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IDEAS OF PERZYNA'S theory of material systems in the cases of viscoplastic materials
and heat conductors are elaborated. Both theories are based on the notion of a method
of preparation. They are combined into one coupled model for an elasto-viscoplastic
heat conductor. We study its behavior by numerically calculating solutions for plane
waves passing through a body.
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1. Introduction

FOR AN ELASTO-VISCOPLASTIC body, stress depends on the present configu-
ration, and additionally, on irreversible deformations accumulated in the past.
Perzyna introduced the notion of a method of preparation to summarize all infor-
mation that is given on top of the actual configuration, which allows to determine
the present response of the studied material [1].

The description of the method of preparation may contain information that is
eventually not needed — as opposed to the notion of a state — which by definition
must be minimal |2, 3]. Thus a description by the method of preparation may be
more convenient. In particular, the method of preparation may be given in terms
of the whole history of a sample, or comprised in form of just a finite number of
essential quantities, the internal variables or state parameters, cf. [3]. Sometimes
it may be useful to have access to both descriptions, cf. [5,67].

We demonstrate the concept of a method of preparation in the case of an
elasto-viscoplastic material, for a rigid heat conductor and for a coupled thermo-
mechanical model. For the sake of simplicity we refrain from technicalities and,
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initially, we confine ourselves to 1D models. Then a 3D generalization will be
done together with some thermodynamic background for the model equations
introduced.

2. General setup of the theory of materials

Constructing mathematical models of real behavior of material objects we
use a framework which has its source in the system theory. The accurate setup
of such a framework one can find in the papers of W. NoLL [8.9]. There
the concepts of state, configuration and evolution function as well as response
functions have been used. The approach presented by Noll was intrinsic, in the
sense that the concepts are independent of the observer and of the description
used (i.e. material or spatial). Such a level of abstraction is suitable when a
global system approach is used, which is open for further specification.

It was Perzyna who almost at the same time introduced the concept of a
method of preparation to the theory of materials. The method of preparation
together with the configuration form the state of a material element in Noll’s
approach. Response functions are defined on the collection of all states. Inputs
(processes in Noll's terminology) applied to a material element (or a material
system) being at a given state, result in an evolution of the state, and conse-
quently in a new response. The evolution of states forced by inputs (processes),
governed in Noll's approach by his evolution function, is described in Perzyna’s
approach by a particular operator responsible for the evolution of the method of
preparation, while the actual configuration is contained in the value of the input
(process) at the actual time.

A second substantial contribution of P. Perzyna to the theory of materials
was the first application of the concept of internal state variables (parameters) to
viscoplasticity theory. After the pioneering paper of K. C. VALANIS who for the
first time in the world literature in 1967 formulated the thermodynamic setup
of internal state variables for inelestic materials in [10] (later on a celebrated
paper by COLEMAN and GURTIN [11] appeared), PERZYNA with his coworker
W. WouiNo introduced in [12] the inelastic strain tensor C"* for the description
of viscoplastic flow in the complete nonlinear setup of a thermodynamic theory.

The method of preparation of the actual configuration contains all informa-
tion necessary to give at the given state a unique response value of the material
element. The choice of a particular form of the description — or better to say, a
particular class of response functions - is crucial for the choice of the method
of preparation. Sometimes it can be the whole past (or summed) history of the
configuration, represented by a function defined on the infinite domain [0, c0),
in other cases just the rate of change of configuration is taken into account.
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In particular, the above approach can be applied to mechanics - the con-
figuration being a tensorial measure of deformation, to thermodynamics — the
configuration being the collection of a tensorial measure of deformation, the ab-
solute temperature and possibly its gradient. Further applications can be found
in electro-magnetic fields, diffusion, filtration and so on, where configurations
may contain more quantities. In each case the pure constitutive theory has to
be compatible with invariancy requirements. This has to be studied in the con-
text of appropriate balance equations. For a one-dimensional setting, this will be
demonstrated on the examples of the next three sections. In the framework we
are going to use the method of preparation given by two quantities: a tensorial
and scalar one (in the 3D thermodynamic case), both are called internal state
variables. The first one will represent a measure of inelastic (permanent) defor-
mation of the material element, as in Perzyna’s and Wojno's approach, while the
second one is a thermal state variable, called in our previous paper a new tem-
perature scale, which represents a summed history of the temperature. For both
variables evolution equations are introduced in the form of ordinary differential
equations (ODEs) for each fixed material point (element).

3. Elasto-viscoplastic material

For simplicity as well as for the purpose of the present paper, first the 1D
case will be considered. Introducing u as the displacement of a material point X
in the case of the mechanical model we identify the configuration with the partial
derivative Ou/0X =: m and introduce C, as a method of preparation. The scalar
quantity Cp is an internal state variable, identified with plastic, better to say,
inelastic strain, which requires an ODE to govern its evolution. In the context
of Noll's theory the pair (m, Cy) can be regarded as a state. Then the response
function S is introduced giving the stress S of the material element (point)

(3.1) S =8(m,Cp) .

The evolution of the method of preparation is defined by the so-called kinetic
function 2 appearing on the right-hand side of the evolution equation for the
internal state variable Cp,. We have the Cauchy problem

(3.2) Co=m, o), Cp(0)=0C],

where C,, denotes the partial derivative with respect to time ¢ at the constant
particle X. A particular solution to the equation can be found as a function of
time ¢ if an input (a process) in form of a time-dependent configuration m(t) is
given as well as an initial condition Cg . For the internal variable C;, the kinetic
function 2 needs to be identified on the basis of experimental observations and
suitable physical identifications. Usually the following is assumed [13]:
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o elastic range: if the actual stress is small there is no yielding, the state
variable Cj, does not change, i.e. {2 vanishes;

e yielding: if the stress reaches the plastic limit ky (or yield stress), Cp
changes, increases or decreases according to the sign of S. While in the
pure plasticity (i.e. in the rate-independent case), the yield stress may
never be exceeded, in viscoplasticity we may have over-stress, and there is
a relation between this over-stress and the rate of plastic flow, i.e.

(33) Q(mv P) = (I)(S(m! Cp);ﬁﬂ)

with some function ® and a parametric dependence on kgp;

e viscosity: we have rate-dependence due to the evolution equation for the

plastic strain.

If we assume vanishing body forces, the first balance law, called the conser-
vation of momentum pgv, where v = & denotes the velocity and pg the reference
mass density, together with the geometric and evolution equations, may be ex-
pressed by

(3.4) m = v,x,

(3.5) 0 = —8(m,Cplx ,
Po

(3.6) G, = Qm,Cy).

This system (3.4 -3.6) is suitable for time-integration. Note that here all right-
hand sides depend only on the local state U = (v, m, Cp)T, and on its first partial
derivatives U,x. This can be brought to the general form

(3.7) U+ f(U),x = bU)

with the flux term f and the source term b. In this form we will solve this system
in Sec. 7.2 and its thermo-mechanical generalization in Sec. 7.3. Note that for
the hyperbolic system (3.4 - 3.6) the local state is the state extended by the local
velocity.

As an easy example, consider the balance equations with constitutive equa-
tions for stress S and plastic flow speed €2 determined by

(3.8) S = E(m-C_Cy),
(3.9) Cp = 02=29(S;m),
where E is Young’s modulus and @ is a (regularized) indicator function of the

interval [—kg, ko). Here we denote by kg the yield stress, for smaller values of S
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there is practically no flow, above we have a dramatic increase of flow speed. As
an example we take

D(S, k) = sign (S)pos abs ((S — kg)")

with pos(-) denoting the positive part of the real input argument. For implemen-
tation, the absolute value, sign and positive part have been regularized in the
way proposed in [14].
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Fi1G. 1. Flow speed as function of m — Cj,.

It is worthwhile to note that in the plasticity theory usually incompressibility
is assumed. However, for the considered 1D theory this is of no consequence.

4. Heat conduction

Several technological situations at moderate and high temperatures (such as
distribution of temperature around propagating cracks [15], and temperature dis-
tribution in solid materials due to laser pulse train of a very short duration [16])
and many physical experiments at low temperatures (cf. [17,18,19,20, 21, 22|),
show the necessity of taking into account the wave structure of the heat trans-
port.

There are several phenomenological approaches aimed at a new heat conduc-
tion equation that could describe the mentioned phenomena. Some of them are
reviewed in the papers [23, 24, 25]. The present approach keeps a proportionality
law (|26]) between the heat flux ¢ and the spatial gradient of a thermal internal
state variable [ in the form

(41) = _aﬁu: )
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with a proportionality coefficient & which may depend on 9. Here the lower case
z denotes the spatial position of the material point X . (Notice that in the case
of a deformable material body z is the position after the displacement u, i.e.
z =u+ X). The classical Fourier law, on the other hand, is

(4.2) q = —k(9)dz

where the heat conduction coefficient k(¥) can depend, in general, on the absolute
temperature . The scalar internal state variable 8 will represent the history of
the temperature in the sense that its value at the present time will be a solution
to an initial-value problem for a suitable ODE in which the right-hand side is a
function of (at least) 9 and 3. Let us notice that in the linear case such an ODE
can have the form:

5 W]
(4.3) B = —(d — ), with initial condition A(0) = 5,
where the coefficient 7 is called the thermal relazation time. If we perform spatial
differentiation in (4.3) and make use of (4.1) we get

(4.4) T¢+q=—ad,; .

The last equation can be regarded as a modification of the Fourier law if the
heat conductivity coefficient k() is identified with e and one has added to (4.2) a
term in which the time derivative of the heat flux ¢ is multiplied by the coefficient
7. If one omits introducing the thermal internal state variable 3, the last equation
(4.4) becomes the well-know telegraph equation which is the governing equation
of the so-called rate type approach modelling heat conduction, and is called the
MAXWELL-CATTANEO-VERNOTTE-KALISKI equation ([27,28,29,30,31]). It is
interesting to add that the approach based on the last equation can be obtained
as a particular case of the summed temperature-gradient history approach pro-
posed by the authors of [32].

There are some drawbacks in applying the equation (4.4) to the thermody-
namic theory of thermomechanics, especially because of the internal dissipation
inequality. The present author (W. K.) with PERZYNA in [33] (and later in [34]
in a more general setup) calculated for the first time finite speeds of thermal
(and thermo-mechanical) waves in the framework of a thermodynamic theory
with internal state variables. Later on COLEMAN et al. [35] repeated the first
results of Kosinski and Perzyna from 1972 in a slightly different set-up, without
referring to the internal state variable approach and to the original paper [33].

The model proposed in [26] is based on a different procedure than the deriva-
tion of the wave-type heat propagation equation; in fact it is somehow a next
generation of [33], [34]. In that model a scalar internal state variable § has
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been introduced to represent at the same time a history of the thermodynamic
temperature and the potential for its gradient. In the course of obtaining the
consequences for the laws of thermodynamics, a modified Fourier-type law was
found, leading to finite speeds of propagation of thermal and thermo-mechanical
waves. The model has been mostly applied to heat conductors in 1D and 3D
cases and to thermo-elastic solids (cf. [36,37], and the literature given in [38]).
Its similarities to other models are shown in [39,40] (cf. also [23,25]). In terms of
the material description in the last approach, the state is formed by the configu-
ration, composed of the temperature 9 and the method of preparation. The latter
is composed of the (thermal) internal state variable 3, and its spatial gradient
0p/0x = p. The state is a triple (3, 3, p), while the response is composed of two
quantities: the internal energy e and the heat flux ¢, i.e. the pair (e, ¢). For the
evolution of the method of preparation we have at our disposal two differential
equations, written in a general form as:

(4.5) B = F@®,8),
(4.6) p = Fi(9),z +F3(P)p
with

F(9,B) = F1(9) + F2(B) and F3(B) = dF3(B)/dp .

For the response function we may write

(4.7) e = é(?,B,p) and ¢ = ¢(¥,5,p).

Note that both variants have a drawback: the classical one based on (4.4) needs
an initial condition for the heat flux ¢, the semi-empirical ([39]) theory ([14-15])
requires initial data for 3. (Notice that the initial condition for p can be calcu-
lated from the initial condition for 3 by simple differentiation.) We conclude this
subsection with a formulation of the first order system for the one-dimensional
case. We introduce the vector of thermodynamic unknowns as V = (e, 8,p)7
with the internal energy e, the semi-empirical temperature § and the gradient of
the latter p = Vf3, in the one-dimensional case p = ;.

We assume a one-to-one relation between absolute temperature 9 and internal
energy e, e.g. given by Debye’s law e = eq9* + egd or simple proportionality,
e = ¢,¥. Together with the previous constitutive relation (4.1) in the form g =
—a(J)p, and by adding the energy balance é = —q; + r, we obtain the system

ci —4x 5
(4.8) gl=| o |+| R+R
ﬁ Fl 'L F2,p

Here r denotes the known external heat source density, and F} = Fy(9),F, =

Fy(B) .
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5. Elasto-viscoplastic heat conductor

In this section the governing system of equations is formulated for the 1D
case. The theory is based on thermodynamics of heat conduction in a viscoplas-
tic medium with over-stress function. Such a function is known from Perzyna’s
model of viscoplasticity (cf. [3,4, 13]. We assume here that this function is inde-
pendent of the gradient of 4. Due to thermodynamics, the stress appearing in it
is not the total second Piola-Kirchhoff stress tensor as calculated from the free
energy function by the potential relation, but its so-called instantaneous part
S k1, in which the gradient of 3 has been neglected (no coupling with V). Con-
sequently, we assume that the evolution equation for the inelastic strain tensor
C, is given by the polynomial over-stress function

ﬂ_l)"""@: '(‘/72_1)"%
~(9) 2S%, w(0) i 5

in which the yield stress « as well as the viscosity coefficient v* may depend on the
temperature 9, and §%; is the deviatoric part of the instantaneous stress tensor

(5.1)  QSwnd) =" (

2
S ki, with Js as its second invariant. In the present 1D case J; = 3 abs(Sg) .

Finally, we collect all equations and formulate them as a system of PDEs
which a vector of unknowns U has to satisfy. Restricting ourselves to the 1D case
we assume the notations: S as S| component of the first Piola-Kirchhoff stress
tensor § and F for the component Ey; of the elastic part of the Lagrange strain
tensor E°, writing C}, for the component Cyy,, of the tensor internal state variable
C,, and we put Sy for the S,lz} component of the stress tensor Sg; appearing
in the definition of Perzyna’s over-stress function, ¢, as the only component of
the reference heat flux vector g, and p for the first component of the spatial
gradient of 3, p = Vf. Since 1 + m is the Fy; component of the deformation
gradient F', we get

(L+mP-Cp

(5.2) E= -

Let us assume that the free energy 9 is (an isotropic, in 3 D case) function of
the strain m, inelastic strain (i.e. internal state variable) Cp, gradient of 8 and
temperature 9 | i.e.

(53} ‘!Ib = 1;(7n1ﬂ161x1cp) ’

Repeating our assumptions from [38,41] telling that:
(1) the heat flux is linear in the gradient of g, cf. (4.1),
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(2) the specific heat is independent of the gradient of 3, and adding two more
assumptions here, namely:

(3) elastic properties are independent of the inelastic strain and are expressed
by the strain-temperature-stress relations of a neo-Hookean material,

(4) the specific heat is of 3rd order in temperature,
we end up with the following partition of the free energy function:

(5.4) P(m, 9, p,Cp) = 1 (E,9) + p2(m, p, 9)

where the first mechanical part of v, is quadratic in F and bilinear in 9 — ¥
and F, while 12 must possess the form

(5.5) pa(m, p,¥) = 0.5¢20 9 p° m,

where the factor 0.5 is introduced for convenience only. The linearity of the heat
flux in p(cf.(4.1)), and the independence of the coefficient a of the strain m
together with the above assumptions lead to the specification of the coefficient
and the form of

1 94

190"1) 12 Cusﬁ—g—ffo (9—o) ,

(5.6) ¥ (E,9) =c] Ez—;(ﬁ ¥0) E—cyo 9 (In
with a(9) = pp Y092 F'(9) and constants 9,7, J, €0, €3, 7o- The dependence
of @ on F| turns out to be a consequence of the second law of thermodynamics,
together with the following stress-temperature-strain relation

(5.7) §= pugi = popa(;f
o
= [t = a9 — 00)| (14 m) = o0 0 v 7

where c1 (A+2u)/po , with A and p as Lamé’s constants.

On the other hand, the thermodynamic identity between the internal energy
(per unit mass) ¢, the free energy v and the entropy n = —dy /39, which is of
the form € = 1 + ¥, applied to (5.4-5.6) gives the following expression for €

4

—§+Tm‘§{].

Cy3
‘90

e C? 2 ¥ 1
(5.8) é(E,\9) = EE + —9E 4+ cy ¥ + -
Po 4

For the first component of the instantaneous stress Sgry we have

5 (L+m)? -

5 (9 — o)

(5.9) Sr=po(l + m)*‘% = [pucl
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For the inelastic strain we have (cf. (5.1))

n

abs(Sg) Sr

3 2 '
ik \/;abs(S'R}

For the only nontrivial heat flux component g, we have

(5.10) =+

OF (B,9)
5.11 = — 7 ik b
(5.11) q PoY20 S T
For 8 we have the evolution equation
(5.12) B=F, with F(9,8) = F\(9) + Fy(8)

and for its material gradient = := f,x = p(1 + m), the so-called prolongated
equation (cf. (4.6)),

(5.13) 7 = F1(9),x +F3(B)p(1 +m) .

The above constitutive functions are now restricted by the second law of ther-
modynamics expressed in terms of the residual dissipation inequality

[BF P pt 2 .

(5.14) ap 8 aCp

(Sx,ﬁ)] 20,

in which the function € is the right-hand side of Eq. (5.10). The balance equa-
tions, in this case of linear momentum and energy, will be

(5.15) RO
£o
(5.16) (P0€+%U )+ (gx —vS),x = por+pov b,

where r and b represent heat sources and body forces, respectively. The equations
are accompanied by the geometrical compatibility equation

(5.17) m=uyx .

6. Numerical results

For hyperbolic systems, we may apply the well-known explicit time-stepping
schemes due to Lax-Friedrich, Osher or Lax-Wendroff. While the first mentioned
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methods have the advantage of monotonicity, and hence converge to entropy so-
lutions, the Lax-Wendroff scheme is second order accurate and converges faster
at the price of possible violations of monotonicity and artificial oscillations near
the wave fronts. We solve the sample problems by an ad hoc hybrid combination
of the mentioned methods to find a compromise between speed and stability.
We present here in Fig. 2 the resulting data for the mechanical quantities,
velocity and strain. There is a wave running from left to right which results

from applying a short pressure impulse at the left boundary, which results in a
compression wave.

oo

0.0

002 -
0.0

FiG. 2. Velocity and strain.

At the same time, a heat impulse occurs at the right boundary. It runs as a
wave from right to left, and it it affects also visibly the mechanical submodel.
In the Fig. 3, we depict the temperature increment together with the heat flux.
Here the hyperbolic character of the heat transition model becomes obvious.

10 00

FiG. 3. Temperature and heat flux.
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Finally, in Fig. 4 we show the residual deformations, i.e. the internal variable
Cyp. Note that we have permanent deformations first where the mechanical wave
originates. However, due to the nonlinear coupling with the thermal wave, at
elevated temperature the state re-enters the plastic range after the crossing point.

-0.005
-0.01

-0.015
0.0

X 10 0.0

FiG. 4. Permanent deformation.

7. Generalizations

We have presented just the one-dimensional implementations of the general
theory. Further, we have limited ourselves to the minimum number of couplings
to obtain a non-trivial thermo-mechanical theory. That way it was possible to
present the ideas behind the general theory in a particularly clear manner. At
this stage, we want to give just some hints as to the full three-dimensional formu-
lation of the theory. However, it has to be mentioned that a major problem is the
identification of material parameters/functions for each real material at hand.
To keep this paper self-contained, we quote some of the foundations of thermo-
dynamics of an inelastic material with the modified Fourier law presented in [42]
(cf. also [38],[43]) and repeat the most important consequences of that presen-
tation. The case of 3D thermo-mechanics at finite strains requires to introduce
instead of scalar quantities the following variables:

e F - the deformation gradient tensor;
e the Lagrange strain tensor E related to F by E = 0.5(FTF 1) ;
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¢ the actual mass density p related to the reference mass density py by the
law pg = Jp, with J = detF;

e the symmetric Cauchy stress tensor T related to the first Piola-Kirchhoff
stress tensor S by the identity § = JTF~T while the

e second Piola-Kirchhoff stress tensor Sy is given by the identity Sp =
FS;

e the particle velocity v,

e the heat flux vector g, related to the reference heat flux g, by the identity
=gk
qx q .
We assume that the spatial gradient grad g = V/ and the inelastic strain tensor
C, appears in the constitutive equations for free energy 1, entropy 7, stress S
and heat flux g, as the method of preparation:

1/’ = lfl'(F,ﬂ,Vﬂ,Vﬁ,C'p), = n‘(Frﬂ!Vﬂlvﬁscp)i
§= S*F,9,V9,VB,Cp), q.= Q'(F,9,VB,Cy).

(7.1)
For the internal state variables — the scalar # and the tensor C, - the evo-

lution equations have the form (cf. (3.6), (2.61) )

(7.2) B = F(9,p),
(7.3) (6.8 O (F,9,C,).

Notice that the independence of the heat flux of the actual value of the tem-
perature gradient is crucial for the development of a hyperbolic model. Now the
second law of thermodynamics

(7.4) po(n9 —é) + 8- F -9 'q, - Gradd > 0,
is used to get the following potential-type consequences :

: 0=0y"/0VY, S =p[0Y*/OF —VB® (0%*/0VB)FT],
e n=—0y'/09,  q.=—po(0OF/39)(y" [OVBFT,
and a reduced inequality, with F' substituted from (7.2) and Q* from (7.3),
(7.6) —po [(OF/0B) (84" [0V ) - VB + (99°/9C,) - 2] > 0.

The first three identities of (7.5) are well-known, the last one is rather not typical
(cf. [34]). The stress potential relation in (7.5) contains two components: the
first component is rather classical, while the second one represents the direct
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coupling between mechanical and thermal fields in which an extra stress term
appears. Substituting g, into the stress relation in (7.5) and (7.6) we get a new
potential relation for the Piola-Kirchhoff stress (in terms of the heat flux) and a
residual inequality, both in terms of the heat flux. Here this potential relation is
presented together with the relation for the second Piola-Kirchhoff stress Sg in
terms of V3 and the actual heat flux vector, all in a general anisotropic case.

S = pody*/OF + (99F/39)" (VB ®q,),
(7.7) Sk = poF~' [8y*/0F — VB ® (3y*/0VA)F ],
g = —pd(dy*/dVP)(9F/dY) .

Let us assume in (7.7)3 a linear relation with respect to V. Then due to the
principle of material frame indifference this will be true if the free energy function
is of the form

where the factor 0.5 has been assumed for convenience only, with B = FFT,
assuming this, Eq. (7.7)3 turns into

(7.9) q=—a'(B,9,Cp)VB with o*(B,d,C,) = pIdF/d9 ¥3(B,9,Cp) .

In the present case, the independence of the free energy function of 3 leads to
splitting the function F(¥, ) into two independent terms

(7.10) F(9,8) = Fi(d) + Fa(B).

Moreover, in the linear case (7.9) the proportionality material coefficient o has
to be independent of both strains, i.e.

(7.11)  a*(B,9,Cp) = a*(¥), ¥3(B,9,Cp) =3 (J)J and q = —a*(J) VS,

with 93, > 0.

If the internal energy €* = 9* + 9n* is independent of V3 then the function
3, is linear in ¥, i.e. ¥3,(9) = ¥209. In this case Eq. (7.7); due to (7.8) will
take the form

(7.12) S = 2po(8Y} /OB)F + poihaodJ (0.5| VB’ T — VB VB)F T,
or equivalently, using (7.11)3,

(113) S =2(@%1/OB)F + m 22 (05laP T - q @ a)F T

with a*(9) = poy3 9 F{ (9).
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Let us notice that even in this simplified case the stress—strain-temperature
relation has an extra term due to the thermo-mechanical coupling; this term
can be called an extra thermal stress. This contribution can have a substantial
meaning in describing thermo-mechanical coupling phenomena in viscoplastic
materials. We assume for the material the property of isotropy. Hence, the free
energy function can be expressed in terms of the right Cauchy-Green stress
tensor C instead of the left one B. Moreover, for the mechanical response a neo-
Hookean type of behavior is assumed, however, in terms of the so-called elastic
strain tensor E€ defined by

(7.14) E¢=05(FTF-Cp) .
Then for the free energy function we will have
(7.15) Y(F,9,grad §,Cp) = 1 (E*,J) +¢2(F,Vf,9),

in which in ¥, the first part is quadratic and isotropic in E®:
A 4
7.16 — (trE®)? + —tr(E®)?
(7.16) e (B + Ear ()
while the thermo-mechanical coupling is bilinear in both variables, i.e.
(7.17) ~ X (9 — 9)trE".
Po

Assuming, moreover, that the specific heat is of 3rd order in temperature and
independent of V3, we can write

(7.18) 1(B®,9) = = (trE%)? + Le(B%)? = L( — do)tr B®
2p0 Po Po
9 1 9
— Cyo ¥ (lnl‘?_o = 1) =i Cvsﬁ—g—ﬂo (9 — do).

The second part we assume in the form already used in our previous paper
(ct. [41))
(7.19) Yo (F,VB,9) = 0.5909V 3 - V3det F.

Due to the potential relation 7 = —dy /99 and the relation between the internal
and free energies €* = 1 + 1, the internal energy is independent of V3 and has
the form

(7.20) €*(E®,9) = ﬁ(trEe)Q

[ i I 0
+ —tr(E®)? + —0ptrE® + cyo¥ + ~ 13—
0 Po 9

Jp.
1 + 1Mo Yo
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Due to thermodynamical consequences for the first Piola-Kirchhoff stress tensor
S we obtain the following stress-strain-temperature relation

(7.21) S = AtrE°F + 2uFE® — y(9 — ¥p)F
+ po Y0P J (0.5|VB’ T — VB VB FT.

For the instantaneous stress tensor S g; being equal to Sg = F~'S at vanishing
V3 we get from (7.21)

10U (F,9)

(7.22) Sri=po F F

= MrET + 2uE°® — (9 — 9o)I .
This stress tensor is used in the defintion of the over-stress function and the
evolution equation for the inelastic strain (cf. (5.1) and (7.3)).

8. Conclusions

More than 20 years after the publication of Perzyna’s book [3] on viscoplas-
ticity, the theory laid down there is still alive, and there are still challenging new
problems in this field.

Thanks to tremendous progress in computational methods, today it is pos-
sible to realize numerically some of the concepts developed theoretically in the
period of rapid development of the viscoplastic material models.
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