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ConsiDER A POROUS solid skeleton saturated with N fluid constituents. To describe
the saturation condition and the immiscibility of the mixture constituents (phases),
N + 1 volume fraction parameters are introduced. In the energy equation an added
mass effect is incorporated in the form of a constitutive assumption. This allows to
include, on the phenomenological level, the influence of the pore structure of the solid
constituent on the kinetic energy formulation of the whole mixture. Its consequences
are deduced; they lead to a new form of the kinetic energy in the balance law of
energy, from which a new form of motion equations are deduced. A particular case
of one fluid component in the isotropic case is considered.

1. Introduction

IN ANALYSIS of the mechanical behaviour of multiphase media such as porous
solids filled with one or a number of fluids, one of the key problems is to establish
the proper description of the interphase force (internal body force) accounting
for the local interaction of the constituents with each other.

Modelling such materials has been a subject of wide discussion through the
last three decades and is based mostly upon the fundamental notions of the
classical mizture theory, TRUESDELL and TOUPIN [22|, BOWEN [8], and its re-
formulated form — the theory of interacting continua, GREEN and NAGHDI [14, 8].
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In this case a fluid-filled porous medium is treated as a superposition of two mis-
cible continua: solid and fluid, characterized by two independent velocity fields:
v® and v/. In such an approach the microstructure of the solid-fluid mixture
is not taken into account in formulating the balance equations and constitutive
relations. However, it has been observed that in a number of typical multiphase
media, consisting of an identifiable porous matrix and a fluid filling its pores,
the internal geometrical pore structure strongly influences the behaviour of the
phases, especially the pore fluid phase, inducing an inhomogeneity of the micro-
velocity fields. This effect is regarded to be of prime importance in understanding
the acoustic properties of porous media saturated with fluids.

In most papers treating the problems of fluid flow through deformable porous
solids, the solid-fluid interaction force is taken to depend on the relative macro-
velocities of phases (the Stokes drag force) and on respective density gradients.
However, a more realistic modelling of such media, in a non-stationary case,
should take into account fluctuations of the micro-velocity fields of the fluid
phases, which have a strong influence on the solid-fluid force interaction by cre-
ating inertial couplings between the constituents represented by virtual or added
mass force.

The basic concept of an added mass force can be easily understood by con-
sidering the change in kinetic energy of the fluid surrounding an accelerating
material object (see the Fig. 1). The classical result, when the effects of any
viscous forces are not considered, is that the acceleration of the object induces a
resisting force at this object proportional to the mass of the displaced fluid and
the acceleration of the object.

Such an approach was applied in some works, mainly for isotropic systems,
by introducing on the macroscopic level a suitable form of the kinetic energy
(e.g. M. A. BioT [3,4,5], D. LHUILLIER [20], O. Coussy [11], A. BEDFORD et
al. [1], B. YAVARI and A. BEDFORD (25|, D. DREW et al. [12], G. B. WALLIS
(23], J. A. GEURST [13]).

The present study is concerned with the added mass force during accelerated
flows of N fluids through a porous solid. The problem of dynamic coupling is
generalized and extended to saturated porous media with an anisotropic inter-
nal pore structure. In the present approach, individual physical properties of
immiscible constituents play an important role in transport phenomena.

In previous publications of one of us as well as in a number of other papers
(cf. 6,7,8,9,10,16,17,18,19,21]) devoted to modelling fluid-saturated porous
solids, the immiscibility effect has been incorporated into the description by in-
troducing a parameter of volume porosity characterizing the volume fraction
of the fluid constituent. In the present paper our aim is to state a more funda-
mental approach, from which the existence of quantities describing the motion of
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the so-called virtual components will follow as a mathematical consequence of
a constitutive assumption.

added mass
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Fi1G. 1. Added mass and force effect.

2. Kinematic relations

In this section we repeat the main model assumptions of the author of the
previous paper [18], however, with some generalization by admitting N pore fluid
constituents.

Consider a mixture of N + 1 constituents and let s and @ = 1,2,..., N, be
indices identifying these constituents. Assume that one of the constituents, i.e.
s, is a solid, while the remaining are of fluid type (liquid or gas). The difficulty
in describing the kinematics is that each of the constituents (or phases) performs
its own motion that, however, the spatial placement in the present configuration
is assumed to be occupied by all constituents. We regard then the physical space
as a 3D Euclidean space E and the domain B C E which is occupied by the
constituents as an open set in E with boundary 0B.

For our considerations at the macro-scale we make use of the local volume
average field quantities defined over REV (Representative Elementary Volume —
compare, for example [15,24]) for each phase of the medium.

If 2 represents the averaging region containing the solid part ° and the pore
region QP filled with fluid, (see Fig. 2), we have
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FiG. 2. Averaging region of porous medium (REV).

and one can define the volume fraction ratios
Qs Qr
=| l, ?1p=rzf=—| |=
[€2] 2]
for the solid and fluid phase, respectively, where f, is the volume porosity, and
the following condition is satisfied

(2.2) n’ t fu s

nf4nf=1.

We consider the porous solid as fully saturated with the fluid phase. The pore-
fluid phase may, in general, consist of @ = 1,2, ..., N fluid type components, and
therefore we have

N
(2.3) pE =],
a=1
In such a case one can introduce volume fraction ratios for each fluid phase, i.e.,
|29
(2.4) =™
1
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Obviously, n® is constrained by

(2.5) Ynt=f,

44
(2.6) =5, a=1,.,N,
Jo
one takes
N
(2.7) ¥ =1
a=1

3. Phase density and linear momentum

We assume for any phase that the microscopic quantities are defined at the

pore or grain scale, and we denote them by double upper case indices, say p*®

and v** for the mass density and the velocity, respectively. Hence the bulk and
effective volume average quantities can be defined with the help of them as
their corresponding integral mean values (averages). For the solid phase we may
neglect the fluctuations of mass density and velocity from their averages, so that
we have for the mass density

1
31) ps p— ELL p— _f SS 40 = 88
( (p™) mslna p p

and similarly for the velocity

(3.2) v =0,

However, for the bulk solid partial density we can write
1
(3:3) 7= [riaa=ntpt = - 10
s

and the local form of linear momentum for the porous skeleton is

(3.4) I* = ﬁ / PV = n*ptvE = pivS .
e
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For the fluid components their pore velocities are strongly inhomogeneous in
QP (cf. Fig. 3 when one microscopic fluid component velocity v// is present) but
the mass density fluctuations are small and will be disregarded in the further
analysis, i.e.

(3.5) Py g3 =1, N

FiG. 3. Velocity scheme for the micro and macro-components.

For each fluid phase the bulk partial mass density p* and the corresponding
saturation parameter s* are coupled in the following relation:

— | p**dQ =359, a=1,..,N

(3.6)

1
where A= pr— fﬁmfp““dﬂ.
Qe

The density of the fluid linear momentum is defined as

(3.7) %= i-é-l/p““v“-“dﬂ =pnwt =",
Qo

Note that this relation also defines v® in terms of v®® and n®; v® is obviously
a “barycentric” mean of v®*. If the pores are filled with a one-component fluid,
ie, N=1andifa = f, then s/ =1 and n® = nf = f, , and we arrive at a
porous solid saturated with one physical fluid. '
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The mass density for the whole system is
N
(3.8) p=p"+) 5",
a=1l

and the density of the linear momentum is

(3.9) =0+ Z!“ = p°’v® + Zs‘*ﬁ“v“ .

4. Kinetic energy

The local form of the kinetic energy for the solid phase, when the assumption
(3.1) is taken into account, can be exactly described by the average solid velocity
v* in the form

(411) ES ]' 1 855 SS.VSSdQ: _;_ﬁsvs_vsj

Qs

that represents the total kinetic energy of the particles of the solid skeleton in
2 . However, for any fluid component flowing through the pores, the fluctuations
of the pore velocity are of the order of the average component velocity as a result
of the influence of the pore structure, and the a-component of the kinetic energy
expressed by the phase velocity v® only, does not represent the total kinetic
energy of that fluid component, i.e.,

L 1

1
= (e . T Y a0
(4.2) 370 PRIyt oy dﬂy&zspv )
Qa

To describe the total kinetic energy reflecting the real motion of the a-
component at the pore level, one can follow the approach of B1oT [6], BEDFORD
and DRUMHELLER [1] and KUBIK [17] and assume this contribution to the energy
to consist of two parts:

1. K4 - the part, responsible for the contribution of the average velocity field of
the particular fluid components

1
(4.3) Kq= iz.sa,bﬂvﬂ R E =Ll
(43

2. K, — the part, responsible for the inhomogeneity of the velocity fields at the
pore level, caused by the pore structure (as well as some other effects of the fluid
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components) and expressed by means of the a-component velocities relative to
the skeleton

(4.4) e = %Zs“ﬁ“(v“ -v®) - A%(v* -v*), where a=1,..,N,

where the symmetric tensors A® represent the influence of the geometrical struc-
ture of the pores on the kinematics of the flow, and assumed to be positive
definite. The non-diagonal part K, expressed by the tensors A has to satisfy
the principle of the material objectivity, since their existence is a constitutive
assumption.

With the use of the above expressions, the kinetic energy of the system com-
posed of the porous skeleton saturated with N fluid components is

1
(4.5) E = 2,0 vi-vi 4+ 223“ oV v+ %Zs“ﬁ“(v“ —v*) A%(v®* = V7).
x

Introducing the macroscopic relative velocity u®
(4.6) 0 =N =,

one can reformulate the energy of the considered system as follows

> {gsaﬁ“[v" cvi4+2v? o u® +u® u* 4+ u®- A“u“]}

1
:-épsvs‘vs-k—{z‘;“{)“[v vi4+2vi - u® +u?(1 4+ A% ]}

x

where the motion of the solid phase is singled out.
Since each tensor 1+ A is symmetric and non-singular, we can define a new
second order symmetric tensor P®, for each «, such that

(4.8) 14+ A%=(P%~Lf, o P*=(1+A%7lf,.

Using the tensor P® we may define a new relative velocity field for the a-
component

(4.9) u= (P®)~'u®f, .

http://rcin.org.pl



ON THE ADDED MASS. .. 487

Each P reflects the effect of the tortuosity of the pore structure of the skeleton
on the fluid pore velocity.
Applying relation (4.9) in (4.7) yields

(410) E =S5t .v* + lz I - v T (PR v (P2 B) )
2 24 fa E

and after some rearranging, we obtain the canonical representation for the kinetic
energy of the system

(4.11) E= %,asvs.vs

x| l_f_Pa)v-Hu_f_pa)a]

v

—;{‘ ["14—23 p% ( V+Z —-P")?r},

where
(4.12) V=v+u .

Taking the above representation into account one can define the so-called virtual
constituents of the system. The first virtual constituent is composed of the
skeleton and those parts of the fluid components which move at the skeleton
velocity v*, the partial density of which is

p'1 +Zs (1- —P“)] ;

the remaining virtual constituents have partial densities

a 1
(4.14) M= sp“—P*, a=1,..N,
g
and they move with the corresponding velocities v . Consequently, the linear
momentum for the first virtual constituent takes the form

(4.13)

(4.15) L=M v° = [ “1+Zs°’ 5%(1 — —P“)} i

and the a-constituent linear momentum written by means of partial densities

and the velocities of the virtual constituents will be
a 1 a
(4.16) Ni=at f—P“ v .

v
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At the same time the canonical representation of the kinetic energy will be

1 a
':'+§Z s

3

(4.17) E=

MIP—'

where

v=v'+ u, u? = (v — v?),
(4.18)
= (1 +A%0% = (P*) =], .

One can now prove that the mass densities and the linear momentum densities
of the virtual constituents of the porous solid, filled with a multicomponent fluid,
satisfy the following conditions:

e for mass densities

(4.19) M+ZM pl+Zs (1—),—?‘-‘) Zs“ﬁ“?l—P“

a v
=p"1+) s°p°1,

e for linear momentum

(4200 Mv'+3 L

. x s x
and since v= v®+ u , we have

(4.21) 1\§Iv5+2£= [(ﬁﬁ-{-Zs“ﬁ“l)] v +Zs P“ u

ﬁsvs T zsaﬁﬁvn] )
a

Notice that for an isotropic pore structure simplifications occur, i.e., PY = \®1,
with A® as a structural permeability parameter for each «, and

o | s a-arq L0 O asQ. a _
(422) M= [p"+ ) s%%(1-%)|1, M=s%""1, a=1,..,N,
e}
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where k* = A*/f, can be called the pore structure parameter corresponding
to the a-th fluid constituent. The case of N = 1 has already been discussed in
[9,17], where for a fluid-saturated porous skeleton the following representation
of the velocity of the virtual components was obtained

1
(4.23) Vv=v with A + ;(vf —v®),orv/ =(1-Kr)V' +k \fr,
with only one a = f , and v! = v/, the velocity of a one-component fluid and

k = k', the pore structure parameter, and with the partial mass densities of the
virtual components

/
(4.24) M= PF+01-r)pH)1, M=xp/1.

5. Mass continuity equations

For a porous skeleton and a pore fluid with chemically inert components, the
local form of the balance equations of mass can be written in the form

(5.1) 6‘(; + div(p°v®) =0,
(5.2) 3Satp 4+ div(e?*vH) =0, a=1..,/N

When the virtual division of the system is considered, the local form of the
balance equations of mass are

8
(5.3) % + div(1® M v*) =H,
aM

(5.4) + div(l® M¥) =H,

ot

& [
where @ = 1,2,..., N, while H and H are mass supply functions that will be
subsequently identified. Eq. (5.3), when (4.13) and (5.1) are taken into account
can be rewritten in the following form

(5.5) Bt{zs '°(1——P°)}
+div{1® [zﬁ:s"pﬁ (1—}—»13‘*)]»"} “H.

http://rcin.org.pl



490 W. Kosinskl, J. KuBik, K. HUTTER

Equation (5.3), when (4.14) and (5.2) are used yields

(5.6) L * { “""EP“} +div {1 ® [s“ﬁ“il’-’" %] } L

(5.7) —{.s“,o“l}-i-dw{ [l®v Jr~;—1®P"|l ]}=0.

v

By subtraction (5.6) from (5.5) one obtains

(5.8) %{ 5 (1—%P“)}+div{““1®(1—%P‘*)vs}=—ﬁ,

and for any component «, but when summing over all « = 1,2,..., N, we have

(5.9) % {;Saﬁa (1 - %P“)} + div {; s7p°1 @ (1 - %P“) v"‘}
-y,

(e}

Comparing (5.9) and (5.5) we find that the mass supplies satisfy the condition
3 i
(5.10) H+) H=0,
x

which shows that during the motion of the system the first virtual component
moving at the skeleton velocity interchanges its mass with the remaining virtual
components. It can be shown that the mass supply functions can be written as

(511) H=-Y H= 58% {;% Y s (1 = f—P )}

s

L)
h — :
where D= 5 + v*® - grad

For an isotropic pore structure, for which
S =X 1=k

we obtain the continuity equations
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% {Zs“ﬁ“ (1- n“)} + div { [Zs“ﬁ“ (1- n“)] v"’} =71

x o

% {8k} + div {s*p*kv*} = H®

ﬁ+2ﬁ=0
o

For the mass supply function we have

ZH—“SDt{ Zs‘*"‘ 1-&° }

with the condition

6. Motion equations for an isotropic porous solid filled with a one-
component fluid, N =1

For N = 1 a porous solid-fluid composition forms a mixture composed of two

virtual components with corresponding velocities v and {r, (4.23), and densities
J s f
M and i, (4.24). (Note that now M=Jf 1 and M=}1 1.) Now, having defined
k
the virtual components we associate the stress vector t (k = s,f) with each

of the components in such a way that the scalar product : . 5 represents the
rate of work of a particular component per unit area of a surface bounding the
bulk material. These can be derived from the condition that the total rates of
mechanical work for virtual and physical components are equal,

f
(6.1) £Vt b=t vyl |
k
Thus, using (4. 23), the relations between t and t® are
5 iy
(6.2) t=t*+ (1 - s)tf, t=nt/
and for the stress tensors we have

s f
(6.3) T=T*+(1- )T/, T=xT/

where the identity t* = T%n was used, with n as the unit normal to a surface
element on which the stress tensors are defined.
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Now, motion equations for the virtual components may be obtained from
the energy balance for the whole solid—fluid composition by applying invariance
conditions under the superposed rigid body translations. Therefore we write the
energy balance in the following form:

where e* and e/ stand for the internal energies per unit mass of the skeleton and
/
the fluid, respectively, and where the external body forces ﬁj{ b and M b con-

s f
tribute by their rate of work contribution, i.e., M b- v and M b- ir:, respectively.
Using (4.24) and continuity equations (5.3) and (5.4) and applying invari-
ance conditions under rigid body translations, we obtain the equations of motion

8
D 1
divT + Mb+a=M — v+= M (¥ -V
Dt 2
(6.5) p
f f 5 D 1
divT + M b+ *=M — ¥ += M (- ¥
Dt 2
where T= — ‘?Fr represents the viscous interaction force and the force £ }:f 0=

18 /¢ .
5 v — v ) results from the mass exchange between the virtual components.

The equations of motion for the physical components are

div T+ p°b+n’ = ﬁsgv*‘,
Dt

(6.6)
: D/
le T{ + ﬁfb + 7rf = ﬁfﬁ\"f 9
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where the interphase interaction force has the form

=—nf= —% (7{’ +T/ grad n)

L e BB B
(el (-4
() )

T =7f - (%~l) @f(v“—vf)'@(v“’—vf)

is the so-called complete stress tensor of the fluid phase.

The second and third terms of the right-hand side of (6.7) represent the
inertial coupling between the solid and the fluid phases due to fluctuations of
the micro-velocity field of the pore fluid that have been taken into account within
the description. It is worth noticing that if x = 1 the fluctuations are disregarded
and the inertial coupling vanishes.

7. Concluding remarks

In this paper we considered a porous solid skeleton saturated with N fluid
constituents. In the authors’ opinion the individual physical properties of the
immiscible constituents as well as the geometrical structure of the pores play
an important role in describing transport phenomena through porous materi-
als. The present approach to represent the kinetic energy of the medium at the
macro-continuum scale takes into account the immiscibility effect and the non-
homogeneity of the fluids’ micro-velocities v// —v*. The constitutive assumption
regarding the extra contribution of those velocities to the kinetic energy of the
fluid flow through the pores at the macro-scale are made in the form of the sum
(4.3). In this way the added mass effect appears: the mass densities (4.13) and
(4.14) of the virtual components satisfy the mass balance equation with non-
vanishing production terms (cf. (5.3)-(5.4)) and the additional inertial solid-
fluid interaction in the equations of motion (6.6) is evident. As a consequence
we arrived at the total representation of the kinetic energy (4.11).

The tensors A® and consequently the tensors P® are related to the struc-
ture of the pores of the medium - the most important parameter describing the
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structure is the tortuosity parameter. Its appearence in the papers of Biot, Bed-
ford et al. and Kubik was mostly restricted to the isotropic case. However, the
present approach introducing a tensorial characterisation of the structure brings
for the first time the consqeuent derivation of the added mass effect without any
restrictions concerning the size of strain and the fluid in the pores.
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