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IN THIS PAPER the reduced parameter dependence in linear plane elasticity with
eigenstrains (transformation strains) is studied. The focus is on simply connected
inhomogeneous materials and two-phase materials with perfectly bonded interfaces.
In the analysis we rely on the result of CHERKAEV, LURIE and MivtoN (Proc. Roy.
Soc. Lond. A 438, 519-529, 1992), and we show that the stress field is invariant under
a shift in area bulk and shear compliances, if the eigenstrains obey certain conditions.
The analysis can be extended to multiply connected inhomogeneous materials and
materials with slipping interfaces.

1. Introduction

IN THIS PAPER we focus on linear plane elasticity with eigenstrains to study
a reduced parameter dependence. In the terminology of MURA [1] eigenstrains
may represent nonelastic strains such as thermal expansion, plastic strain, phase
transformation, initiel strain, and other. The classical work pointing out the
reduced dependence of stresses on elastic constants in plane elasticity was per-
formed by MICHELL [2|. He showed that for materials with holes, the in-plane
stress fields are independent of elastic constants, provided that the loading is
in terms of prescribed tractions and that there are no net forces on internal
boundaries. This result was utilized in an experimental technique called photoe-
lasticity. DUNDURS [3-4] extended Michell’s result to planar two-phase materi-
als and showed that stress fields depend on only two non-dimensional constants,
instead of three, if the composite material is subjected to tractions. This con-
cept was generalized to multi-phase materials by NEUMEISTER [5]. CHERKAEYV,
LURIE and MILTON [6] showed that the stress field in two-dimensional (pla-
nar) elasticity is inveriant under a shift in elastic bulk and shear compliances,
which is directly related to the Dundurs result, and they extended the concept
of reduced paramete’ dependence to effective elastic moduli. This latter work,
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referred to as the CLM result, inspired a number of follow-up studies in the
context of planar elasticity [7-15]. The present paper extends these earlier re-
sults to the linear plane elasticity with eigenstrains. The CLM concept was also
found applicable to planar Cosserat materials [16], planar piezoelectric materials
[17], planar electromagnetic thermoelastic materials [18, 19], and was explored
for three-dimensional elasticity [20, 21].

First, we briefly present the main definitions of three-dimensional elasticity
with eigenstrains, following the notation of MURA [1]. The total strain €;; is the
sum of the elastic strain e;; and the eigenstrain €,

(1.1) Eij = €ij +€:js 8, 1=1,2,3.
The total strain &;;, for infinitesimal deformations, is related to displacements

as €;; = (u;; + u;,1)/2 and is compatible. For linear elastic materials the elastic
strain components are related to stress o;; by Hooke’s law as

(1:9) 0ij = Cijriext = Cijkt (Ext — €kt)

where Cij is the elastic stiffness tensor.
The inverse of expression (1.2) is

(1.3) €ij = OijklOkl

where Siju = ('\’}';J-JH)'I is the elastic compliance tensor. Using Eq. (1.1), Eq.
(1.3) can be written in the form

(1.4) €ij = SijkiOkl + €5

Note that all quantities may depend on the spacial position x. This dependence
representation is omitted for simplicity of notation.

In elasticity with eigenstrains the material is assumed to be free from any
external forces and surface constraints. If these conditions of free surface are not
satisfied, the stress field can be obtained by a superposition of the stress of a
free body and the stress obtained from the solution of a given boundary value
problem with nonzero external forces or boundary conditions.

The stresses must satisfy the equations of equilibrium

(15) Tijq = 0 i,j = 1,2,3
and traction free-boundary condition

(16) Ty = 0.
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Following MURA [1], by substituting Eq. (1.2) into Eq. (1.5) and assuming
homogeneous material, we have

(1.7) Cijkiert,j = Cijki€k j
and by substituting Eq. (1.2) into Eq. (1.6) we obtain
(1.8) C:'J'Ht‘ktﬂj = Cijklg;:lnj‘

Note that in the absence of eigenstrain (e}, = 0), the left-hand side of Eq.
(1.7) corresponds to oy;; and the left-hand side of Eq. (1.8) to o;;n;. Thus, Eq.
(1.7) is in the form oy;,; = —X; where X; = —Cjjxey, ; and Eq. (1.8) is in the
form o;n; = t; where t; = Cjjxeg;n;. Therefore, the contribution of eigenstrain
€j; to the equations of equilibrium (1.7) is mathematically equivalent to a body
force, and contribution to the boundary conditions (1.8) is similar to a surface
force.

In the next sections we focus on the planar elasticity with eigenstrains, assum-
ing isotropy in elastic properties. In addition we relax the boundary condition
(1.6) and admit nonzero tractions to make the formulation more general. This
will not change our conclusions on the reduced parameter dependence.

Note that a special case of elasticity with eigenstrains is the uncoupled ther-
moelasticity when the eigenstrain €; is defined as
(1.9) £ = i AT o =0ifi#j 1,5=12.3,
where «;; is thermal expansion coefficient and AT is temperature change. We
will refer to this special case in examples.

2. Governing equations of plane elasticity with eigenstrains

The governing equations of linear plane elasticity with eigenstrains in the
absence of body forces in a domain D are as follows:
i) The equations of equilibrium in terms of stresses

dozy 0oy =55 Dogy  Ooyy

oz dy oz dy =

(2.1)

ii) Constitutive equations (1.4), assuming isotropy, accommodating both plane
strain and plane stress, and including eigenstrains

degr = 25055 + (A = S) (022 + oyy) + de3, + dneEL,,
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(2.2) dezy = 2504y + 4ey,

deyy = 2Soyy + (A — S) (022 + oyy) + 4g;y + 4net,,
where A and S denote the bulk and shear compliances respectively, defined by

(2.3) e i

2G °’ oy
Here GG denotes the shear modulus and & is the Kolosov constant defined in terms
of the Poisson’s ratio as

k = 3—4v, n=v (plane strain),
J—v
24 = = 1 tress).
(2.4) K EaT 0 (plane stress)

iii) Pointwise (local) compatibility in terms of total strains

dz? dzdy  Oy? L

(2.5)

These equations are subject to boundary conditions on S, the boundary of
domain D. In this paper we focus on the boundary value problems involving
applied tractions

(2.6) tz = OzgNg + Ozyny ty = Ogynz +0oyn, onS.

3. Inhomogeneous materials

First, we consider an inhomogeneous, isotropic, simply connected body D
subjected to spacially varying eigenstrains €;; and traction boundary conditions
(2.6). Using Egs. (2.1) and (2.2), and assuming that both compliances and eigen-
strains are smoothly varying functions of position, the compatibility condition
(2.5) can be expressed in terms of stresses as

0%S 0*S ) &e,
2 o [N vy
(3.1) V*[(A+S)(0zz + 0yy)] — 2 5520 2 a7 Oyy 432:3y Ozy 4 522
d% ez, 2 dn Oe:, on O¢;, 5
= zz = ¥ gl o ol ey 4 :
4 a2 +86xi 4V*nes, 8am o Sc’?y By nV<e;.,
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wheren = v = % (1 — A/S) for plane strain and n = 0 for plane stress. Thus, the

unknown planar stress components 0z, 0zy, and oy, can be determined from
the equilibrium equations (2.1), the compatibility condition (3.1) and boundary
conditions (2.6). From these governing equations only Eq. (3.1) contains elastic
compliances. Thus, in our investigation on reduced parameter dependence we
focus on Eq. (3.1).

Following CHERKAEV, LURIE and MILTON [6] we seek the conditions for the
invariance of the planar stresses with respect to the shift in shear and bulk com-
pliances in this class of boundary value problems. In particular, the general form
of the shift in elastic compliances, introduced by DUNDURS and MARKENSCOFF
[8] is considered

(3.2) A=mA+a+br+cy, S=mS—a-bz—cy,

where a, b, ¢, and m are arbitrary constants provided that the compliances
remain non-negative. In this analysis, in addition to the plane stress and plane
strain cases, which lead to different results, the distinction is made between the
cases when m =1 and m # 1.

For the plane stress case and m = 1, Eq. (3.1) remains unchanged under the
linear shift (3.2), i.e. the planar stress components remain unchanged, for any
s:-‘j, and thus there is a reduced parameter dependence.

For the plane strain case and m = 1, Eq. (3.1) remains invariant under the
linear shift (3.2) when

on dez, ,on ex,

2 ak
(3.3) Vinel, +25 =2 + 25—

+1V3%:, =0.

For the special case of uniform eigenstrains, the condition (3.3) is satisfied pro-
vided that

(3.4) e, =0 or V=0,
while for the case of a homogeneous material the condition (3.3) is satisfied if
(3.5) V2%, =0 or 95=0.

Recall that 7 = v for plane strain case.

For the case of plane stress and m # 1, Eq. (3.1) is invariant under the shift
(3.2) if

(3.6) Oeyy S 2826:‘:;; e3s
: dz? dzdy  Oy?

=0,
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while for the plane strain case and m # 1, the linear shift is only possible when

o2t &%, 9% , an Oe* on Oe*
3.7 vy =0 Ty T V2 * 2_’? zz 2_!' 2z
O e e SR L i ot

+nV2%;, = 0.

For multiply connected materials the compatibility condition (3.1) is a neces-
sary but not a sufficient condition for the existence of continuous displacements.
Thus, for such materials in addition to (3.1), the global compatibility condi-
tions in the form of line integrals (called Cesaro integrals) need to be included.
More details on this procedure are given in (8, 15]; the analysis presented there
can be extended to multiply connected materials with eigenstrains. This class of
problems is not addressed in this paper.

Next, two special cases are considered.

CASE 1. Assume a homogeneous material with uniform eigenstrains subject
to zero traction boundary conditions. In this case the eigenstrains may repre-
sent thermal strains defined by Eq. (1.9) and the problem reduces to the case
of uncoupled linear thermoelasticity for homogeneous materials. The governing
equation (3.1) becomes

V2 (o2z + Oyy) =0

subject to zero tractions in the plane. This boundary value problem is satis-
fied identically by zero stresses, as expected. Thus, the concept of the reduced
parameter dependence has no relevance for this boundary value problem.
CASE 2. Assume a homogeneous material with non-uniform eigenstrains sub-
ject to traction boundary conditions. Eq. (3.1) takes the form
2 % 2 2
Sy 9 ezy B 46 Ezs

= 2.8 ]
T R e S

(38)  (A+5)V?(04z +0yy) = —4

In general, for this case, the stresses are non-zero, and the concept of reduced
parameter dependence applies, subject to conditions on eigenstrains given in this
section.

A related work addressing residual stresses in isotropic materials is due to
HOGER [22]. It that reference, residual stress is defined as the stress present
in a body in an unloaded reference configuration. In this definition there are
no body forces and no surface tractions acting on material. For such class of
problems in an isotropic material “the residual stresses must commute with all
proper orthogonal tensors”, and therefore have a restricted form of a hydrostatic
pressure. For zero tractions on the boundary this stress must be identically zero.
Thus, it is concluded in [22] that an isotropic body can support no residual stress.
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In our case the stress is caused by external eigenstrains which, as mentioned in
Sec. 1, are mathematically equivalent to body forces and surface tractions. Thus,
the stress fields in our formulation differ from those in [22]. More specifically, the
stresses have the unrestricted form, which is related to the unrestricted form of
applied eigenstrains. The form of eigenstrains is determined solely by the physical
problem considered. Thus, for nonuniform applied eigenstrains, the stresses are
in general nonuniform and nonzero. This agrees with the statement in [22] that
nonzero residual stress must be nonuniform.

4. Two-phase materials with perfectly bonded interfaces

Next, we consider the case of a domain consisting of two discontinuous phases
1 and 2, subjected to eigenstrains. We assume perfect bonding boundary condi-
tions on the boundary between the two phases, and we assume traction boundary
conditions applied on the outer boundary. Using the stress formulation, the gov-
erning equations are Eq. (3.1) for phase 1

8 S 2’8 %8
2 (1) 4 (1) ST LA/ L, (1)
(41) 92 [(41+8) (o) +0(p)] -2 T22 %% 253 0w ~ d5p5,0
82( )i D% (eh & (ezy)
= St éy’; by g 6(:1:6; L~ 4V2n (e2.),
_gIm () OmO(el), 2
8% or 6y 3y =43V g2y

and the analogous equation for phase 2, the equilibrium equations (2.1) applied
for each phase, and boundary conditions (2.6).

Foliowing [8,23], for a domain consisting of two discontinuous phases (de-
noted by 1 and 2), the perfect bonding boundary conditions on the boundary
S12 besween these phases involve

a) the continuity of normal tractions

(4.2) Tim = Ohm  on Sia,
b) the continuity of tangential tractions
(4.3) O‘.E;L} = 0'5123) on 512,

c¢) she continuity of change in curvature AK, = AK,, which in terms of
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stresses has the form

(44) o [(A2+52) 0] - o [(Ar +50) o]
— (43 = A1) +3(S2 — 8] 3"“
_4% (82 e S!)C‘ns ~F {% [(AQ = A]) == (5'2 — Sl)] + 2K (A2 — Al)} 7o

: 3% [(€3n)2 — (€3a)] + % {4l(e3,); = (5] +4m2 (e22)2 = m (€2)]}

o {4 [(E:m)Q e (E:m]l] +4 [7?‘2 (E;Z}Q - (E:z)l]} =0 on S

where K is curvature,
d) the continuity of stretch strains EE,L) == sﬁf), which expressed in terms of
stresses gives

(4.5) (A2 +S2)0{? — (A1 + 81) o)) + [(A2 — A1) — (S2 — S1)] onn
1= 4[(633)2 = (6;3)1] ¥ 4[7?2 (5 ’71 zz ] =0 on Sl?v

where subscripts and superscripts 1 and 2 denote quantities in phases 1 and 2,
respectively, and n and s are normal and tangential directions in plane as de-
fined by DUNDURS [23]. Note that the last two boundary conditions (4.4) and
(4.5) replace the conventional conditions involving the continuity of normal and
tangential displacements

(4.6) P B ]

Next we explore the conditions for stress invariance. For two phase materials
the linear shift (3.2) takes on the form

Al=mA +a+bz+cy S =mS —a-—bz—cy,
(4.7) . N
As=mAs+a+br+cy S2=mSy—a—bz—cy.

Note that only the boundary conditions (4.4) - (4.5) depend on compliances.
Thus, we explore the invariance under a shift by focusing on these two conditions.

For the case of plane stress and m = 1, Egs. (4.2) - (4.5) are invariant under
the linear shift (4.7) for any eigenstrain ¢}; in phase 1 and 2.

For the case of plane strain and m = 1 the linear shift is possible if

(48) m (E;z)l =12 (522)2'
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For the plane stress case and m # 1 the boundary condition (4.4) does not
change under a linear shift if

a * * 3 * * * *
(49) _25 [(5.!11)2 = (Esn.)l] T a [(Esa)Q = (533)1] + XK [(Enn)2 i (Enn)l] =0
and the boundary condition (4.5) remains unchanged under a shift if
(4.10) (e3e)1 = (€56)2 -

For plane strain case and m # 1 Eq. (4.4) is invariant if

(4'11) Gl 2% [(E;n)‘z _ (E;n)l] + % {[(E;s)Q = (5;3)1] i [n‘l (523)2 — ™ (E:Z)I]}

+ K {[{E:m)z =} (E:m)l] 2 [7?2 [E;z)‘z = 1 (E;lel} =0 on 31‘2

and Eq. (4.5) is invariant if

(4.12) [(5;3)2 = (E;s)l] B3 [7?2 (E:Z)Q — (‘E;z}l] =0 on &,

Thus, if (4.12) is used, the condition (4.11) reduces to

(813)  ~ 22 [(€tm)s = (€5a)i] + K {[(Ehm)a — (Ehol]

+[n2 (€32)2 — m (€2.)1]} = 0.

In addition, the conditions on the invariance of Eq. (4.1) and on its counter-
part for phase 2 must be satisfied for all the four cases discussed. These conditions
are analogous to those in Sec. 3.

Note that the results presented in this section are applicable for both simply
and multiply connected two phase materials. It has been shown by MARKEN-
SCOFF [24] that for multiply connected materials with perfectly bonded inter-
faces, the Cesaro integrals do not need to be considered. Also, the results for
two phase materials, discussed in this section, can be extended to multiphase
materials in a straightforward way.

To illustrate the concepts presented in this section we include in the Appendix
an example involving a single elastic circular inclusion embedded in the elastic
matrix subjected to uniform eigenstrains, and more specifically - to a uniform
temperature change.

5. Conclusions

We showed the reduced parameter dependence in the in-plane stress fields in
the problems governed by plane elasticity with eigenstrains, if the eigenstrains
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satisfy the given conditions. Note that there are no conditions reeded for the
plane stress case for the form of shift with m = 1. These results can be applied
for two-phase materials to linear plane uncoupled thermoelasticity, where eigen-
strains are uniform and represent the product of the thermal expansion coeffi-
cient and temperature change. The analysis can also be extended to multi-phase
materials with perfectly bonded interfaces, two-phase (or multi-phase) materials
with slipping interfaces [25], and inhomogeneous multiply connected materials.

The reduced parameter dependence is of importance in parametric studies,
both experimental and theoretical. It can be used as a check for numerical and
analytical calculations, it reduces the number of output parameters, and facili-
tates the presentation of results. It results in savings in time, space and resources.
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Appendix

The analytical linear elastic solution for radial stresses due to a small circular
homogeneous inclusion made of phase 2 of radius a embedded in a homogeneous
matrix of phase 1 and subjected to a uniform temperature change AT is given by

2[(11 (14+m)—az(l +7}2)]QT02_1“

{1 _
(Al) O’ = ﬁg—l +L 'l"'2
2G, G
and
(A.2) @ _ [ (L+m) — ap (1 +m)] AT
; g o =1 i L "
2G5 e

where subscripts and superscripts 1 and 2 denote the matrix and inclusion re-
spectively, and a is the coefficient of thermal expansion.  is the Kolosov constant
defined in Eq. (2.4) and G is a shear modulus. If we express this solution in a
contracted form using the definitions (2.3), we have

1) _ 2[ea (1+m) —as (1+n2)] ATa? 1
Opy’ = —_

(A.3) As + 5 r2
and

Az + 5
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Note that the eigenstrains, defined in Eq. (1.9), are

(A-S) (E;T)l = (5;9)1 == (E;z]l = AT
(A.6) (E:r)2 = (559}2 = (E:,z)z = AT
and

(A.7) Err =Enn €99 = Egs-

Note that the stresses are invariant under the transformation (4.7) subject
to conditions discussed in Sec. 4.
Thus, for plane stress case and m = 1, the in-plane stresses are invariant

under the shift (4.7) and there is a reduced parameter dependence.
For plane stress case and m # 1, the condition (3.6) applied to (sgj)l and

(5;‘]-)213 satisfied automatically, but the conditions (4.9) and (4.10) impose

(A.8) (ere)1 = (e7,)2 (€501 = (€p)2-

The condition (5.8) implies a; = a3, which gives a zero stress field. Thus, the
reduced parameter dependence does not hold for this case. This conclusion can
easily be verified by analyzing Eqs. (5.3) - (5.4).

For plane strain case and m = 1, the conditions (3.4) and (4.8) are satisfied if

(A.9) (6321 = (€32)2 =0

Thus, there is parameter dependence subject to the condition (5.9).
For the plane strain case and m # 1, the condition (3.7) is satisfied for any
eigenstrain value, while the conditions (4.12) and (4.13) are satisfied only if

(A.10) (er 1 = (77)2  (ego)r = (egg)2 (21 = (€2;)2

which implies a; = a2, and thus the zero stress field. Therefore, the reduced
parameter dependence does not hold for this case.
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