.

The Burzynski hypothesis is equivalent to assuming in Eq. (1.9) the condition

(1.11) I-C-s=0,

what means that all anisotropic bodies are voluminally isotropic.
The unit tensor I is then the eigenstate for the compliance tensor C, i.e.

(1.12) C-I=)IL

http://rcin.org.pl



500 K. KowaLczyK and J. OSTROWSKA-MACIEJEWSKA

In the arbitrary Cartesian coordinate system with orthonormal base my,
condition (1.12) is equivalent to the set of the equations:

(1.13) Cr211 + Cia22 + Cr233 = 0,
(1.14) Ciann +Cizz2 +Cizas = 0,
(1.15) Ca311 + Ca3o2 + Ca333 = 0,
(1.16) Cinn — Caze2 = Ca233 — Chuas,
(1.17) Ciinn — Cazaz = Cho3z — Crize.

Equations (1.13)-(1.17) represent certain constraints imposed on the type
of anisotropy. The number of independent components of the compliance tensor
C is then reduced from 21 to 16.

The Burzynski conditions (1.13) - (1.17) are satisfied identically in cases of
isotropy and in materials with cubic symmetry. In other cases the conditions
introduce certain additional limitations.

Certain attempts of formulating the limit criteria for some classes of aniso-
tropy were made in papers [8, 9]. The problem has been solved completely
by J. RYCHLEWSKI in the paper [12].

Rychlewski, looking for the limit condition in the form proposed by MIsSES [17]

(1.18) o-H o<,

introduced the notion of energy-orthogonal states of stress and proved thas every
condition of the form (1.18) had an energetic sense. It means that each quadratic
criterion (1.18) has a definite energy-based interpretation.

It is a pity that paper [12] of such a fundamental importance, has not ap-
peared in English translation till now. The paper [12] in its present form doesn’t
contain any examples of application of the obtained results to the derivation of
the limit conditions for some types of anisotropy.

This paper is aimed at following the way of reasoning of RYCHLEWSKI [12]
in formulating the limit condition (1.18) for the case of transversal isotropy.

Transversal isotropy is selected because it is the type of anisotropy charac-
terized by the highest symmetry properties, for which the spherical tensor is no
more a proper elastic state.

2. Main energy-orthogonal decomposition

According to the definition given in paper [12] two states of stress a,8 € S
are called energy-orthogonal if

(2.1) axf=a-C-8=0.

http://rcin.org.pl



ENERGY-BASED LIMIT CONDITIONS. .. 501

Equality (2.1) means that the state of stress a does not perform any work on
the deformations produced by the state of stress B and vice versa.

It is easy to prove that the proper elastic states of the compliance tensor C
are energy-orthogonal as well (see also [13,14]).

It is well known that the proper states of C [11] corresponding to various
elastic moduli (Kelvin moduli) are orthonormal

(2.2) wg wr = 0kL.

If

(2.3) C-wg = 2wy

then

(2.4) wrp Cwrg=wr - A lwg =21k
and for K # L

(2.5) wr-C-wg =0.

Equation (2.5) means that the spectral decomposition [11] is at the same time
the energy-orthogonal decomposition. It is not true inversely. The spectral de-
composition in RYCHLEWSKI's paper [12] was called the main energy-orthogonal
decomposition.

The approach to the problem of formulation of a quadratic limit condition
(1.18) will be illustrated here by an example of transversal isotropy.

In order to find the main energy-orthogonal decomposition, the spectral de-
composition must be determinated first.

Transversal isotropy was already considered in papers [9] and [11]. In those
papers the main energy-orthogonal decomposition was used. It means that elastic
and plastic properties were dependent.

The material is called transversally isotropic if it contains a certain direction
k ® k such that all shearings of the type

T = a®@k+k®a,
(2.6) , where a-k=b-k=a-b=0
T = a®b+b®a

are the eigenstates for the compliance tensor C.

The anisotropic elastic properties are represented by the fourth-rank tensor
C. In this paper we will follow the notation representing the elastic coefficients
as a second-rank tensor in a six-dimensional space. Stress and strain are consid-
ered then as vectors in a six-dimensional Cartesian space as well as second-rank
tensors in three-dimensional Cartesian reference system.
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The space S of symmetric tensors of second-rank is six-dimensional. Base
(polybase) of this space will be created by six linearly independent tensors. If
in a physical space the base has the form of a orthonormal triad of vectors my
selected so that mz = k, then the bases in S are formed by dyads m; ® my.

There are infinite number of polybases in S. As the most natural base in S
we consider the orthonormal polybase eg € S (8 = I,11,...,VI) of the form

7 | 0]
(27) e; = m@m; ~ 0 0 0 ,
[0 10 Q)
[0 0 0]
(2.8) ey = m@mp~ |0 1 0 |,
[0 0 0]
000
(2.9) errr = k®k~ [0 0 0 |,
0 0 1
1 1 T
2.10 e = —(m®k+k® ~—| 0 0 11,
(2.10) v \/5( 2 my) 7
01 0
1 I [0 6 1
2.11 ey = —(ke® R ky~— |0 0 0|,
( ) V \/i( m, ml@) \/i
el G
1 1 01 0
212 r= —= + m: ~—11 0 0
(2.12) eyy ﬁ(m1®m2 m; ® m,) 7 B

Three-by-three matrices representing the components of the tensors eg are
taken in the base my.

In order to discuss the Burzynski conditions (1.13)-(1.17) it will be more
convenient to consider another polybase a, € S in which the spherical tensor is
discriminated. The remaining tensors are deviators.

Tensors a, € S (e = I,11,...,VI) also form the orthonormal base in S and
can be written as follows

1

1
(2.13) a = moeom +me@me+k@k)~—| 0
0

et
73 73

o= O
— o o
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(2.14} aj; =
(215) ayr =
(2.16)
(2.17)
(2.18)

1

—=(m; ® m; — my; @ my)

B2

vl

=
;

ajy =
ay =

AV Tia=

erv,

ey,

eyr.

1

P —

V2

oo -

m; ®m; + my; @ my — 2k @ k) ~

0 0
=1 0],
0 0
1100
— |01 0 |,
‘/600-—2

The basis a, and eg are connected by the rotation Qup in six-dimensional

space, namely

(2.19)

(2.20)

QkL =

0

a, = Qasep,

where the matrix (Qog has the form

0

0
0

1
0

0
1

In the case of transversal isotropy the fourth-rank compliance tensor C, which
has components Cjj;; relative to the base my, is represented in the polybase eg
by the following six-by-six matrix [15]:

[ Cin Cn
Cnz Cn
Cusz Cn

0 0
0 0
L 10 0

22 C"1133
11 Cl 133
33 Cia3s

0

0

0

0
0
0

2C1313

0
0
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It means that transversal isotropy is described by only five independent compo-
nents of C, namely

(2.22) Cini, Cazsz, Cnze, Cuass, Ciaa.

The matrix Cyg (2.21) after rotation (2.20) will change its form according to
the formula

(2.23) Cun = QmaCasQns-

The matrix Cyn represents the tensor C in the polybase a, and can be express-
ed as

(2.24) C~ Cun

A 0 B 0 0 0 ]
0 Cun—-Cu2z2 0 0 0 0
B 0 T} 0 0 0
“lo 0 0 2Cisi3 O 0
0 0 0 0 2C313 0
| 0 0 0 0 0 Cun-Cuz |
The following notations are introduced:
1
(2.25) A = 5(201111 + 2C1122 +4C1133 + Caaaz),
V2
(2.26) B = T(C““ + Cri22 — Cr133 — Ca333),
1
(2.27) D = g(Clm + Ch122 — 4C1133 + 2C3333).

In order to construct the main energy-orthogonal decomposition of the space
S for transversal isotropy, spectral decomposition of elasticity tensor has to be
found out.

Spectral decomposition of elasticity tensor [11] opens completely new possi-
bilities for comparing elastic materials. The spectral decomposition of the com-

: g : < 1 ;
pliance tensor C is known if there are known all eigenvalues = and eigenstates
K

wpg of C.

Elastic moduli Ag (eigenvalues of the stiffness tensor S) will be called af-

1
ter Rychlewski — the Kelvin moduli. For the eigenvalue > of multiplicity one,
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the proper state w* — eigentensor corresponding to it, is given uniquely by the
following relation

1
(2.28) Cw' ="

In this case the orthogonal projector P* has the form
(2.29) P*=w"@uw".

When Kelvin moduli are not distinct, i.e. there are some eigenvalues of mul-
tiplicity two, three or more, then there exist infinite number of possible eigenten-
sors from which the basic eigentensors may be selected. They create the proper
subspaces Pk [11]. The subspace Pk contains all proper elastic states correspond-
ing to the elastic modulus Ag. The orthogonal projectors P defined uniquely,
map the space S onto subspaces P .

(2.30) Pg-o=0ck € Pg.

In the polybase wg — eigentensors, which are selected so that the form an or-
thonormal set in six-dimensional space, the matrix six-by-six for C has a diagonal
form with eigenvalues on the diagonal.

From (2.24) it is implied that for transversal isotropy, the following compo-
nents

(2.31) 2C1313, Ciinn — Crize

are eigenvalues for C of multiplicity two. If we denote respectively by

1 1
(2.32) — =2C1313, + =Cun —Cua2,

A3 Ay
then the proper subspaces P3 and Py corresponding to them are two-dimensional.
They are created by tensors of the following form:

0 0 p u v 0
(2.33) o3~| 0 0 g |€eP;, o4~| v —u 0 | €Py.
p g 0 0 0 0

An orthonormal base in the subspace P3 may be taken as follows:

(2.34) wiyy = ey = (m; @k +k®m,),

Sl
Ll ]

(2.35) wiy = (my; @k + k®my).

ey = —
v 73
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Two tensors of the form

1 1
2.36 wy = aj=—7(ej—ey)=—(m @m; —my ® my),
(2.36) v I ﬁ(! 1) \/§{ 1 1 2 2)
1
(237) wy; = ew=\—/—§(m1®mz+mz®m1)

may be selected as a base in Py .
Two distinct Kelvin moduli A; and Ay are obtained from the characteristic
equation

d== B 1\? 1
(2.38)  det A . =(—) ~(A+D)~ + AD - B% =0.

B e ull ) j
A

Both moduli A; and A9 are of multiplicity one and have the form

(2.39) il = %[A+D— \/{A—D)2+4B2],
(2.40) At o= % [A +D+(A-D)? +4B2] .

The parameters A, B, D are described by relations (2.25) - (2.27).

The proper states corresponding to A; and Ay (2.39) - (2.40) create two one-
dimensional subspaces P; and P,. They are orthogonal to each other and or-
thogonal to P; and Pj.

From (2.24) it is implied that the eigentensors, proper states w; and wj;
corresponding to A; and A, may be obtained from the tensors a; (2.13) and
asrr (2.15), by rotation, namely

(2.41) wr = cos(R—Rop)a; + sin (X — Np)ayy,
(2.42) wrr = —sin(R—Ng)ay + cos (R — Ng)ayyy,
where

(2.43) Ryp= tanRy = V2

and

(2.44) tan2(R — Rp) = % (A # D).
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Thus substituting values of a; and a;r into (2.41) - (2.42) we immediately arrive
at the result

(2.45) @ = % [sin RI + V3sin (Rg — R)k ® k] :
(2.46) frr (= % [cos RI — v/3 cos (Rg — Rk @ k] :

Tensors w; and wyy in the base my have the following matrix representations:

1 sin R 0 0
Wy~ — 0 sin® 0 )
V2 0 0 V2cosR®
(2.47)
cos R 0 0

Wi~ — 0 cos® 0
V2 0 0 —2sinR

Finally the spectral decomposition of the compliance tensor C (1.1) for the
transversal isotropy has the form:

1 1 1 1
2.4 C=—P —P —P —P
(2.48) e 1+A2 2+/\3 :'.Jr’,,\4 4
1 1 1
= —w QW+ —wip®wir+ —(wr @wir +wry ®wyy)
Ay A2 A3

+ i(wv wy +wy Bwyp).

The Kelvin moduli Ay, Ag, A3 i A\q are given by formulae (2.32) and (2.39) -
(2.40).

The spectral decomposition of the space S = P @ P, @ P3@® Py is in the same
time the main energy-orthogonal decomposition. Hence transversal isotropy is
described now by Ai, A2, A3, Ay and R instead of the parameters (2.22).

Decomposing a stress o € S into the parts o, o = Pk - o in the proper
subspaces Py we obtain that

(2.49) o=0,+09+03+04, oK € Pg.

The above decomposition has a unique form. Since this decomposition is energy-
orthogonal as well, then the elastic energy ®(o) (1.5) may be written as the
following sum:

(2.50) P(o) = (o) + ©(o2) + ©(o3) + P(od)
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where

(2.51) @(0’1} = %0‘1 -C- a
1

1 2
= 2—/\10'1'0'1 = R I:Silthl’Cer‘\/;jSiIl(NU'—N}k'O"k:I s

1
(252) (I’(O'z) = 50’2 - C- (e 0]

1
= oy O =

2
T & [cosNtra— V3 cos (Rg —N)k-o‘-k] :

(253) @(0'3) = —-03- C- a3

= ~La4 1oy = % {{(m;-0-m;)—(my-0-my)]*+4(m; -o-my)*} .
4 4

From (2.50) - (2.54) it is implied that

2
(2.55) 2®8(0c)=0c-C-o [sin Rtro + v/3sin (N — &)ko-k}

= Ak
T2

2
+ iy [cos Rtro — V3 cos (Rg — N)kcrk]
2X2

+%[(m1-a-k)2+(m2-a-k)2]

+i{[(ml o -my) — (my - o - my)] +4(m, -a"mg}?}.

The limit condition of the Mises type (1.18) representing a generalization of
the Maxwell-Huber-Mises condition for transversal isotropy may be taken in the
form [9]:

1 1 1 1
(2.56) —®(0) + —P(o2) + —P(o3) + —P(o4) <1
hy ho hs hy

where h, are energy limits of elasticity ®(o,) (2.51)-(2.54).
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It means that the limit criterion (2.56) bounds the weighted sum of stored
energies, corresponding to uniquely defined, energy-orthogonal parts of stress.
Taking the yield condition in the form (2.56) we assumed that the tensors C and
H were coaxial.

Let us denote by M the dyad k @ k i.e.

(2.57) M=k@®k,

then the elastic energies ®(o k) may be expressed in the invariant form [10]:

1 r 12
(2.58) ®(o1) = — |V2cosR [ trMs + ll;rcl' —sin® | trMs — gt.rc:v' -
Dy | 3 By
Tl 2 ; i, =
(2.59) ®(o2) = Yo cos R atra' — trMs ) — V2sinR ( trMs + gtra' .
2 | J

(2.60) ®(o3) = ,\i [trMs? — (trMs)?],
3

(2.61) ®(oy) = %; [trs2 — 2trMs? + %(ers)Q] .

Denoting by o;; components of a stress tensor o in the base my, the following
symbols can be introduced:

(2.62) PR m (o1 + 022 + (1 —7)os3),
(2.63) aie= mﬁ (011 +om—1 37033) ;
(2.64) 0= % (011 — 022) ,

(2.65) v = o012, p=013 q= 033,

and

(2.66) 1—v=+v2cotX.

The graphical illustration of the parts of stress o € Pk (2.49) is presented
in Fig. 1.
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I

F,
u
— 1
u | u

u

FiG. 1. Graphical illustration of subspaces P of the proper states of C for transversally
isotropic solids.

3. Safe states of stress

The energy is the most universal physical notion. The idea that the stored
elastic energy is an appropriate measure of the mechanical behaviour of the
elastic material is quite widely acceptable.

The classical Maxwell-Huber-Mises condition (1.7) limits the distortion en-
ergy only. Consequently, plastic deformations occur in the plastic shaping process
and are not accompanied by volume changes. It means that the spherical parts
of stress tensors are Safe.

In case of anisotropic bodies, there is no physical reason to consider the
hydrostatic state as a safe stress. Depending on the type of anisotropy, different
states can be taken as safe stresses. Using an example of transversal isotropy we
assume that two different states of stresses are safe.

The limit condition (2.56) which is based on the main energy-orthogonal
decomposition is discussed. If energy limit of elasticity hg tends to infinity
(hg — o0) then the subspace Pk consists of safe stresses. In contrast, while
a state of stress o} € Pk (o) is a proper state) is a safe stress then the energy
® (o} ) does not enter the limit condition. It means that hg, an elasticity limit
for @ (o} ), tends to infinity.
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The situation becomes more complicated if the proposed safe stress is not
a proper state for the compliance tensor C. Still the limit conditions (2.56) is
under consideration.

Now let us assume that the hydrostatic pressure is the safe stress as it is for
isotropy. We remind that the spherical tensor is not a proper state for transversal
isotropy. Now, we consider two different states of stress

(3.1) o =0g,l+s, o®=ol+s, o4#0y,

with the same deviatoric parts s and different isotropic parts.

Since it has been assumed that the hydrostatic pressure is safe, the function
(2.56) in the limit state should have the same value for both states of stress,
namely

1

(3.2) =

1 1 1
(o) +.—2(03)+—2(03)+—2(0])
ho hs h4
= Lo(ot)+ Lo(0h)+ L 0(0) + - B(ct)
T i R P
where o = Pk -o® and O'g( = Pk - 0. The above condition, after using
Egs. (2.51) - (2.52) can be rewritten in the form

L (0(0%) - ®(oh) = 0.

(33) —(@(0f) - @(ah) +
2

Finally, after substituting (2.51) - (2.52) into (3.3) and taking advantage of the
fact that o, # o, we obtain the following equation:

(3.4) Eli'(aa o) [COSQ(N—-NQ) 2 sinz(N‘—No)]

Mhi AR

sin 2(R—Ry) [ 1 1 ]
f— g e
2\/5 (S a!!f) Alhl A2h2

which should be satisfied by any o, op and s. In particular it is convenient to
assume that for s = 0, two following cases are considered:

(3.5) oy = —0, and oy # —0g.
By combining the above assumptions we obtain from (3.4) the following con-
ditiOnsi

1
e h_;z_fgzo’ when R # N
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® —}-:— =0 and hi # 0, when X = R (the spherical tensor is the proper
stia.te of C). 5

We note that for R # R the spherical tensor can be a safe state only then
when the subspace P; @ P, € S is the subspace of safe stresses.

As an example of transversally isotropic materials, the fibre-reinforced com-
posites are considered.

Let us suppose that tensions in the privileged fiber direction k are safe
stresses. It means that the fibres are inextensible or they are much stronger
than the matrix material. In a general case the tension in the k direction is not
a proper state for transversal isotropy.

Now, we consider the following two states of stress

(3.6) oc‘=0k®k+p, ol=04+p, o.#04 and k-p-k=0

only with different projectors on the k direction.
Using the analogous way as above we conclude that the state ak ® k is safe
only when:
1

° —=i =0, forR#0,
hi  ho
1 1 ; :
- 57 =0 and o # 0, for R =0 (it means that the state ak ® k is the
proper state for C).

We note that for R # 0 the obtained conditions are, at the same time, the
conditions which are satisfied when all stress states from the subspace P, @& P,
are safe, including the states for which k- o -k = 0.

In the real material the assumptions that the spherical tensor and the tension
in the k direction are safe states do not necessary implicate that any state of
stress o € P, @ P, for which tro =0 or k- o - k = 0 is safe.

The proposed yield condition (2.56) is one of the possible generalizations of
the Maxwell-Huber-Mises condition for the case of anisotropy. We have estab-
lished it for anisotropic bodies for which elastic and plastic properties are depen-
dent, namely the tensors C and H are coaxial. In a general case the fourth-rank
tensor H proposed by MISES [17] can be assumed to be arbitrary.

4. Physical interpretation of material parameters for transversally
isotropic solids

Transversal isotropy is described by the following five parameters: four Kelvin
moduli - Ay, Az, A3, Ay and one stiffness distributor R.

In order to determine these parameters some experimental tests should be
proposed. The values of the moduli A3 and A4 can be determined without special
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difficulties. Taking for each of them two states of stress from the subspace P3 or
P; respectively, we find relations between stresses and strains (see Fig.2). Hence,
it is implied that A3 and A4 are as follows:

(4.1) tanp; = A3z, tangps = A\

where the angles ¢; and 9 are shown in Fig. 2.

r
1

Bl=‘-A”E'

T2

&:Alff

FiG. 2. Proposed experimental tests useful in determining the Kelvin moduli Az(a) and
Aa(b).

Calculations of the remaining three parameters are more complicated. We
propose the experimental tests illustrated in Fig. 3 together with the obtained
stress-strain relations.

Both the proposed states of stress have the orthogonal projections onto sub-
spaces P, and P;.

For simplicity, the following notations are introduced:

€l

(42) ry=2L=28 (Fig3): r=2="1 (Figb) 7=rs—00rs
Ea €11 Eh £33
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If the value of 7 is known then the stiffness distributor X can be found from
the relation

2
(4.3) cot 2R = %f.
3 i |
g=Aala g=Alll
!
E 8.
o
v
b) T o, »
P
Op
< e,=Ab/b
| e=AWh
ap = [a]
(B
Tk e

lop

Fi1G. 3. Proposed experimental tests useful in determining the Kelvin moduli A; and A; as
well as the stiffness distributor R.

We note that # = —1 for cubic symmetry and isotropy.
The Kelvin moduli A; and A for a known value of the stiffness distributor R
are given by the formulae

(1 — cot? R) tan @3 tan pq

4.4 M=
(4.4) ; tan 3 — cot? N tan ¢4

(1 — cot? R) tan 3 tan @4
tanyg — cot?Rtangpz

(4.5) Ay =
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Let us consider two special cases of transversal isotropy, depending on the
value of R, namely:

e N =Np,

e N=0.

From Egs. (2.44) - (2.45) it is implied that for R = R the spherical tensor
is a proper state and B = (. Consequently we conclude that the Burzynski
conditions (1.13) - (1.17) are satisfied. In this case the number of independent
material parameters reduces to four.

On the other hand when R = 0, tension in the direction k is a proper state
(see Fig.3a) and we have ¢, = €] = €29 = 0. From Eqgs. (2.44) and (2.25)
it is implied that Cj;33 = 0. We should emphasize that in both cases some
extra constraints are imposed on the material because the stiffness distributor
is determined.

Carrying on the proposed experimental tests (see Fig. 2 and Fig. 3) until per-
manent deformation or damage appear, we can determine the values of elasticity
limits kg in the limit condition (2.56). The elastic energies in the limit state for
each of the tests can be expressed as follows:

- 1
(4.6) ®) =1/€e], Po=136 B3= §o’£f, P4 = 0,€;,
where (.)* denote the values of the stresses and strains in the limit state (see

Fig. 2 and Fig. 3).
Thus substituting the found stiffness distributor value into the formulas
(2.51) - (2. 54) we obtain

(k1 — ko) P3Py

hy = ,
YT A2k — Rk + 1)@ — (2 k1)®3
(4.7)
s (k1 — kg) P3Py
4(2ky — ko — 1)®4 + (2 — k1) D3’
(4.8) hy = @1, hy =y,

where the following parameters are introduced:

4
(4.9) k1 = cos 2R (1+_—) . ko = cos2R (1+ _l) .

TS Ty

We note that the state of stress is safe if for sufficiently high value of it the limit
condition is not reached.
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5. The Mises limit condition for transversal isotropy

The limit condition proposed in Sec. 2 is based on the main energy-orthogonal
decomposition. It is in some sense a generalization of the Maxwell-Huber-Mises
yield condition for anisotropic materials. Formulating that condition we have
assumed that elastic and limit properties are mutually dependent. Tensor C and
H are coaxial. In real materials they can be arbitrary.

MISES [16,17] proposed the limit condition in the form

(5.1) s-H-s<1.

It means that he introduced the fourth rank limit tensor H responsible for limit
properties. Besides, he assumed that the spherical part of stress tensor is safe.

When anisotropic materials are considered, there is no physical reason to
privilege the spherical tensor. This assumption is in common use in hydrody-
namics and isotropy.

Rychlewski [12] introduced the limit condition (1. 18) which is in some sense a
generalization of Mises one (5.1). He considered the quadratic form o-H-o > 0
instead of (5.1). According to the proposed condition, the stress & is safe if the
following condition

(5.2) 6-H-6=0

is satisfied.

We should emphasize that MISES did not bind up the condition (5.2) w1t.h
stored elastic energy. Rychlewski [12], considering two quadratic forms (1.5) an
(1.8), i.e

(5.3) c-C-0 and o-H-o,

proved the theorem that any stress measures of the form (5.3) have uniquely
determined energy-based interpretation and they may be decomposed into the
following sums:

(5.4) %o’-C-a’ = &(o) = ®(a1) + (02) + ... + B(Fy),
(5.5) T . D Y P P
: }-11 1 }'12 2 xEs F],x X
where
o % ; > &~ 0, a#p
(66) o=o1+..+0y, x<6 and &, Xﬂg—{ R T
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It means that &, are energy-orthogonal states of stress (2. 1), while the param-
eters h, are energy limits of elasticity ®(&,). We should emphasize that the
states of stress (5.6) need not be orthogonal, i.e. &, - o5 # 0 for a # .

The purpose of this work is to demonstrate the limit condition of the form
(5.5) for transversal isotropy. Using Rychlewski’s approach proposed in paper
[12] we will find the energy-orthogonal decomposition of the space S (5.6)
and moduli hg.

The quadratic form (5.2)b may be rewritten in the form

(5.7) oc-H-oco=0cx(SoHoS)xo

where the definition of the energy scalar product (2.1) and the condition (1.2)
were used.

Fourth-rank tensor S o H o S realizes a symmetric linear transformation of
the space of symmetric second-rank tensors S into itself, i.e.

(5.8) (SoHoS)xa=8, a,B€S.

Tensor & is a proper state of the operator (5.8) if

1
5.9 SoHoS)xk=—K.
(59 ( ) x K=o

The operator SoHoS is a symmetric one, thus there is a set of energy-orthogonal

: 1
tensors K, corresponding to the values ——
x

(5.10) Ka X Kg = 0ag.

Equation (5.9) after using the definition of energy scalar product (2.1) and
multiplying left-sided by C, takes the form

1
(5.11) (H-C) 5 =0.

1 _

States i create the kernel of the operator H— 5.—0 but moduli h are determined
)

from the equation

1
5.12 det(H - —C) =0.
(5.12) R

If the moduli h, are distinct, the energy-orthogonal states corresponding to
them have unique form. For multiple moduli A, the energy-orthogonal states K,
form the subspaces H, C S.
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Let us denote by P (a = 1,...,x) the projectors of a stress tensor o onto
the energy-orthogonal subspaces H,; then

(5.13) 6o=PH xo, 6,€H,.

We want to emphasize that the tensors C and H in (5.11) are mutually inde-
pendent.

Usually, some coupling of elastic properties with the limit ones is observed.
For instance, it can be assumed that C and H are co-axial [12] that is they have
the same eigentensors. In this case solution of Eq. (5.11) becomes simplified. For
transversally isotropic materials it leads to Eq. (2. 56) given in the Sec. 2.

In this section we will focus on the case of transversally isotropic material
for which tensors C and H are not coaxial. We only assume that the orientation
of the preference direction k is the same for material in the elastic range as well
as in the limit state. The matrix representation of the compliance tensor C has
the form (2.21) or (2.24) according to the basis.

HiLL in 1948 [3,4] proposed the yield condition of the form (5.1) for mate-
rial with orthotropic symmetry. It was expressed by six independent components
of the limit tensor H. When transversal isotropy is considered, the number of
independent components of H reduces to three [6]. Therefore the matrix repre-
sentations of H in the polybases (2.7)-(2.12) and (2.13)- (2. 18) respectively
are as follows:

[ g+n g—n -2¢g 0 0 0 ]
g—n g+n —-2¢g 0 0 0
1] —-2¢g -29 4 0 0 0
2 e 0 0 2m 0 0
0 0 0 0 2m 0
L 0 0 0 0 0 2n|
and
0 8 @ 6 0 01
0O0n O O 0 O
003 0 0 0
5 ~
{35 H~l00 0 m o0 o0
B0 O 0 m 0
iR A ¢ VO IR ) S R

Notations are taken from the HiLL paper [3].

It is easy to prove that the spherical tensor is a safe state. Then the equation
(3.2) is satisfied. We note that the matrix representation of H (5.15) in the base
a, has a diagonal from. It means that the tensors a; are the proper states for H
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and the componenets 3g, m and n on the diagonal are the proper values. For
the spherical state the corresponding proper value is equal to 0.

In order to obtain the energy-orthogonal decomposition (5.6), the matrix
representations of C and H in the base ag are used, Eq. (5. 12) reduces to the
form

2
(5.16) — |a3g— 2D)+ l.ﬁﬂ] [m = %01313]
1

2h 2h 2h

1 2
e C —C =0.
[ﬂ Zh( 1111 1122)]

The solution of the above equation is created by two roots of multiplicity two
and two single ones. The double roots have the form:
Ciaiz _ 1 o Cun—Cun _ 1

m 2X3m’ 2 2n 2un’

The proper states & corresponding to the proper values (5.17) form two sub-
spaces Hz = P3 and Hy = Py, respectively. Both subspaces are two-dimensional.
They consist of the tensors of the form (2.33).

An energy-orthogonal base in the subspace H3 may be taken as follows

(5.17) hs =

(5.18) Kirr = VAwi,  Kiv =V Awpy,
and in the subspace Hy the base may be selected as
(5.19) Ky = VAwy, kyi=\VMwy.
Two single roots of Eq. (5.16) have the following form:

= R _ B2
(5.20) hy = 00, hy= bt .

649  6A\ihaAg
The energy-orthogonal states k& corresponding to them are given by formulae

(5.21) n—ia = i— a—Aa

The subspaces H; and Hy are one-dimensional.
The projectors PH of stress tensor o onto the subspaces H, can be ex-
pressed as

1
P{{ = Zal ®ay,

B? A A
(5.22) Py = m (a; == Eam) ® (a: = Eam) )

P¥ = \P3;, PH =)\P,
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On substituting (5. 22) into (5. 13) we obtain the energy-orthogonal stresses 4.
We see that 3 = o3 and 4 = o4. It means that they have the same form
as for the main energy-orthogonal decomposition (see Fig.lc, d and formulae
(2.64-2.65)).

In order to find the stresses o, and &9, the following scalar parameters are
introduced

" V2B

1
(5.23) & = 6(0“ + 099 —2033) and p = e

c 3 ’ f : 1
The stresses o) and oy are illustrated in Fig.4 (we remind that o = gtra].

2
gzl S(1-1)
il
ol
.||I |
$(1-p)

FiG. 4. S‘ubspac‘es H, and H; of energy-orthogonal states &, and &» for transversally
1sotropic material connected with the limit tensor H (5. 14)-(5. 15).

While the moduli A, and stresses 6, are given the limit condition of Mises
type (5.5) for the limit tensor H (5.15) takes the form

1 1 1
h2 h.3 h.4

Since h; — oo, the stress &, € Hj is safe and the part of energy ®(&;) has no
influence on the limit condition (5.24).

The energies ®(o3) and ®(o4) are given by formulae (2.53) and (2.54).
However, the energies (o) and ®(63) may be expressed as follows:

(5.25) 28(61) = & x 1 =3A(0 + pd)?,
Y
(5.26) 28(53) = Goxby= wgz.

http://rcin.org.pl



ENERGY-BASED LIMIT CONDITIONS. .. 521

Analysing the obtained result we note that the stresses &3, &3 and g4 do
not cause elastic volume changes.

If the hydrostatic pressure is the only acting stress then the corresponding
stress tensor o = o, € H, is safe.

On the other hand, assuming that the considered state of stress o has the
following properties 0 = u = v = p = ¢ = 0 and § # 0 (see (2.64)(2.65)
and (5.23)), we obtain that o € H, & Hs, and the part of energy ®(&;) has no
influence on the limit condition.

Considering the state of stress o for which

(5.27) o = —u8S,

we note that no part of the stress tensor is a safe state. In spite of tro # 0 we
have that ®(&;) = 0 and the total elastic energy ®(o) enters the limit condition.
We should emphasize that for two states of stress with different spherical
parts only, the values of the quadratic form (5.3)2 are equal.
The tensors C and H are coaxial if the stiffness distributor X = &g (B = 0).
Then the spherical tensor is a proper state for both tensors.

6. Summary

Using the example of transversal isotropy, the limit condition of the Mises
type having an energy-based interpretation has been obtained. Following the
approach proposed by J. Rychlewski, the limit condition was given in the form
of weighted sum of stored energies corresponding to uniquely defined energy-
orthogonal parts of stress.

Without special difficulties the presented approach may be adopted to the
problem of formulating the limit condition for other types of anisotropy.

In the general case tensors C and H are independent. This property allows to
consider different types of symmetry in elastic and limit states. Assuming some
form of coupling of elastic and plastic properties, the solution of the problem
becomes simplified.

We note that the presented approach may be applied to the problem of
describing the plastic anisotropy evolution in the material, which changes its
properties when passing from elastic to plastic state. Then we may assume that
the evolution of moduli hy or hg depends on dissipation of energy connected
with irreversible deformations.
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