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THE WORK is the continuation of Professor Piotr Perzyna achievements in the de-
scription and analysis of the phenomenon of plastic strain localization. The ductile
materials under impact loading are in focus of interest. In particular, the influence of
initial imperfections on the final pattern of localization is elaborated. The computer
simulations were performed in the environment of ABAQUS program.

1. Introduction

THE DESCRIPTION of plastic strain localization phenomena has been focus of
research for at least the last two decades. The phenomenon is clearly observed
in ductile and brittle materials as well as in soils. Localization as a precursor
of failure is usually accompanied by other phenomena such like, for example,
heat generation and transfer (for ductile materials loaded by impact) or fluid
flow in zones of localized deformations (for soils). When trying to propose the
adequate description of the phenomena, the crucial point is to choose the con-
stitutive structure which would be the closest to the observed properties but
still formulated in the frame of continuum mechanics. The careful experimental
observations prove that the plastic strain localization observed on the level of
continuum is a very complex phenomenon which in fact, is a kind of homoge-
nization of changes that are observed on other scales (mezo-, macro- or nano).
In many cases under consideration, the localization of plastic strains is strongly
connected with softening which could be the next source of difficulties that arise
in the process of solution. The crucial question that has to be answered is the
well-posedness of the system of governing equations; for discussions see |7, 20, 27].
There are different approaches to the solution of the problem in the frame of plas-
ticity and continuum formulation. All of them introduce, implicitly or explicitly,
internal length scale and are viewed as regularization methods. Depending on
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the process (static or dynamic), type of localization (necking or shear bands) and
the main properties of materials (ductile or brittle), the different methods can
successfully describe the phenomena. In computations the attention is focused
on assigning the place, time and the width of localization zones. Of course, all
of them strongly depend on geometry of the specimens, boundary and initial
conditions including the characteristic of loading. The important feature which
differs the treatment, and which follows the computations, the static cases versus
dynamic, is the necessity of introducing any imperfection (geometric or constitu-
tive) which is the source of appearing of the first plastic strain localization. For
dynamic cases (impact loading) in computations, one can avoid these imperfec-
tions and the choice of the localization form depends then on waves interaction
which in a natural way introduce the heterogeneity, and properly describes the
merit of the phenomenon. In the work, the problem of plastic strain localization
in materials under impact loading is studied. Particularly, the influence of in-
troducing the imperfections, both geometrical in the form of additional internal
boundaries and constitutive in the form of inclusions, on the pattern of localized
plastic strains is elaborated and documented in the numerical examples.

2. Numerical treatment of localization phenomena

The review of the papers that approaches the description of plastic zones
was done in many works viewing the problem from different standpoints; see e.g.
[19]. Some classical formulations, e.g. [3] or [12] defined the fundamental crite-
ria for creation the pattern of localized deformations (shear bands). The main
point was to recognize the change of the type of governing equations, for statics,
from elliptic into parabolic. In the described process this change was identified
with the final state of the specimen. The analysis could not be continued. When
introducing the softening behavior of the material in computations, there ap-
peared numerical problems which were recognized as mesh dependence; see [5].
To avoid this pathological form the authors started to introduce different forms
of regularization, first on the level of finite element formulation. The so-called
embedded elements [5,9,11], which usually explicitly declared the width of lo-
calization partially allowed to avoid this loss of stability in the FE solutions. The
drawback of the proposition was the necessary explicit knowledge on the width
of localization which obviously is not constant for the material and depends on
the boundary conditions and loadings. The other works [22| stressed the math-
ematical side of constitutive form. No matter if the authors accepted non-local
constitutive description [6], gradient-type theories [15], plastic-damage [36], rate-
dependence |7, 24, 27| or coupled fields [21,23] they always introduced the form
of regularization. After this enrichment the system of equations becomes well-
posed, it means the solution is unique and stable, and the type of the system of

http://rcin.org.pl



ON IMPORTANCE OF IMPERFECTIONS. . . 413

incremental equations that describe the process remains unchanged in the whole
range of interests. It could be also proved that all the constitutive formulations
introduce the dispersive character of the media [13,27]. For metals under very
fast loading (impact), it is reasonable to accept the viscous properties of the
material. Rate-dependence introduces the regularization and is physically well
documented in dozens of experiments; see e. g. [16] The simple constitutive form
useful for practical applications was originally proposed by [4]. The modification
of this form is widely used [24, 25] in industrial applications. The mathematically
consistent form of constitutive visco-plastic behavior was originally proposed by
PERZYNA [1,2,7]. This formulation which is also used in this work introduces
the relaxation time of mechanical disturbances T}, which is simultaneously the
constitutive parameter and a mathematical regularization parameter. In this for-
mulation the internal scale parameter is introduced implicitly. The profits that
arise from using the proposed constitutive structure were discussed by the au-
thors in [27, 32, 35]. The important fact is that it is not necessary to use any type
of imperfection to reach localization in a specimen which is, in a natural way,
the result of constitutive properties and the boundary value problem character-
istic. In the work the attention is focused on showing how strong the influence of
imperfections can be. How the imperfection attracts the localization zones and
eventually, how it could be controlled to achieve the expected behavior of the
specimen.

3. Elasto-thermo-plastic formulation

The material under consideration exhibits strain softening as a result of tem-
perature rise or/and evolution of porosity. Both of these effects for classical
rate-independent plastic strain formulation with negative stress-strain constitu-
tive relation lead to ill-posed problems and in consequence, to non-unique results
in numerical applications [14].

An adiabatic flow process written in the evolution form can be presented as
follows:

P =uv,
1 T T
= ———— | —gradp + div:r — —— a,d),
(1 - &) (pg . Tt
: il :
= ——Z — pdivuy,
(3.1) gl =
1 or dv
7= ﬁ"——-ﬂ‘ﬁ”‘—]:s mDuv + 2s ( :—)
[ T 30 ym ym (7T g

S R Ly

http://rcin.org.pl



414 A. GLEMA, T. LODYGOWSKI

Xuﬁ!h -
T p1-8c
£=5,
(3.1) =
[cont.] . 9 ar X 1 (f )
= —symDv+ ———7:P—(| = —
CpP Re f v . p(l aE E)Cp Tm( K )
R
e e
p(l —&)cp

where at the left-hand side consequently appear the rates of scalar values (mass
density p, porosity £ and temperature i), vectorial (displacement ¢ and veloc-
ity v) and tensorial quantities (Kirchhoff stress 7). For detailed discusion see
also [27].

Let us restrict our consideration to elastic-viscoplastic associative model al-
lowing for finite deformations. For the plastic part of the total deformation rate
tensor €? (e = €° + €P) we postulate the evolution equation with the elastic-
viscoplastic model of the material [20], and the tensor function P is defined for
associative plasticity

of
@(f-m),  P=3

In the above, T, denotes the relaxation time for mechanical disturbances,
# is the isotropic work hardening/softening parameter, ¢ denote the empirical
overstress functions, (-) denotes the so-called McCauly bracket and 7 is the
Kirchhoff stress tensor and f represents the plastic yield function 27, 35].

The different alternative hardening/softening forms of material function s
can be assumed including the effects of porosity nucleation and growth [20, 27].

Following Perzyna's achievements [1‘2‘8| we postulate the overstress vis-
coplastic function @ in the form

1
3.2 & =Ai-P, ) P
( ) T‘.‘H

(3.3) O(f—r)=(f—8)" where m=1,3,5,...

We restrict our numerical tests to the initial boundary value problems for
which the time scale covers only a fraction of a second and for this reason, adi-
abatic inelastic flow process describes sufficiently close the physical phenomena
which appear.

The boundary conditions for surface traction and displacement are defined
on the separate boundaries, assuming that the heat flux prescribed on the whole
boundary is equal to zero and the initial conditions for all variables are given at
time t = 0.

The whole physical and mathematical structure of the analytical and numer-
ical model has the wave nature [13,17].
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4, Numerical Examples - Impact tension of rectangular metal
specimen

As a reference (perfect) specimen, thin plate loaded by dynamic impulse is
taken into computations. The constitutive relation incorparates thermal soften-
ing of the yield stress or the evolution of porosity. Twodimensional shell model
is applied. The dimensions of the plate are as follows: length 25.4 mm and width
12.7 mm. The thickness of the specimen is 0.33 mm. The impact loading is defined
by kinematic conditions. The bottom side of the specimen is fixed (all possible
displacements) and the longitudinal velocity of 20m/s is applied at all nodes of
the top side (see Fig. 1a). Both vertical boundaries are free, without any con-
straints. The space discretization shown in Fig. 1b consists of finite element mesh
of square elements: 80 along the length and 40 along the width. The constitutive
parameters used in computations are: Young’s modulus 200,000 MPa, Poisson
ratio » = 0.3, strength stress 1634 MPa, initial mass density pp = 7850 kg/m"j,
The inelastic heat fraction 0.9, specific heat 460 J/kg °C defines the part of

s

t=0.000125 [s])

FiG. 1. Mesh, plastic equivalent strain distribution and vector plot of velocity for 2D model.
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thermally dissipated energy. The strength stress decreases nonlinearly to the
value of 1016 MPa when temperature grows to 610°C. Density evolution describes
the softening character of the material in range of void volume ratio 0.004 = 0.3.
The fundamental relaxation time is T}, = 2.5 us. The whole process time is equal
to t = 50 us. Process time is discretized for increments of the order 0.01 ps.
The stability criteria for explicit procedure and physical requirements for wave
propagation are satisfied.

There are two different groups of models under the investigation. The first
one contains the computations in case of no imperfections: material, geometrical
nor numerical. The next one contains the analyses with considered material
inclusions.

4.1. Perfect specimen

The final distribution of plastic equivalent strains and vector plots of veloc-
ities at the end of the process are shown in Fig. lc, 5a. The achieved zones of
localization are insensitive to the finite element mesh accepted for computations.

The place of localization is well recognized when looking at the plot of ma-
terial point velocity.

The next two figures, Figs. 2-3, report the studies of the sensitivity and qual-
itative changes in the behavior of a specimen for different relaxation times Ty,. If
the relaxation time T}, tends to 0, the material becomes not dispersive and the
energy is dissipated only due to plasticity. The plots in Fig. 2 show the differen-

15,
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DISSIPATED ENERGY IN SPECIMEN
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Fic. 2. History of the total structure dissipated energy for 2D model for different viscosity.
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ces in the amount of energy which is related to the dispersive character of
the viscoplastic medium [28,30]. Figure 3 presents the distribution of plas-
tic strains along the axis of symmetry of the specimen for different relaxation
times. If the time is relatively long, the localization remains very much diffused
(Tyn = 2.5 1072 s). The gradient of velocity [35] splits the specimen into two
parts fixing the place of localization. When using longer relaxation time, the
gradient is not so sharp. The transition zone is more diffused. At the final state
of deformation we can observe the clear division of the specimen into two zones
where the velocities of material points vanish (left-hand side), while only the rest
of the specimen moves.
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Fic. 3. Plastic strain localization for 2D model for different viscosity.

4.2. Specimen with material imperfection

In the following analyses we consider the models that contain the imper-
fection. The results concerning the cases with inclusions in the center of the
specimen were presented in [33]. The single, material or geometrical, inclusion
influenced the solution, due to the reflection and interaction of waves. The pat-
tern and placement of localization became different than for computations with
no imperfections.

We are studying three models with material inclusions. The inclusion is de-
fined by smaller Young’s modulus associated with six finite elements. All other
parameters remain the same. For all cases under consideration the imperfection
breakes the symmetry of the IBV problem. The assumed places of imperfections
are presented in Fig. 5. For the case 1, Fig. 5b, the inclusion is located in the
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middle of specimen on its left edge. For case 2, the imperfection is displaced
toward the center of the specimen. In case 3, the imperfection stays at the left
edge, but is moved toward the bottom constrained side.

The results, as before, are represented by plastic equivalent strain and plots
of velocity vectors. Three time instants represent the history of deformations and

WHOLE MODEL ENERGY [J]

T T T T T T T T T
——  HO IMPERFECTICH
M= — MATERIAL [E]
GEOMETRY [HOLE]
KINETIC
P = 4
DISSIPATED
= il
2 ]
1 —
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——-_..,__““"-—-——________=
o // 1 L 1 1 1 L 1
5 10 15 20 25 30 EH 40 45 50

FROCESS TIME t [ms]

Fic. 4. Plot of energy history - division of kinetic energy into dissipated and recoverable in
the whole process for three models: without imperfection, with material inclusion and with
central hole [32].

WITHOUT IMPERFECTION IMPERFECTION IMPERFECTION
IMPERFECTION CARSE 1 CASE 2 CASE 3

FiG. 5. Schema of initial-boundary conditions for 2D plate under tension (a), cases of
material inclusions (b), (¢), (d).
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are taken to display the specific points of the process evolution. Figure 6 shows
the distribution of equivalent plastic deformations and velocity field for the pro-
cess time equal to t = 20 us. The next Fig. 7 shows the same quantities for the
process time equal to ¢ = 30 us. The final state for time equal to { = 50 pus is
presented in Fig. 8. For each case of imperfection, comparing with the perfect
specimen, it is clearly seen that the imperfection influences both the velocity
history and plastic deformation and finally the localization pattern.

000020 (s]

w

.

F1a. 5. Equivalent plastic strain distribution for process time ¢t = 20us in the model without
imperfection (a), and models with material inclusions (b), (¢) (d).
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FiG. 7. Equivalent plastic strain distribution for process time t = 20us in the model without
imperfection (a), and models with material inclusions (b), (c) (d).

i

e

F1G. 8. Equivalent plastic strain distribution for process time t = 20us in the model without
imperfection (a), and models with material inclusions (b), (¢) (d).



ON IMPORTANCE OF IMPERFECTIONS. .. 421

5. Conclusions

The usual practice in computations, for rate-independent formulations, is
to assume the initial imperfections which will guarantee the initiation of the
strain localization. It is not possible to continue the computations without this
introductory imperfections. The result of this assumption is always connected
with the loss of symmetry which is enforced and its form strongly depends on
the imperfection. One can expect a different form of localization for every single
imperfection.

For dynamic processes when using rate-dependent constitutive form, even
for symmetric initial-boundary-value problems the localization pattern is finally
achieved as a result of waves interaction. In these cases the process of localized
deformations will appear and will be growing without any artificial accelerators.
In the cases studied in the paper the numerical tests were performed on perfect
structure (2D plate) and we have obtained the symmetry in the behavior of the
specimen and also we have compared the results with those where the inclu-
sions were consciously introduced. The changes in the localization forms and the
amount of energy that is dissipated during the whole process of deformations
were in the focus of authors’ interest.

It is clearly seen that the next step, in the near future, should concentrate
on designing the patterns of inclusions which would generate for example the
maximum amount of energy dissipated during the deformation process. The
solution of this optimization problem is of crucial practical value.
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