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A NUMERICAL INTEGRATION algorithm for thermo-elasto-viscoplastic constitutive
equations is presented. This algorithm satisfies the principle of material objectiv-
ity with respect to the total motion (translation, rotation and strain) of a material
element. For this purpose, the properties of convective description are used. The
explicit-implicit integration scheme for the plastic flow rule plays the crucial role in
the proposed algorithm. The method of determining the stress state for inelastic defor-
mations is based on the iterative solution of the dynamic yield condition with respect
to the norm of the viscoplastic deformation rate tensor. The constitutive model be-
ing the subject of numerical analyses is described. Results of numerical calculations,
which show an excellent performance of the proposed procedure, are presented.

1. Introduction

CONTEMPORARY DEVELOPMENT of computer technologies gives hope that a
more realistic numerical simulation of deformation and fracture processes for
metal structures will be possible in the near future. The effective execution of
such a simulation demands an analysis of detailed problems connected with the
theoretical investigation and experimental identification of constitutive models
for structural materials. The applied numerical method as well as the spatial
modelling of structures and their loads must be carefully considered too.

The main objective of the paper is to formulate a numerical integration algo-
rithm for thermo-elasto-viscoplastic constitutive relations. In this formulation,
the material objectivity in relation to the total motion (translation, rotation and
deformation) of a structural element is postulated. The proposed algorithm can
be used for the numerical analysis of large deformations and fracture of metal
structural elements under monotonic or cyclic loadings.

Numerical integration procedures for elasto-viscoplastic constitutive rela-
tions, applied in the finite element or finite difference methods, are based on
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the additive structure of these relations. In these procedures, two fundamental
parts may be distinguished. In the first part, the so-called elastic trial state, rep-
resented by a point of the stress space, is determined. If this point lies beyond
the elastic region determined by the yield surface, this means that the plastic
flow process is achieved locally. Thus, the principal problem of the second part is
to determine the stress state represented by a point of the actual yield surface.

The numerical integration algorithms for elasto-viscoplastic or elasto-plastic
constitutive relations, which exist in the literature, differ in manners of determin-
ing the stress state for the inelastic deformation. In the procedure for plastically
incompressible materials (J; flow theory), originally proposed in [33], the flow
stresses are determined by the orthogonal projection of trial stresses onto the
yield surface. Generalisations of this algorithm for plastic materials with linear
isotropic and kinematic hardening have been proposed in [17, 18, 27].

Other generalisations have been referred to a wider class of materials de-
scribed by non-associative plastic flow rules, arbitrary yield criteria and more
complicated hardening laws. In addition, a general elastic response is consid-
ered, not restricted to constant elasticities. In such cases, the path of stress
projection is already not represented by the straight line in the stress space and
it has to be determined numerically. Algorithms of this type are based on the
so-called return mapping method [3, 22, 31, 32]. In this method, as a result of
integration of elastic equations, the elastic prediction is obtained to determine
the initial conditions for plastic equations. Relaxation relations for both stresses
and internal state variables define the plastic correction, which is necessary to
assure the plastic consistency. The numerical relaxation process is carried out in
a step-by-step fashion. At each iteration the yield function is linearized around
the current values of state variables. The linearized yield function is represented
by a plane contained in the stress space. In order to determine the next iteration
the stresses are projected onto this plane. In the limit, such a plane becomes
tangent to the yield surface and plastic consistency is restored.

From the computational standpoint, the central issue to be addressed con-
cerns the numerical integration of the constitutive model in such a manner that
the resulting discrete equations identically satisfy the principle of material frame
indifference. Satisfaction of this fundamental restriction leads to the so-called
incrementally objective algorithms [15, 26, 29]. The material objectivity for the
superimposed spatial rigid body motion has been considered most often.

Constitutive equations, which are assumed to be the object of the numer-
ical analysis, are presented in Sec. 2. Within the framework of the rate-type
covariance, material structure with a finite set of the internal state variables,
the viscoplastic effects, plastic strain induced anisotropy (kinematic hardening),
micro-damage mechanisms, isotropic hardening, plastic spin effects as well as
thermomechanical couplings are taken into account.
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The proposed numerical integration algorithm for the given constitutive equa-
tions is presented in Sec. 3. Properties of the convective description are used. In
the convective coordinate system the rates of spatial tensor fields, objective with
respect to the arbitrary spatial diffeomorphism (regular motion), are represented
by matrices of partial time derivatives of suitable components of these fields [5].
This property directly leads to the incremental expressions, which are objective
in the above sense. The explicit-implicit integration scheme for the plastic flow
rule is the essential part of the proposed algorithm. The method of determina-
tion of the flow stresses is based on the iterative solution of the dynamic yield
condition with respect to the norm of the viscoplastic deformation rate tensor.

A numerical example is presented in Sec. 4. In this example, the capability
of the discussed algorithm is shown. A thin steel plate with a narrow notch per-
formed perpendicularly to its edge is analysed numerically by means of the finite
difference method. The dynamic cyclic load is assumed. The so-called low-cycle
fatigue regime is considered. The evolution of greatest stress regions forming in
the neighbourhood of the initial notch is analysed. The numerical simulation of
evolutions of plastic zones, temperature, microdamage and plastic rotation in
vicinity of the developing fatigue crack is carried out. The adiabatic process is
considered.

Final comments and conclusions are presented in Sec. 5.

2. Constitutive foundations

Most of metals show simultaneously plastic and viscous effects. Viscous effects
appear most clearly in fast changing processes, but they also influence essentially
the rheological phenomena. Physical processes lying at the bases of viscoplastic
phenomena have a complicated nature and they depend mostly on the movement
of dislocations and on changes of distributions of the dislocation density. Besides,
temperature of a material influences strongly the movement of dislocations and
the changes of their densities, and thus the viscoplastic phenomena. Temperature
activates or breaks these processes [24, 25].

In viscoplasticity, unlike in plasticity, the dependence of plastic deformations
is postulated not only on the path of loading, but also on the phenomena of
the time scale. This means that viscoplastic materials show simultaneously the
sensitivity to the path of loading and to the rate of deformation. In this manner,
different magnitudes of the plastic deformations will be obtained for different
loading paths and for different deformation rates. The fact, that these two dif-
ferent material sensitivities correspond to two different forms of the internal
dissipation, should find a reflection in the constitutive modelling.

Except for viscoplasticity, the effects such as micro-damage, plastic strain-
induced anisotropy (kinematic hardening), isotropic hardening, the plastic spin
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and the thermomechanical couplings are taken into account [10, 11]. The con-
siderations are limited to the fast changing, adiabatic processes. The spatial
description is assumed as physically most natural. Such an approach has also
a reason, which results from the application of constitutive equations to the
description of plastic flow processes in the actual state.

The considered constitutive relations can be written in the following, com-
fortable for an incremental analysis, form:

Evolution equation for the Kirchhoff stress tensor 7 [5, 6, 11, 12]

(2.1) Lux=Tf:d-1°:dP -9 -k —s.

In the above equation the tensorial measure of the stress rate is the Lie deriva-
tive of the tensor T. In the mechanics of continuous media, the notion of the Lie
derivative is connected with the material objectivity of rates of spatial tensor
fields with respect to the diffeomorphism (regular motion) [11, 20]. The total
deformation rate tensor d and the inelastic deformation rate tensor d? are mea-
sures of strain rates, which are objective in the above sense. By L¢ and L we
denote the tensor of elastic moduli (fourth rank tensor) and the thermal expan-
sion tensor (second rank tensor), respectively. The symbol ¥ denotes the rate of
temperature.
Expressions

(2.2) k=d?-tr—1-d”, s=wP-T—-1-w’

describe the covariant effect and the influence of a plastic spin w?, respec-
tively [7].
Plastic flow rule

(2.3) d? = A(Y + Atrg).

The scalar multiplier A is given by the relation
= 1 = &
(24) A= 7 (@()) (2J; +3A%J}) 72,
m

where T, denotes the relaxation time and ® is the empirical overstress func-
tion [23]. The second invariant of a relative stress deviator ¥ = ™’ — o is denoted
by jﬁ, and J; denotes the first invariant of the relative stress T = T — &. The
back stress tensor o determines the actual position of the yield surface centre in
the stress space and it is the measure of kinematic hardening. Thus, the relative
stress expresses the difference between the point of loading and the yield surface
centre. By g the metric tensor of the convective coordinate system is denoted.
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The magnitude
(2.5) A = 2[n(9) + na(9)§)]

describes the influence of temperature-dependent micro-damage mechanisms on
the plastic flow direction. The scalar parameter £ expresses the volumetric par-
ticipation of microdamages in the material.

Equation for the plastic spin [2] has the form

(2.6) w? = fj(a-d? — d - ).

The postulated equation describes the dependence of the plastic spin on the plas-
tic strain-induced anisotropy. Therefore, the plastic spin may be of significance
in problems of the cyclic plasticity (accumulation of the plastic rotation at cyclic
loads).

Evolution equations for internal state variables [6, 8]

(2.7) Ly =1

The vector of evolution functions m is determined by analyses of the exam-
ined physical processes. It is postulated that the internal state vector p has the
form p = (€, @). Evolution equation for temperature (adiabatic process) |9, 19] is

(2.8) b=Xr:dP+ 2z
pcp

where p is the mass density in the actual configuration, ¢, denotes the specific
heat, = determines the evolution function for internal micro-damage mechanisms
(nucleation, growth and coalescence). By x and x the irreversibility coefficients
are denoted.

Making the operation dP : dP, the dynamic yield criterion is obtained as
follows

0o {4 )+ ) 72} =k 14 971 (T leP)] = 0

ld?|| = (@7 : d?)'/2,

where & is the isotropic hardening-softening function. A more detailed discussion
of the presented constitutive model can be found in the quoted papers, where
wide bibliographic references to the considered problems are presented.

http://rcin.org.pl



394 W. DORNOWSKI

3. A numerical integration algorithm

To construct an incrementally objective algorithm the properties of convec-
tive description [13, 14, 21| is used. In this description the rate of spatial tensor
field, objective with respect to an arbitrary spatial diffeomorphism (regular mo-
tion), is represented by the matrix of partial time derivatives of suitable compo-
nents of such a field. This property directly leads to the incremental expressions,
which are objective in the above sense. For example, in the implicit expression
the objective increments of strains and stresses have the following convective
representations:

(3.1) d At Aej(g' ®@g’) , Lyt At = At (g ® gi),
(n) (n) (n) (n) (n) (n)

where

(3.2) Aeij = ejj — eij AtV =19 — 1Y

(n) (n-1) () 1)

are the increments of convective components of the Euler strain tensor and the
Kirchhoff stress tensor, respectively. The defined increments refer to the time
increment At"~1" = ¢ — "~ (for simplification of the notation the index
(n-1,n) is omitted).

For comparison, in the spatial description referred to the fixed, rectangular
system of coordinates {z'} with a basis {e;}, 1 = 1,2,3, the suitable stress
increment has the following form:

(3.3) LytAt
(n)
53 1j - Ot .
= | Ar? 4 B'rk b At — ka e 8_1;1 At | (ei ® e;),
M (ﬂ) (‘R.) (ﬂ.) 3.1: (R) (n} 6:3 (ﬂ)

where v* are components of the spatial velocity field. The numerical integration
procedure based on the increment (3.3) needs additional calculation of the stress
and velocity gradients. In the convective approach this troublesome necessity is
not performed. As a result, less complicated and thus more efficient algorithm
can be obtained.

In the numerical integration algorithin presented below for the specified con-
stitutive equations the convective approach is just used. Incremental relation-
ships determining the elastic trial state T (d® = d), separated into volumetric
and deviatoric parts, have the following form:

(3.4) tr(LyT)At = (21 + 3M\)tr d At, LyT At =2 (d’) At,
(n) (n (n) n
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where
¥ A _ij
tr(LyT)At =7 Atgy; = AT gjj ,
(n) ) (m) (n)
il 1 S |
Lyt At=T At(gi®g;) = AT (8 ®8;),
(n) M (n) (n) (n) (n)
(3.5) trd At = é;; At g = Aeij g7

(n) (n) (n) (n)

k
d' At =dj, At(g ®g')
(n) (n) (n) (n)

= é Atg" g"(gi @ ;) = Aely g™ 9V (gi ® g;) -
(n) (@) (n) (n) (n) (n) (n) (n) (n) (n)

By p and A the Lamé constants are denoted. It is noteworthy that the product
€}, 9" gY in Eq. (3.5)4 can not be prescribed as ¢, because ¢ = ef,g"g" =
(n) (n) (r) (n)
e'kighigh + e}, g gY + e}, g*13Y . Besides, convective components ¢ do not repre-
sent the deformation rate tensor d. They represent another objective rate mea-
sure of the Euler strain tensor, i.e. Lye = é —e- 1" —1.e = éY(g; ® g;) [5].
Therefore, the incremental equations (3.4) for the elastic trial state are prescribed
in the covariant basis of the convective reference frame.

In the proposed algorithm the following matrix notation for suitable ten-
sor representations is used (for the simplification of notation the index (n) is
omitted):

g = [gijlax3, &' =[0"]3x3, T=["]ax3, T= [?ij]axsa
(3.6) At=[AT]sys, AT =[AT a3, o=[a]se, df = [d,]3x3,
Ae = [Aeijlsxs, AeP = [Aef]sxs,
WP = [wP]ax3, k=[k"]sx3, 8= [s]sxs.
At last, the incremental equations for the elastic trial state take the matrix form

(3.7) tr(ATg) = (2 + 3M\)tr(Aeg™!) AT =2ug~'Ae'g .

From Eq. (3.7) the increments of trial stresses in a time interval [t"~1 "] are
determined. According to the following expressions, the trial stresses may be
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determined for a time instant ¢":
(3.8) tr(tg) = tr( T g)+tr(ATg), T = T +AT.
(n—1) (n—1)
These stresses are used to check the yield condition.
(3.9) e=¢(T, B, 9, K ).
(n—-1) (n—-1) (n—1)

If ¢ < 0 the elastic process takes place and
!

(3.10) tr(vg) =tr(7g) , T =*.
Internal state variables, temperature and the hardening-softening function re-
main unchanged, ie. p= 4 , 9= ¢ andk= &K

(-1 (n-1) (n—1)’

If ¢ > 0 the inelastic process is achieved locally. Then, the suitable rela-
tionships of elasto-viscoplasticity should be considered. In order to describe the
incremental form of the plastic flow rule (2.3) the following mixed (explicit-
implicit) approach is proposed:

(3.11) trd’At = 3AA A tr(T &) d”At = AA(Y — ( c'x”),
(n—1) n-— n—

where
(312) trd”At=Ae g7, d”At=Ag¥g"(gi0g;), AA=AAL

All magnitudes prescribed at the right-hand side of equations (3.11), except
the stresses, are defined for a time instant t*~! at the beginning of the time
step. In this sense, the incremental formulas (3.11) are explicit for internal state

variables ¢ and ( a”, and implicit for stresses. In the matrix notation for
(n—1) =
suitable tensorial representations, the analysed law takes the form
tr(Ae’g™') =3AA A trf(t- « )g],
(n—1) (n—1)
(3.13)

g 'Ae? gl = AA(Y - a ).
(n-1)
The incremental form of the evolution equation for the Kirchhoff stress tensor

(2.1) in the matrix notation is
(3.14) tr(ATg) = (21 + 3\)tr(Aeg ') — (2u + 3N\)tr(AePg ')

—3(2u+3))0 9 At—[tr( k g)+tr( s g)At,
(n—1) (n—1) (n—1)

! !

AY =2ug 'Ae'g™ —2ug ' AP — ( k + 8 )AL
(n—-1) (n-1)
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Taking into account the relationships of the elastic trial state (3.7) it can
be noticed that the first components at the right-hand sides of equations (3.14)
express the increments of trial stresses. Substituting Eq. (3.7) and Eq. (3.13)
into Eq. (3.14) gives the following system of algebraic equations:

1
3.15) tr(tg) =t A
(88) tr(wg) =l o B S TR A
(n—1

{ulz- « el

ot
(n—1)

—3(2u4 3,\)9{ 19” At — [tr( k )g) + tr(

Fib e o8
(n—1 ﬂEUg)] }

(

!

2%

Y= o +

= R Py ¥ + & At].
(n1) 1+2pAA{ .

(n-1) (n-1) (n—1)
This system will be appointed with respect to the scalar multiplier AA when the
dynamic yield condition (2.9) will be taken into account,

(3.16) O=f(r, « , £, 9 )= & [1+&(Tn|d?|)]=0.
n—1) (n—I) (n—l] (“—1}

Owing to nonlinearity of this condition, AA has to be determined by an iterative
method (e.g. Newton's method). In accordance with Eq. (3.16) the norm of the
inelastic deformation rate tensor d” is updated at each iteration. For this pur-
pose, the incremental form (3.13) of the inelastic flow rule is used. The iterative
procedure of determination of the multiplier AA determines the non-linear path
of projection of the trial stress onto the actual yield surface.

After the end of the iterative procedure the temperature 9 at a time instant
t" is calculated,

(3.17) 9= 9 +A9, A= —Xtr(tAe?)+ = At
(n—-1) P ¢ P Cp(n-1)
(n—1) (n-1)

Next, the following magnitudes are determined: the internal state variables

(3.18) H= W +Au, Apu=nm(r, p ,9)At,
(n-1) (n-1)

the plastic spin
(3.19) w? = fj(adPg™! — g 'd a),
and tensors of the covariant and plastic spin effects:

(3.20) k=g 'd’Pt—tdPg!, s=w’gr— 1gWw’.
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The proposed approach gives very good results for calculations with a small time
step as in the explicit finite element or finite difference methods that operate with
small time steps because of the stability condition. Operating with a greater time
step becomes quite possible in the implicit, unconditionally stable methods. In
such cases, the implicit forms of relationships (3.13) and (3.14) should be con-
sidered, i.e. such in whichu, k, s and ¥ are determined at the end of a time
() (n) (n) (n)

step. As a result the system of non-linear, algebraic equations is obtained instead
of the system of equations (3.15). From the viewpoint of numerical calculations
the solution of such a system is much more expensive (time-consuming).

To describe the analysed method in the form of a numerical algorithm it is
assumed that the non-linear equation (3.16) is solved by means of the iterative
Newton’s method.

1. Geometric update

Ae=e—_ € .
(n—-1)
2. Elastic trial state
tr(ATg) = (2u + 3M\)tr(Aeg™!), AT = 2ug ' Ae'g

!

tr(Tg) =tr( T g)+tr(ATg), T = T +AT.
(n—1) (n-1)

3. Check the yield condition

-1

S, pos ¥ 5 K JED?
(n—1) (n—1) (n-1)

YES: ‘ti(tg)=tr(zg) v =7,

= g, 9= 49 , k= & — EXIT
(n—1) (n—1) (n—1)

NO: i=1, AAG-D=A A .
(n-1)

4. Stresses in the inelastic state

tet =t a g l+3(2p+3/\ AAG-D) { t(x— el
)

—32u+300 9 At—[te( k g)+tr( s g)]At},
(n—1) (n—1) (n—1)

; 1 '
e= e e ' )AL
{rgll 1+ 2pAAG-1) E (:31) ({n—l)+(ns—l])
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5. Viscoplastic strain increment

tr(Aeg~1) =38A6-D A ul(x) ~ o g

(n—1)
—laem{l] = AAG=D) (/) — & ),

(n-1)
6. Viscoplastic deformation rate tensor

dP® = AP /At “dp(z') = (g~ 'dPg—1gP)1/2,

7. Scalar multiplier AA(Newton’s method)

AR = ARl [6@(&3“-”)

O(AAD)
FARGD ] O(AA )i
8. Check the convergence

|Af\“) = Mf*’-”‘ < TOL ?
YES: tr(tg) = tr[?(i)g)‘ v=50

, d? =dP) Ae? = Ae?() go to 9
NO:

it+—1+1gotod

9. Temperature

I= 9 +—X—tr(tAe®)+—2— E At
n-1) P ¢ P ¢ (n-1)
n—1) (n—1)
10. Internal state variables
p= p +m(r, p ,9)At
(n—1) (n—1)

11. Covariant and plastic spin effects

w? = fj(adPg™! — g~ d?a),
k =g 'dPt — tdPg~!
s = wPfgTt — TgWw?,

12. Other magnitudes, which depend on the inelastic deformation (isotropic
hardening-softening function, density of the material etc...)
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In numerical implementations the derivative contained in the Newton’s for-
mula (Point 7) is usually calculated in an approximate way.

A mathematical proof of the convergence and stability of the presented
method is an extremely difficult task. First of all, the geometrical and physical
nonlinearities decide about this. Such essential features as the convergence and
stability can be shown in a numerical way, solving the particular initial-boundary
value problem. Such a numerical proof of the convergence and stability of that
algorithm is presented in [7] for certain problem of the localized plastic deforma-
tion. The example presented below also confirms the convergence and stability
of the proposed method for large number of the time increments.

4. Numerical example

The finite element [16] or finite difference [28] methods are frequently used in
numerical analyses of deformation of structural elements. These methods differ
in manners of space-time discretization and in approximation of functions of
the evolution problem. Other numerical methods are also developed to use the
possibility of effective simulation of fragmentation of structural elements [1].

29.5

— :;%
[
0 >
&
Ll & Ope= 1.2 deg,

VA s 7 A
! 40.0 200 I,=2.0ms, I,=2.0ms
A 60.0 !

FiG. 1. Geometry and kinematic constraints of the thin steel plate with sharp notch.

The problem of fatigue crack propagation in a thin steel plate (AISI 4340)
is used to illustrate the correctness of the proposed algorithm [9]. In the plate,
a narrow initial notch (20 x 1 mm) is made (Fig. 1). The cyclic load realised by
a rigid turn of the upper edge in relation to its left end is assumed. This load
is represented by positive cycles with the amplitude amax = 1.2 deg and with
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the constant period T = 4.0 ms. The tensile strain time 7}, and the compressive
strain time T, are equal (Fig. 1). The number of cycles is assumed to be N =40.
The bottom edge of the plate (Y = 0) is fixed completely.

The analysis is carried out by use of the finite difference method with the
explicit integration scheme with respect to time. In order to observe the local
effects with great precision, a dense regular difference net (64 x 64 = 4096 nodes)
is assumed. The time step assuring the stability of numerical procedure is At =
0.1416 ps. It leads to the total number of time increments equal to 1129943.

The isotropic work-hardening-softening function « is postulated as [9]

(41) & =rk(€P,9,€)

= {Ks(9) — [rs(9) — Ko(9)] exp[—d(9) €P]} [1 — (€/€F)P™),
where
ko(9) = kg — K30, Ke(9) = K3 — K3*0,

(4.2) 2 Sl
6(d) =46" - 69, B) =p"-p"Y, J=(9-1o)/ do.

The material parameters kg and sy denote the yield stress and the stress
at which the strain hardening saturates, respectively. The coefficients § and 3
are material hardening parameters. All the material parameters are functions of
temperature as in (4.2).

Thus isotropic hardening-softening effects are described by a nonlinear func-
tion depending on the equivalent plastic deformation, temperature and on the
microdamage. This function determines also the local failure criterion. Let us as-
sume that for £ = {f a catastrophe takes place, that is kK = R(€”,9,{)|,—¢, = 0.
It means that for £ = £p the material loses its carrying capacity. Such an ap-
proach is very useful to correct simulation of the fatigue crack propagation in
the range of the low-cycle fatigue.

The evolution equation for the kinematic hardening parameter & is assumed
in the form [5]

43) L= (2 (L-1) )P+ e
with
(4.4) G(&,9) = ¢ — (9, Ca(&,9) = &5 — (3*9.

The kinematic hardening law (4.3) leads to the nonlinear stress-strain relation
with characteristic saturation effect. The material function (; (€, ) for £ = & and
¥ = ¥y can be interpreted as an initial value of the kinematic hardening modulus
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while the material function (3(&,7) determines the character of nonlinearity of
the kinematic hardening. The particular forms of the functions {; and (2 have
to take into account the degradation nature of the influence of the intrinsic
micro-damage process on the evolution of anisotropic hardening.

The evolution equation for the porosity € is postulated as

(45) E = [“:)grow = QLT(-ﬂ—.‘f fg' = Teq(ﬂrfs Ep)]

where [4]

0'(€0) =) Iy = b+ b/ J,
Teq(V,§, €7) = ca(9) (1 - f)ln% {265(9) — [r5(9) — Ko (I)]F (€0, €, 9)},
(4.6)
c1(9) = const, cz(J) = const,

IS VPR |
ron=(579" + (10)"

By Tinko we denote the dynamic viscosity of a material, ¢*(¥,£) represents
the void growth material function and takes into account the void interac-
tion, Teq(1, €, €P) is the porosity, temperature and equivalent viscoplastic strain-
dependent void growth threshold stress, fg defines the stress intensity invariant
for growth, b; and by are the material constants.

Based on the best curve fitting of the experimental results for AISI 4340 steel,
the identification of the material constants has been done [9], cf. Table 1.

Table 1. Material constants for AISI 4340 steel

K3 = 809 MPa k3* = 228 MPa Ky = 598 MPa Kky° = 168 MPa

6 = 14.00 5** =394 A* =9.00 B** =2.53

9o = 293 K £r = 0.20 po = 7850kg/m’ 1= 76.92 GPa
A=11538GPa |6 =12-10%" Trm = 2.5 ms m=1

(; = 15.00 MPa ¥ =4.22 MPa (3 = 69.60 MPa 3* = 19.60 MPa
¢ = 0.202 cg =6.7-10"2 by = 1.0 by = 1.30
&=6-10"1% x = 0.85 x=0.0 ¢ =455J / kg K

The distribution of the Mises stress for chosen instants during two deforma-
tion cycles is shown in Fig. 2. The results illustrate the formation of the greatest
stress zones in the vicinity of the initial notch. The characteristic unsymmetrical
distribution of these zones is a result of the assumed boundary conditions.
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FiG. 2. Distribution of the norm of the Kirchhoff stress for chosen instants during two
deformation cycles.

In Fig. 3 the evolution of the plastic equivalent deformation in the vicinity
of the developed fatigue macrocrack is presented. In the initial part of the cyclic
deformation process (several cycles), the plastic zone has a characteristic shape
(seed of a maple). Such a form of the plastic zone has been observed experi-
mentally. For the advanced cyclic deformation process (i.e., when the number of
cycles is increased) the plastic zone is very much restricted to the vicinity of the
macrocrack. The macrocrack direction is consistent with the least radius direc-
tion of the initial plastic zone. The strong concentration of plastic deformations
has been seen on the front of the macrocrack.

The evolution of temperature for the considered adiabatic process is shown in
Fig. 4. Zones of increased temperature correspond to the plastic zones. The max-
imum value of temperature is Jmax = 1092 K. The effect of such a strong heating
of the material results from its mechanical properties, i.e. the high strength steel
(Rm = 1400 MPa).
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In Fig. 5 the evolution of microdamage is presented. The domain of micro-
damage is limited to the vicinity of the macrocrack. This effect is a result of the
strong concentration of the microdamage process on the front of the macrocrack.
The complex evolution of the plastic rotation is shown in Fig. 6. In the domain
lying above the macrocrack the plastic rotation has negative value, i.e. the rota-
tion in the left direction in relation to the assumed coordinate system, while in
the domain lying below the macrocrack it has a positive value. It is noteworthy
that the border between these two domains is consistent with the macrocrack
direction.
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FiG. 5. Evolution of the microdamage in the vicinity of the developed fatigue damage.

The analyzed fatigue damage process at high temperature is very complex.
The experimental observations performed in |30] show that the decrease in fa-
tigue life is associated with a change in the fracture mode from transgranular
to intergranular cracking. The microdamage kinetics interacts with thermal and
load changes to make failure of solids a highly rate, temperature and history-
dependent, nonlinear process. The incorporation of these effects in the presented
constitutive model required considering the general constitutive structure with

internal state variables for polycrystalline solids.
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The constitutive description of internal micro-damage process required a spe-
cial care [4]. This process was treated as a sequence of nucleation, growth and
coalescence of microcracks. Evolution equations based on the concept of thresh-
old stresses for nucleation and growth processes are assumed. It made possible
the correct description of damage fatigue accumulation.

[t is noteworthy that the presented description of the thermodynamical pro-
cess of inelastic flow is internally regularized [19], in this case the time of mechan-
ical relaxation is a regularization parameter. From a computational standpoint
this property is of a very important significance, because it assures the unique
numerical solution.
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Fi1G. 6. Evolution of the plastic rotation in the vicinity of the developed fatigue damage.

5. Final comments
The performed numerical simulations of the dynamic, cyclic loading process

have proven the usefulness of the proposed numerical integration algorithm in
the investigation of localized fatigue fracture phenomena. The material objec-

http://rcin.org.pl



408 W. DORNOWSKI

tivity with respect to the total motion (translation, rotation and strain) of a
material element is preserved. The way in which the incremental form of the
plastic flow rule is obtained and the way of determining the flow stresses decide
on the originality of the algorithm and differentiate it from the return mapping
algorithms.

The proposed algorithm is very effective and it can be used to the numerical
analysis of large deformations and fracture in metal structural elements under
monotonic loadings too.
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