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A FRAMEWORK is derived for the proper and consistent description of a discontinuity
(a crack) as the result of a damaging process in a continuous medium. The damaging
process in the continuous medium is described using a gradient-enhanced damage
theory, so that well-posedness of the boundary-value problem is maintained until
the damage process is completed and a discontinuity arises. At that moment the
partition-of-unity property of finite element shape functions is exploited to partition
the displacement field into two continuous fields, separated via a Heaviside function.
It is demonstrated that the additional boundary conditions that arise in a gradient-
enhanced damage theory, can be accounted for in a natural and transparent manner,

1. Introduction

THE FAILURE behaviour of many engineering materials can be classified as quasi-
brittle. Prominent examples are concrete and ceramics, but also most fibre-
reinforced materials behave as such. The salient characteristic common in failure
of these materials is that, ahead of a macroscopically observable crack, there is
a rather large fracture process zone, in which micro-cracks initiate, grow and
coalesce. This observation prevents the use of linear elastic fracture mechanics.
Indeed, from a physical point of view, a model in which the micro-cracking ahead
of the crack tip would be modelled as a degrading continuum, e.g., using con-
tinuum damage mechanics, while the macroscopic crack would be captured as
a true discontinuity, would be most appealing. It is precisely such an approach
that we will describe in this contribution.
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For the micro-cracking ahead of the crack tip, we shall use a smeared, or
continuum approach. In particular, we shall employ a standard isotropic damage
model, e.g., [4]. However, since standard damage models lack an internal length
scale, the governing equations in the fracture process zone can lose ellipticity
during quasi-static loadings. To remedy this, the model must be enhanced by a
form of non-locality [3] or by adding viscosity |5]. Herein, we employ the second
gradient of the equivalent strain measure of the damage model for this purpose
(7], [8]. For numerical solutions of non-local and gradient-enhanced models, a
very fine discretisation is required, since the spacing of nodes or grid points
must be smaller than the characteristic or internal length scale of the continuum
in order to resolve the strains in the fracture processes zone properly.

In isotropic damage models, the material locally loses all coherence when the
damage parameter w becomes equal to one. Then, the governing partial differen-
tial equations that arise from the equilibrium, the kinematic and the constitutive
equations, lose meaning for a continuum and a discrete crack arises. In fact, a
‘vanishing’ length scale then arises, since a discrete crack has a zero width. To
capture such a ‘zero’ length scale using numerical techniques designed for con-
tinuum problems is impossible. However, traditional finite element techniques
can be adapted to cope with this when use is made of the partition-of-unity
property of the shape functions of finite elements [1]. Then, the displacement
field can be written as the sum of two continuous displacement fields, which are
separated via a Heaviside function and a crack, i.e. a discontinuity in an other-
wise smooth displacement field, can be described in an exact manner. Following
the work of BELYTSCHKO and BLACK [2| for linear elastic fracture mechanics
and WELLS et al. [9], [10] for cohesive-zone models and application to viscoplas-
ticity, this concept is now applied to form a true discontinuity at the end of a
process in which a gradient-enhanced damage model has been used to describe
the initiation, growth and coalescence of micro-cracks.

The paper will first give a succinct summary of the implicit gradient damage
model. Then, the development leading to the introduction of a discontinuity in
a gradient-enhanced continuum will be outlined. Special attention will be given
to the treatment of the additional boundary condition, which arises due to the
introduction of the gradient term, at the internal boundary, i.e. at the crack.

2. Gradient-enhanced damage model
We start the discussion by recalling the governing equations of the so-called

implicit gradient-enhanced damage model, originated by Peerlings at al. [7], [8].
In it, the equilibrium equation (in the absence of body forces):
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(2.1) div o= 0
and the kinematic relation (for small strains)
(2.2) e = V'u

with u being the displacement field and the superscript s denoting the symmetric
part of the gradient operator, are augmented by an injective relation between
the stress tensor o and the strain tensor €:

(2.3) ¢ =(1-—w)bh® ;e

In equation (2.3) D¢ is the elasticity tensor with the virgin elastic constants E
(Young’s modulus) and v (Poisson’s ratio). w is a monotically increasing damage
parameter, with an initial value 0, for the intact material, and an ultimate value
1, at complete loss of material coherence. It is a function of a history parameter x:

(2.4) w = w(k)
with s linked to a non-local strain measure € via a loading function
(2.5) f=€~—8&

such that loading occurs if f = 0, f = 0 and w < 1. Formally, the loading-
unloading process can be captured by the Kuhn-Tucker conditions:

(2.6) fr =0, Fis (0, & = 0.

The non-local strain measure is coupled to a local strain measure € via a Helmholtz
equation:

(2.7) g — eVt =@

with ¢ denoting a material parameter with the dimension of length squared, and
€ a function of the strain tensor:

(2.8) é = é(e).

The equilibrium equation (2.1), the kinematic equation (2.2) and the consti-
tutive model (2.3)-(2.8) are complemented by the boundary conditions
(2.9) O - ngg = & and u = u,

on complementary parts of the boundary 99Q; and 99, with 92 = 99, U 95,
and 992, N 09, = 0, while for the non-local strain € the natural boundary
condition

P
B_EEHBQ'VEZO

with the unit normal vector ngg at the boundary 952, is commonly assumed [6].

(2.10)
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3. Transition to a discontinuity

When w = 1, the material has lost all coherence. At this moment, the gov-
erning equations for the continuous medium lose validity and a discrete crack
arises. Then, the displacement field can be written as

(3.1) u(x, t) = u®(x, t) + Hyqa(x) ub(x, t)

with u® and u® denoting the continuous displacement fields, and Hyqne a Heavi-
side function centered at the discontinuity 92¢ which separates the Q@ domain
from the 2~ domain (2 = Q7 N Q7). At this discontinuity a normal ngqa is
defined such that it points to the Q* domain. From Eq. (3.1) the strain field can
be derived as:

(32) e(x, t) = Vul(x, t) + Hpqa(x) Vul(x, t) + sq (ub®naﬂd)s

with dzq¢ the Dirac function at 9Q%. Again, the superscript s denotes the sym-
metric part.

Consistent with the decomposition (3.1) we now partition the field that de-
scribes the non-local strain measure as:

(3.3) éx, t) = &(x, t) + Hpqa(x) &(x, t)

where, as emphasised by PEERLINGS et al. 6], the boundary condition is also
applied at the internal boundary 9Q¢.

We now cast the governing equations (2.1) and (2.7) in a weak format by
multiplying them by test functions n and &, respectively, and integrating over
the body. When adopting a BUBNOV-GALERKIN approach, we have, cf. Egs.
(3.1) and (3.3):

(3.4) n = n* + Haqa ﬂb=
(3.5) € = £ + Hgou &,

where the dependence on x and ¢ has been left out for clarity of notation. Thus,
the weak forms become:

T s
(36) / (rla ~: Hand T]b) (LT 0') di =0,
Q2

(3.7) /ﬂ (e“ + Hpna E") (€ — cV% - ¢ d2 = 0,
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where a change has been made to matrix-vector notation, with L denoting a
differential operator matrix, for 2D:

- ]
32 0

(3.8) L=|0 ai
[
| dy Oz

Use of the divergence theorem and the boundary conditions (2.9) and (2.10)
gives in lieu of equations (3.6) and (3.7):

(3.9) [ [L n® + Hyqa Ln*’]Tudﬁ : fa,md (L‘ n )Tcdﬂ
Q Q

T
- / (n* + Hogum®) " t, d(@9),
on

(3.10) /n (5“ + Hao {”) € d+ /ﬂ ¢ (vg“ + Hpna vg*’)fr Ve dQ

+ / ¢ bgn4 € Mjgq VE dQ = / (.5“ + Hogu ) &4,
i} 0

with L* defined as

ng 0
(3.11) L' = 0 ny |.
n, ng
Using the general distribution property
(3.12) /Jaﬂd il = f .. d(0R2)
9] and
and
(3.13) /Hand R f . d§2
1] i+

we rewrite equations (3.9) and (3.10) as:
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(3.14) ]Q(q“}TLT o d) + /

y (nb)TLT o df)
Q

- ];m (n")T(L')Tcd(am - /{m (n* + Hoas nb)T b 20080,

(3.15) /gﬂe dQ + / e e dQ + /c (ver )T ve do
N o+t n
T
+ / c (vg*’) Ve dQ + / c & nl,, Ve d(0Q)
n+ and

= [ £édR + £ € dS.
0 o+

After complete decohesion of the bulk material, the internal crack or discon-
tinuity that then arises is stress-free. Accordingly, for the interface traction tgqq,
it holds that

(3.16) tane = (L) 6 = 0.

Thus, the third integral in Eq. (3.15) cancels. Similarly, the fifth integral of
Eq. (3.16) cancels because of the boundary condition (2.10), which, as has been
emphasised by PEERLINGS et al. [6], must also hold at the internal boundary
904 Thus, we obtain instead of Egs. (3.15) and (3. 16):

(3.17) /ﬂ(n“)TLTUdQ +/

o (n*’)TLT o dQ

= [an m*)" t, d(09Q) + /m Hpqa (nb)T t, d(0Q),

(3.18) /5“5 o + f e do + /c (Vee )T Ve do
Q o+ 0
i
+/ c(vgb) Ve dQ = 5aefm+/ £t & dQ.
at 0 o+

4. Spatial discretisation

For the spatial discretisation we use a standard Bubnov-Galerkin approach,
so that the test and trial functions are in the same space:
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(4.1) u =N (a + Hpp b),
(4.2) n =N (w + Hpq 2),
(4.3) € = N (e+ Hyqa 8),
(4.4) § = N (f + Hyqu h)

where the partition-of-unity property of the shape functions contained in N and
N has been exploited. The arrays a and e contain the “regular” nodal degrees-
of-freedom of the displacements and the non-local strain measure, while b and g
contain the part that is due to the enhancement. Inserting Eqs. (4.1)-(4.4) into
Egs. (3.18)-(3.19) and setting:

(4.5) B=LN ad B = VN

gives, after requiring that the result holds for all admissible w, z, f and h:

(4.6) / B! ¢ d = NT t, d(09),
¢ a0

(4.7) B g d = Hyqe NT t, d(09),
a+ an

(4.8) /(ﬁfN +c¢BT"B) de
)

+f (NTN-i—cﬁTﬁ)dﬂg:/NTEdQ,
at+ Q

(4.9) / (NN + ¢cB"B) dQe
0+

+/ (NN + ¢cB'B) dog = [ NTéds.
a+ Q+

To facilitate the linearisation process, needed for an incremental-iterative
procedure in a Newton-Raphson sense, we define:

(4.10) il — / B’ ¢ dQ,
7]
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(4.11) fi*t = / BT ¢ dQ,
O+
(4.12) £ = NT ¢, d(oQ),
a0
(4.13) £ = [ Hgoa NT t, d(09),
an
(4.14) f, = ]NTEdQ,
11}
(4.15) £o= NT & 49,
Ot
and
(4.16) Ke = /(NTN + ¢BTB) d0
1
(4.17) K= / (NTN + ¢BTB) d0
Ot

Then, Egs. (4.6)-(4.9) can be cast in the following format:

(4.18) £ = £,
(4.19) 5" = 5,
(4.20) Ki.e + Kyg = &
(4.21) Kge + Kygg = £y
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5. Consistent linearisation

To solve the coupled discrete Eqgs. (4.18)—(4.21), a Newton-Raphson proce-
dure is normally employed, which requires a linearisation of the set. Equation
(4.18) can be linearised as follows, cf. Eq. (2.3),

(5.1) 0; =01 + do
= =1 -F (1 = wj_l) D¢ de — dw D° €51
= 0j-1 -+ (1 - wj_l) D¢ B(da + Hﬁﬂd db] — dwr D €j-1.

Since

dw dk -
(5.2) dw = d_K. E N (de + Hyqa dg),

we have for o;
(63) 0j=0j-1 +(1 — wj-1) D° B(da + Hyqa db)

- D¢ ¢ 5:- B R (de+ Hapiide)

and the linearised form of (4.18) becomes:

(5.4) Kﬂ.ﬂ dﬂ -+ Kab db + Kae de + Kag dg = f:x‘. — fll'l.t

a,j—1
where
(5.5) R /QBT (1 — wj_1) D* B dQ,
(5.6) Ko = L BT (1 - wj_;) D B dQ,
(5.7) Kis = — fQBT D® € j—‘: % N dQ,
(5.8) Ko = /m BT D¢ ¢;_, % % N dQ.

In a similar fashion, we obtain for Eq. (4.19)

(5.9) Kuda + Ko db + Koy de + K dg = £ — §% .
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Finally, f. can be linearised using

~\ T

so that Eqgs. (4.20) and (4.21) turn into:
(6.11) Keoda + Ky db + K. de + K, dg

= 1gj-1 — Kee €j-1 — Keg gj—1

and

(5.12) Ko da + Ky db + K., de + K., dg

= fyi-1 — Keg€j—1 — Keg gj—1,
Pl
(5.13) K., = - | NT (di) B dQ,
0 de
o [dEY
(5.14) Koo = —/ NT (——) B dN.
o+ de

Summarising Eqs. (5.4), (5.9), (5.11) and (5.12) in a matrix-vector format, we
obtain:

Ka.a Kab Kae Kag da
(5‘15) ch Knb Kag Kag db
Kca K_qa Kee Keg de
Koo Kgo Keg K dg
5 — e,

ext int

R )
fe,j—l - Kee €1 — Keg Bj-1
foi-1 — Kegej1 — Keg g1

6. Concluding remarks

A theoretical framework has been given for the description of a truly dis-
continuous crack arising as the result of a damaging process involving initia-
tion, growth and coalescence of micro-cracks. For the latter process, a gradient-
enhanced damage model has been utilised. An example representing the proposed
method will be presented in a forthcoming publication.
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