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CONSTITUTIVE MODELING based on the so-called rational phenomenology (materials
science approach) has been applied to take into account strain hardening, strain-rate
sensitivity, thermal effects and evolution of microstructure in a polycrystalline tanta-
lum. A wide range of strain rate in shear (10! 1/s < I'<5*10* 1/s) and homologous
temperature (0.05 < © < 0.2) is considered. Behavior of tantalum is understood as
an example for BCC polycrystalline metals. The constitutive modeling provided a
possibility to determine all material constants via the experimental results obtained
on thin tubular specimens using a fast hydraulic machine and a torsion Hopkinson
bar. Finally, the model predictions are demonstrated by numerical simulations for
different history paths in strain rate and temperature.

1. Introduction

POLYCRYSTALLINE TANTALUM, symbol Ta, BBC crystalline structure, melting
point T, = 3290 K, density p = 15.0 [g/cm? |, and heat capacity at 25° C : C,
= 0.140 [J /g K], is used in many industries and not only in military applications.
Its very high plasticity is very attractive in many applications, for example in
cumulative charges.

Application of tantalum in extreme conditions demands extensive numeri-
cal calculations with relatively good precision. Unfortunately, practically in all
cases very simple constitutive relations are used for such a purpose with pure
phenomenological parameters. It is clear that more advanced approaches must
be introduced in order to improve numerical calculations. Because of more effi-
cient numerical codes and much faster computers which have been introduced
recently, more advanced constitutive modeling can be used in those codes. For
example, the so-called MTS model (Mechanical Threshold Stress), (1], has more
recently been applied to tantalum and tantalum-tungsten alloys [2]. Still more
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advanced constitutive modeling has been proposed in the series of papers by this
author, [3-7]. All constitutive relations derived on the basis of materials science
are founded on the concept of thermal activation processes, for example [8-11].

It is well established that plastic deformation of crystalline materials is ac-
complished by motion of dislocations. Dislocations are generated, multiplied, and
partly annihilated during plastic deformation occurring with a specified strain
rate. Velocities of edge and screw dislocations substantially increase, sometimes
by several orders of magnitude, when the effective shear stress is increased above
the threshold level, for example [13]. Thermal motion of atoms is manifested by
temperature. The thermal vibrations with Debye frequency vp = 10'% 1/s, and
the vibration energy W = kT, where k is the Boltzmann constant and T is the
absolute temperature, assist in most of the dislocation processes and cause cer-
tain rate and temperature effects in plasticity. Some processes are athermal, that
is the energy of thermal vibration is not high enough to activate a process. For
example, the thermal vibrations of atoms cannot play any role in generation of
the dislocations by the Frank-Read multiplication mechanism, since the thresh-
old energy is much higher than that could be supplied by the thermal vibrations,
[14]. On the contrary, the movement of dislocations can be thermally activated
with the assistance of the effective shear stress 7* acting on the glide plane, [10].
In the simplest case the fundamental relation has been established between the
shear strain I, shear strain rate I' on the glide plane, the absolute temperature
T and the effective shear stress 7%, in the form of Arrhenius relation

AG(7#) )]

(1.1) ['=TI} exp [EXP(_T

where I'g is the frequency factor related to the characteristic frequency of vibra-
tion of the moving dislocation and to the Debye frequency, AG(7*) is the energy
activation or free Gibbs energy, [8-12]. The relation in the form of the effective
stress versus absolute temperature provides fundamental information on the na-
ture of a thermally activated process of plastic deformation. If the expression for
the energy of activation is linearized with respect of the effective stress, that is

(1.2) AG=Go—(T—Ty)v* where T =71 — 1y,
the total shear stress 7 on the slip plane can be written as

2 Gof. kT. [Ty
(1.3) T—Tp*{";:[l—aln (F)]

The stress component 7, is called the athermal stress or the internal stress. The
activation volume v* can be defined in general as

dAG
o7+

(1.4) vk = —
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In the case of linearization, the activation volume is determined with respect to
the total stress 7

i and v=1"
or e

Relation ((5.4)3) can be rewritten in the following form:

(1.5) v=—

MkT I'o
Go B (F)}

where M = 2.3026 (conversion factor to decimal logarithm) and 75 = Gg/v* is

the threshold shear stress at 7 = 0 or I' = I'y. Since the thermally activated

component of the shear stress must be always positive, the following condition
must be imposed on Eq. (1.6):

(1.6) f=%+ﬂh_

METe f'{)
SR =%
Go log(FCJ > or Ta log( ) > Mk

(1.7)

Values of the critical absolute temperature T and critical strain rate I'c define
the critical point on the (T, I") plane. If T > T¢ or I'< ¢ then 7 = Ty

In reality, the linear case may by a good approximation at relatively low
temperatures. For example in Fig. 1 is shown the change in flow stress of a single
crystal of tantalum with temperature at the strain rate 8*107° 1/s, the data
reconstituted after [15] for three levels of shear strain: 0.01, 0.04 and 0.08. It is
interesting to note, as it was stated in [15], that the changes of the flow stress
with temperature are independent of the crystal orientation. Such behavior can
be explained by the existence of a single thermally activated process true for all
orientations. It is well known that for BCC metals the adequate process is the
kinetics of the dislocation movement over the Peierls potential, [8.12]. In BCC
metals the Peierls potential is relatively high, this is the potential of the lattice
itself. Figure 1 shows also that the strain hardening, not taken into account
in the analysis given above, must be considered in more advanced versions of
constitutive modeling. The simplest approach is to include all strain hardening
effects into the internal stress 7,. This concept leads to a variety of models
proposed by different authors. The set of such models can be written as

(1.8) T =7(pT) + 7 [1—M 1 g(r"J

el )

where I', is the plastic shear strain.

Even if the strain hardening effects on the flow stress are included as it is
done in Eq.(1.8), this simple approach is not capable of accounting for vari-
ety of effects related to micro-structural evolution at different strain rates and
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temperatures, for example [3,16,17]. Those effects had been studied for many
decades and they have provided many data which should be included into more
advanced constitutive modeling. One of such approaches is presented in the next
part of this paper.

SHEAR STRESS OF Ta SINGLE CRYSTALS VS TEMPERATURE
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FiG. 1. Changes in flow stress of single crystals of Ta with temperature at [' = 8% 107° 1/s,
reanalyzed data after [15].

2. The constitutive formalism

The constitutive modeling applied to polycrystalline tantalum is based on a
consistent approach to the kinetics of macroscopic plastic flow of metals with
BCC and FCC structures. The approach is called “the rational phenomenology”,
[18]. All variables and parameters are defined as physically based. However,
the microscopic variables are used in the macroscopic scale as the mean ones,
for example density of dislocations, with no statistical specification how the
transition into the mean values was obtained. It is believed that such an approach
is justified for statistics of large numbers. The set of relations between particular
variables and parameters combined in a specific order is called the constitutive
formalism. Although in general the same or similar standard relations known in
materials science are applied, their combination and use decide about efficiency
and logic of the formalism.
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In the approach presented here the constitutive formalism is applied with the
one constitutive variable that is the total dislocation density p. It is assumed
that plastic deformation in shear is the fundamental mode in metals plasticity.
It is assumed further that at constant microstructure the flow stress 7 consists
of two components: the internal stress 7, and the effective stress 7%, thus

(2.1) 7 = 185, (L, T)sr + 7°[(5i, Tpy T)]sTR

where s; is a number, so far unspecified, of internal state variables which define
the current microstructure, [.E,Eil1 h(f"p,T) is the thermal-mechanical history of
plastic deformation, I'y and ', are, respectively, plastic shear strain and plastic
shear strain rate. In the next part of the paper the subscript “p” will be omitted.
It is important to note that the plastic strain does not enter directly into relation
(2.9). Plastic strain can not be assumed in the materials science approach as an
independent variable, or argument in constitutive relations, since the process
of defect accumulation (plastic strain) depends on the past thermal-mechanical
history. In relation (2. 1) the internal stress 7, is caused, therefore, by the long-
range, strong obstacles to dislocation motion, and the effective stress 7* is due to
thermally activated short-range obstacles. In fact, the internal stress 7, must be
indirectly rate- and temperature-dependent via dislocation rearrangement and
annihilation (recovery), during the whole process of plastic deformation.

In the case of one internal state variable assumed here as the total dislocation
density p, Eq. (2.1) can be simplified to the form

(2.2) 7 = 1[p, H(C, T)] + 7* (o, [, T)

where p,, is the mobile dislocation density. In the one-variable approach the
mobile dislocation density is directly related to the total density by the relation

(2.3) pm=fp, [<L

In general, the microstructure can be characterized by five instantaneous
quantities: p, pm , d, D and A, where p and p,, are the mean values over few
subgrains, d, D and A are respectively, the subgrain diameter, the grain diameter
and the mean distance between the twins, [5, 6]. The explicit form for the internal
stress 7, can be written for a constant temperature as follows, [5, 6]

T b b
(2.4) Tu=aipbyp+asp (m) +azp (5)+a4,u (Z)

The first three terms in Eq. (2.4) are related respectively to dislocation-long
range obstacle interaction, evolution of sub-grain size d and the effect of grain
diameter D, so-called the Hall-Petch term. The fourth term accounts for twin
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formation typically observed at very low temperatures or at very high strain
rates. The constants a;, @z, a3, and a4 are the interaction constants showing
the fraction contribution of each micro-mechanism to the total value of the in-
ternal stress 7,, b is the modulus of the Burgers vector . The power d in the
second term has a dual nature, § = 1.0 for cells and small sub-grains with large
mis-orientations, and § = 1/; for “ideal” sub-grains in thermally recovered met-
als, [19]. Finally, p is the shear modulus. Although evolution of sub-grains and
twins are observed in BCC metals, their contribution is assumed here as the sec-
ond order effect. The effect of grain diameter D is automatically included into
the generalized interaction coefficient a. Equation (2.4) can be rewritten in the
following form:

(25) 7= nbyp{as +azlbpd(p)] /2 +as [bp DI + as [bp A2}

The expression in the large brackets of Eq.(2.5) can be understood as a
generalized coefficient a(p,d, D, A) of interaction between dislocations and all
long-range obstacles used frequently in analyses of the experimental data. With
this simplification, the final form for the internal stress 7, and for a constant
temperature case applied in this modeling, can be written as follows:

(2.6) T = g u(T) b/ p[R(T, T)],

where ap is the interaction constant at T = 0. The dislocation-obstacle inter-
action must be modified to include temperature-dependent changes of elastic
constants. One possibility is a simple empirical relation

(2.7) u(T) = po (1 — At — BT?)

where A and B are the constants, with condition u(7},) = 0, where T}, is the
melting temperature. Due to the thermal softening of the lattice, the interaction
constant is also temperature-dependent

(2.8) a(T) = o ﬂ
Ho

All equations outlined above constitute the fundamental framework for the first
part of the constitutive formalism. The most important problem arises now, how
to model the micro-structural evolution at different strain rates and tempera-
tures.

3. Kinetics of micro-structural evolution, the internal stress

It is well established that during plastic deformation of metals at different
strain rates and temperatures, the rate of strain hardening may vary substan-
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tially. If the strain rate and temperature is changed during the process of de-
formation, such variations are the source of strain rate and temperature history
effects, [3,16,17]. One possibility is to introduce micro-structural evolution in
the modeling by a set of ordinary differential equations of the first order. Each
equation describes evolution of an internal state variable as a function of plastic
strain. In a general case of such modeling five differential equations should be
introduced for five internal state variables, p;, pm,d, D, A, where the total dislo-
cation density p is split into the immobile density p; and the mobile density p,,

(3.1) p= pi+pm-

Since in BCC metals the evolution of the mobile dislocation density is very
important, both densities must be accounted for. Some propositions and discus-
sions of the evolution equations can be found elsewhere, [3-7|. A general notion is
adopted that the evolution of microstructure can be described by the accumula-
tion kinetics of defects, in the present case- of dislocations. Of course, the process
of accumulation depends on the strain rate and temperature. It is assumed that
the general form of evolution equation is given by

(32) eff(PaI"sT)r

Sl
dT

where M,y is the effective multiplication rate of dislocations, [20]. A simple
equation for structural evolution has been derived in the following form, [5],

2

p

oF = M () — ko(T', T) (p — po)

(3.3)
where Mj; is the multiplication factor at small plastic strains and ka(f‘, T) is
the rate and temperature- dependent annihilation factor, pp is the initial dislo-
cation density. For BCC metals the multiplication factor M;; can be assumed
as a constant at not very high strain rates and up to the temperature where
annihilation micro-mechanisms (recovery) start to be intensified. The explicit
mathematical form for k, has been proposed for FCC metals in [5] and adapted
for BCC structures in [21] as follows:

f‘ —2mg (1, Ta)
(3.4) ko(T,T) = ko (——)
Lo

where kg and my are the annihilation constants at T' = 0, my is the absolute rate
sensitivity of strain hardening, I'g and T, are respectively the frequency factor
and the transition temperature. If 7' < T, or I' > I'y then k, = ko .
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When temperature and strain rate are constant, the evolution Eq.(3.3) can
be integrated with the initial conditions p = pg at I' = 0 and solution for p can
be found in the closed form

(3.5) oB,T) = o + ;f%;ﬁ—wm BT

If the temperature is lower than T,, Eq. (3.5) reduces to the simpler form with
ke = kg and then the explicit form for the internal stress 7, is

M 1/2
(3.6) Tu=a(T) po b [pu - k—”[l — exp(—ko F)]] ; T Ty
0

It may be noted that Eq.(3.6) predicts a saturation of the internal stress at
large strains. The internal stress at saturation is

My V2
(3.7) mwaw=wmmbh+gﬁfﬂ . T,
1/2
(3.8) Tu(l =) = aopu(T) b [,0{) B Ek{-{] . Jos s
0

A more exact evolution relation suitable for larger strains can be written as
follows:

dp 1/2 :
(39 T8 =MuD)+ [k —po)| " —kallT)(p p0).

Although differential Eq.(3.8) can be integrated for constant strain rate and
temperature, the inversion to find the dislocation density p(I") is only numerically
possible.

In conclusion, the approximation (3. 6) assumes the absence of the rate sensi-
tivity of strain hardening, [22], at temperatures lower than T,. At temperatures
higher than T, the rate sensitivity of strain hardening is present and intensi-
fies as the strain rate decreases. It may be noted that the internal stress 7, is
temperature-dependent even at T' < T, due to the temperature-dependence of
the interaction constant e via temperature-dependence of the elastic constants.
It has been shown previously that the approximation of the internal stress is
sufficiently exact for BCC micro-structures, for example mild steels, [4, 5, 6].
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4. Kinetics of micro-structural evolution, the effective stress

The effective stress 7* | directly related to the instantaneous rate sensitivity,
[22], can be determined by inversion of the generalized Arrhenius relation, [3],

AG(T, T, pm)]
kT

(4.1) I' = vk(pm, T) exp [—

where v is the frequency factor and AGy is the free energy of activation, k
is the Boltzmann constant. It has been shown, for example in [8,9,12], that
dislocations in BCC structures move by the thermally activated formation and
propagation of kink pairs over the Peierls potential. A universal relation between
AG| and 7* has been proposed in [12] in the form

T ma
(4.2) AGy = 2H(T) [l - (—;—) ] :
75(T)

where p and g are constants that characterize the shape of a thermally activated
obstacle, and in this case the Peierls potential, 2Hj is the total activation en-
ergy necessary to form a double kink and overcome the potential, 7, * (T') is the
Peierls stress. Both constants are temperature-dependent through the tempera-
ture changes of the elastic shear modulus, thus

o #(T)

(4.3) 2H(T) = 2H u(T)

. I
o and 7,(T)=m, TLO—,

where HB, 73, and pg are respectively the activation energy, Peierls stress, and
shear modulus, all in 0 K.

When the dislocation kinetics is controlled by thermally activated overcoming
of obstacle, one obtains the pre-exponential factor in the following form, [11],

bA(T) b

(4.4) v(pm,T) = PmTT) (W)‘VD)

[ is the length of the dislocation segment involved in the thermal activation,
A is the area swept out by the mobile dislocation following the successful at-
tempt, vp is the vibration frequency of the lattice (Debye frequency). There-
fore p,, indicates the number of places where the thermal activation occurs,
vi = (b/2L(T))vp ,v; is the vibration frequency of the pinned dislocation of
length L involved in the event, [ < L. For the case of double kink, the pre-
exponential factor can be written as

(4.5) Vi =N ppm bvp and n= 5??-,
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lc 1s the critical length of the kink segment of dislocation. Assuming that A =
La and a = b, n becomes the non-dimensional coefficient characterizing the
geometry of the double kink formation, [4]. In general, the dislocation length L
is much greater than the dislocation segment | involved in the thermal activation.

The second internal state variable that enters the pre-exponential factor is
the mobile dislocation density py,. Since even in relatively pure BCC metals the
stationary dislocations are pinned, for example by Cottrell atmospheres, [23],
evolution of the mobile dislocation density must be accounted for. One, and the
simplest, possibility is to assume p,, = fp , where f is the fraction of the total
density, f < 1; f may change as a function of p and temperature. Although
it can be shown that the constant value of f gives satisfactory quantitative re-
sults, more exact analyses of experimental data, mostly for steels, indicate that
the fraction f is a more complicated function of p, I and T. At relatively low
homologous temperatures, and under the assumption that the evolution of the
mobile dislocation density is independent of the immobile density, a differential
equation introduced in [4] has the following form:

dp  p

where /3 is the material constant. The solution of (4.6) with the initial conditions
Pm = Pmo at p = po has the following form:

(46) ‘ i _ O

(4.7) Pm = Pmo + B In (ﬁ) :

Po
Thus, the evolution of the mobile dislocation density is a complicated function
of plastic strain since in Eq. (4. 7) the solution for p , Eq. (3.5) or (3.6), depends
on the temperature domain of deformation. Thus, the solution for p must be
introduced into (4.7). It is interesting to mention that the limit of the mobile
dislocation density p,, is the saturation level of the total density with f = 1,

Pm(M/ka)

My kq (M”)
48 {11 L S — = + ln 3 'm < < M ka-
(4.8)  pml = ) = Pmo ﬁM” ol pmo < P 1/

The solution for the mobile dislocation density makes it possible to determine
the pre exponential factor in Eq. (4.5) and define completely the effective stress
7*. After introduction of (4.2) and (4.5) into (4.1) and inversion, the explicit
expression for 7* is obtained

1/p
s s i kT npm b2 vp Y
4. = - : .
(4.9) ™, I\T) =1, {1 [QHk log( B
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The total stress is defined by Eq.(2.2). In this manner the model is complete
including the following Egs. (2.6), (2.7), (2.8), (3.1), (3.4), (3.5), (4.2), (4.3),
(4.5), (4.7) and (4.9). The total number of constants is 21, including the ab-
solute physical constants: b, Hx,n,p, q¢, T, po, vp and -rg, total 9, which can be
found theoretically from physical analyses; the rest, that is 12 constants, are
the constants related directly to specific material behavior and conditions of

deformation.

5. Constitutive modeling of polycrystalline tantalum

The constitutive formalism applied in the case of tantalum is similar to the
simplified constitutive model applied earlier to mild steels, [4]. The rate sensitiv-
ity of strain hardening is neglected, that means that relatively low homologous
temperatures are considered, and the following relations are applied: (2.6), (2.7),
(2.8), (3.1), (3.6), (4.2), (4.3), (4.5) and (4.7). The constants have been iden-
tified from experiments.

Experiments reported in [24] have been performed at room temperature on
thin tubular specimens of annealed polycrystalline Ta in LPMM-Metz on a fast
hydraulic machine, and in CEA-DAM (the French Atomic Energy Commission)
on a Split Hopkinsion Torsion Bar (SHTB). Those two experimental setups per-
mitted to cover the shear strain rates from 3*10~* 1/s to 3*10% 1/s not only at
constant imposed values but also in the changed-strain-rate mode, that is from
low to high and from high to low strain rates. The strain rate changes from lower
to higher and from higher to lower strain rate were applied with the loading-
unloading procedure for two initial pre-strains. The final results reproduced after
[24] are shown in Fig.2 and Fig.3. The behavior is typical for polycrystalline
BCC metals. At low strain rate, 3*10~* 1/s, relatively high strain-hardening
is observed, but at 3*10% 1/s the rate of strain-hardening is positive at lower
strains, say up to 0.3 and then zero or even negative. It may be mentioned that
at strain rates higher than ~50 1/s the process of plastic deformation is practi-
cally adiabatic and about 90% of plastic work is converted into heat. Since BBC
metals are very sensitive to temperature, as it is shown in Fig. 1, the decrement
of stress due to adiabatic heating is not negligible and in order to compare 7(I")
at different strain rates, specially at lower and at higher ones, the high strain-rate
curves should be converted into isothermal conditions. A more exact discussion
and a simple method of conversion were given in [17]. In the present analysis the
conversion is neglected because only simplified modeling is analyzed numerically.
Experiments with changed strain rates confirmed for tantalum the existence of
the strain rate history effects revealed earlier for soft steels, [17, 25]. A change
of strain rate from low to high values produces “overshoot” of flow stress, that
is the flow stress is higher at the same strain rate as that applied in a constant
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strain, rate deformation. In the case of tantalum strain rate change from 3*10~4
1/s to 3*10% 1/s, Fig.2, and from 1.5*107% 1/s to 3*10% 1/s produces rather
small overshoots. On the contrary, change of strain rate from high to low, that
is from 3*102 1/s to 3*¥10~* 1/s, revealed a substantial “undershoot”, that is all
7(I') curves are lower than that obtained at the same constant strain rate. Those
strain rate history effects are quite opposite than those observed many times in
various of FCC metals, for example [3,5, 16]. It is clear that specific strain-rate
history effects are found in tantalum.

T
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0 4 it : — 7

0 02 04 06 08 1

~ Fic. 2. Results of torsion experiments on polycrystalline Ta at two strain rates:
['=3.10""1/s and I" = 3 % 10? 1/s; Constant and changed strain rates at three levels of
prestrain, after [24].
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’ Fic. 3. Results of torsion experiments on polycrystalline Ta at two strain rates:
'=15%10"%1/s and I' = 3+ 10® 1/s; Constant and changed strain rates at two levels of
prestrain, after [24].
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The main task of this study was to apply a simplified version of the consti-
tutive formalism with a possibility to model not only the behavior at constant
strain rates but also the strain-rate history effects. The micro-structural evolu-
tion of the internal stress, dependent on strain-rate and temperature, has been
neglected. The evolution of the internal stress is rate independent and was taken
into account by relation (3.6). A complete set of relations describing the effective
stress was used in numerical modeling, that is Eqgs. (4.7) and (4.9).

In order to identify all material constants at 7' = 300 K it was assumed that
7* = 0 at strain rate 10™% 1/s and the coefficient of interaction is a = 0.5, for
example [12]. The elastic shear modulus at RT is assumed as p = 72 GPa, and the
Burgers vector b = 2.86*10~% cm. By application of the optimization procedure
by the least square method the following values of the material constants have
been found: pp = 1.25*10'° 1/cm?, M;; = 9.8*10' 1/cm?, k, = 2.2. Those
values permit to calculate the internal stress at RT.

E
=

%

Ais
315
- -

IR

e BRI |

FiG. 4. Numerical calculation of the effective shear stress 7* for Ta with plastic shear strain
for 9 shear strain rates from I' =3+ 107* 1/s to I' = 10® 1/s, T=300 K.

In order to estimate the effective stress, values of the constants p and ¢ were
obtained from the literature data reporting the rate and temperature-sensitivity
of Ta, [24], as p = 1 and ¢ = 8/5, the energy of the obstacle AGy = 0.62 eV. The
Peierls shear stress at T' = 0 K has been assumed as 7,* = 515 MPa. The second
set of constants allows to calculate the effective stress at RT. The effective stress
7*at T' = 300 K is shown as a function of shear strain in Fig. 4 for different strain
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FiG. 5. Numerical calculation of the flow stress 7 for Ta with plastic strain for 9 shear strain
rates, steps in strain rate are the same as in Fig. 4, T = 300 K; (a) range of strain from 0 to
0.2. (b) range of strain from 0 to 1.0.

(472)
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rates from 3*¥*10~% 1/s to 10% 1/s. At low strain rates the effective stress relaxes
very quickly to zero at specific strain which could be obtained from the condition:
™ =0at {I.‘C,Tc-)‘ In tantalum, as in all BCC metals, the rate-sensitivity of
the effective stress is very high, [25].

The result of calculations of the flow stress at different strain rates, the same
as assumed for 7* calculations, is shown in Fig. 5.

Because all curves are calculated at T = 300 K and the thermal softening
occurring normally at higher strain rates is neglected, the curves at strain rates
10 1/s, 102 1/s and 3*1021/s show slightly higher rate of strain hardening than
in experiments.

However, the stress levels for lower strains (a less intense adiabatic heating)
are almost exactly the same as a found experimentally. The upper and lower
yield stress is also determined. Although the material constants have been esti-
mated for RT', the model includes also all features of temperature-dependence
at medium and low temperatures. The temperature effect on the flow stress is
shown in Fig. 6 for two levels of shear strain, I' = 0 and I' = 1.0, and three val-
ues of strain rate: 3¥*10™4 1/s, 3*10? 1/s and 5*10% 1/s. As expected, the critical
points (I'c, Te) at different strain rates are shifted to higher temperatures.

Another important part of the modeling is a question how to depict the
strain rate history effects. An attempt reported in [26] to approximate the same
experimental data was not so successful in the sense that some constants should
be adjusted to the current conditions. Here a hypothesis is pursued that when the
strain rate is increased, more and more mobile dislocations are generated. This
assumption will lead to history-sensitive pre-exponential factor v, Eq. (4.5). The
differential equation for evolution of the mobile dislocation density, Eq. (4.6),
does not encompass directly the strain rate. Therefore, this equation has been
modified in the following way

(5.1) ‘fi‘:‘ = 2 +C(I).

Solution with the initial conditions: p;, = pmo wWhen p; = pjp is in the form

(52  pmlpuD,D) =pmo+ﬁ1n(%?) + (oi(T) = pi0)C(D):

Since this approach is purely empirical the explicit expression for C(I) is as-
sumed as

(5.3) C() =n (Fﬁ) |

0
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FiG. 6. Numerical calculation of the flow stress for Ta with temperature for two levels of
strain and three strain rates: I'= 3*10™* 1/s, 3*10% 1/s and 5*10% 1/s.

MOBILE DISL. DENSITY VS STRAIN RATE

1 L 1 1 1 1
3 =3 -3 =1 L} 1 1 3

mtrlmll}nﬂ[m:
FiG. 7. Mobile dislocation density calculated after Eqs. (5.2) and (5. 3) in log(pm ) [1/cm?]
vs. log (T') [1/s] for 7 different strains from 0.05 to 1.0.

(474)
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~ EFFECT OF STRAIN RATE JUMP ON FLOW STRES
T T T T

SHEAR STRESS [ MPa ]

FiG. 8. Schematic simulation of strain rate jump test from I' 3*10~* 1/s to 3*10* 1/s for two
prestrains I' : 0.2 and 0.4.

o EFFECT OF STRAIN RATE JUMP ON FOW STRESS
T T I L

SHEAR STRESS [ MPa |

FiG. 9. Schematic simulation of strain rate jump test from I" 3*10%1/s to 3*10~* 1/s for two
prestrains I" : 0.2 and 0.4,

With the constants # = 10? cm ~2 and = 5*10~2, the evolution of the
mobile dislocation density in the double logarithmic scale for different levels of
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strain is shown in Fig. 7. That relation was used to calculate the strain rate jump
tests from 3*10~% 1/s to 3*10% 1/s at two strains: 0.2 and 0.4. The result is shown
in Fig. 8. Similar calculations were performed with the jump from 3*102 1/s to
3*¥10~% 1/s, the result is shown in Fig. 9. It is clear that those artificial simulations
yield results as expected, the overshoot and the undershoot are obtained. Of
course, in the future a more vigorous analysis is needed from the point of view
of materials science.

6. Conclusions

It has been shown that the constitutive formalism in its simplified form can
approach visco-plastic behavior of polycrystalline tantalum at low as well as at
relatively high strain rates. In this version of modeling, all material constants
have been identified and applied in numerical analyses. As it is shown in Fig. 6,
the simplified model has its limits concerning the range of temperature. The
temperature limit is estimated as T = 400 K. The room temperature constitutes
for tantalum the homologous temperature © gy = 0.091 and 400 K yields © =
0.122. Thus, the modeling of visco-plasticity around room temperature is practi-
cally limited to the low temperature behavior. A complete model should include
rate and temperature-dependent dislocation annihilation and rearrangement in
the form of Eqs. (3.4) and (3.5). However, the simplified version can approach
quantitatively the shear stress — shear strain characteristics within wide ranges
of strains and strain rates. Of course, use of the formalism in 3D is possible,
especially in the more advanced numerical calculations, by application of some
visco-plasticity theory, for example [27, 28].

Since some applications of polycrystalline tantalum takes place frequently in
the form of plates after cold rolling, a problem of anisotropy arises, for example
[29,30]. In the 1D formalism presented here the isotropy is assumed, however it
1s important to mention that the interaction constant « in Egs. (2.6) and (3. 6)
has a directional character and an anisotropy can be introduced directly in that
way.

In general, constitutive formalisms based on the materials science approach
should be introduced into variety of advanced numerical codes. Such modeling
includes evolution of microstructure at different strain rates and temperatures,
a very important factor at high strain rates.
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