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IN THIS PAPER we investigate the linear stability behavior of a flow within an ad-
sorption/diffusion model for porous materials summarized in Section 2. We consider
a 1D stationary flow through a poroelastic medium which is perturbed by transversal
(2D) disturbances with mass exchange. The eigenvalue problem for the first step field
equations is solved using a finite-difference scheme. We present the instability regions
in dependence on the three most important model parameters, namely the bulk and
surface permeability coefficients, and the mass density of the adsorbate on the inner
surface.

1. Introduction

AT LEAST TWO kinds of instabilities may appear in porous media: structural
instabilities, and flow instabilities. Examples of structural instabilities are piping
(the brakedown of a granular medium) or shear band formation. The appearance
of Bénard cells or the change from laminar to turbulent flows belong to the class
of flow instabilities. All kinds of instability have in common that they appear due
to competition of at least two mechanisms. In the case of structural instabilities,
e.g. a threshold nonlinearity competes with the permeability of the material.
A flow instability arises if a kinematic nonlinearity acts against, for example,
viscosity.

This paper is devoted to the investigation of one special type of flow insta-
bility. We consider a steady state 1D flow in a porous medium. This defines
the base flow on which we superpose a small disturbance with adsorption. The
disturbances satisfy equations of the model for multicomponent systems with
adsorption (summarized in Section 2 and introduced in [2]). It is considered
that a fluid/adsorbate mixture flows through channels of a skeleton. In this case
a kinematic nonlinearity acts against the permeability (diffusion) of the medium.
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Adsorption processes contribute in a nonlinear way to the field equations, and
essentially influence the stability properties.

Small disturbances are inevitably present in any real system but their effect
on stable systems is mostly ephemeral. Consider, for example, the influence of
wavelike disturbances on the circulation of the athmosphere. As we have shown
in earlier works also the superposition of the same flow as this considered in this
paper with disturbances without mass exchange led to completely stable situ-
ations. But the disturbance with adsorption yields the existence of an instable
region which means that adsorption slows down the relaxation process tremen-
dously or even controls the loss of stability of the base flow (see: [3]) for a certain
region of permeability coefficients. If the base flow is unstable, the disturbances
will grow in amplitude with time and space. However, the values of the perme-
ability coeflicient for which the base flow is unstable are much smaller than those
used in earlier works.

The region of instability for a transversal disturbance of the base flow with
adsorption will be shown in dependence on three important model parameters.

First there appear two different permeability coefficients, namely the bulk
permeability coefficient 7, and the surface permeability «. While the first one
enters the field equations and describes the effective resistance of the skeleton to
the flow of the fluid, the latter enters the model through the boundary conditions
of the third type, and it accounts for properties of the surface. It is one of the
material parameters which determine the fluid velocity. The third parameter,
the mass density of the adsorbate on the internal surface p2,, enters the model
through the mass source. It is proportional to the size of the internal surface
which plays an enormous role for the global rate and amount of adsorption. For
different soils it may vary by some orders of magnitude.

2. Adsorption/diffusion model

We investigate the stability behavior of a 1D base flow under perturbations
with mass exchange. The disturbance satisfies the following equations of the ad-
sorption/diffusion model introduced e.g. in B. ALBERS [2] Coupling. This model
is based on the model with a balance equation for porosity by K. WILMANSKI
(see e.g. [7, 8]). However, we assume the porosity to be constant so that the
model in this work is simpler than the version introduced in the article.

We consider a process of physical adsorption in a three-component porous
medium. A fluid-adsorbate mixture flows through the channels of the skeleton.
The model takes into account three components: the skeleton, the fluid and an
adsorbate which either flows with the same velocity as the fluid through the
channels of the skeleton or it settles down on the inner surface of the porous
body. Under the assumption of a small concentration of the adsorbate we can
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neglect the influence of mass changes of the skeleton. Furthermore we neglect
dynamical disturbances of the skeleton.

Mass balances
The mass balance equation for the liquid (fluid and adsorbate phases to-
gether) and the concentration balance have the following form:

OpL PN
E—%-dw(p v )—p ;
(2.1) 3
pL (ac ++F grad c) = (1-¢)p?,

where p is the mass density of the liquid phases, i.e. the sum of the mass
densities of the fluid and the adsorbate, and ¢ denotes the concentration of the
adsorbate in the fluid component. The common velocity of fluid and adsorbate
is vF. The mass balance for the adsorbate is replaced by the concentration
balance!).

Mass source
According to the model (see [2]) the mass source is given by the relation

A mAdEfm)  mA (L
(2.2) 2= v dt == (fmt ) )

whose derivation is based on the classical LANGMUIR adsorption theory about
occupted (€) and bare (1 — &) sites (see [6]) on the internal surface fin; of the
solid. V' is the representative elementary volume REV and mj4 denotes the
reference mass of adsorbate per unit of the internal surface area.

DWith
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we get from the mass balance for the adsorbate, i.e. from
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From this follows 8
pt I:a—: v’ gradc] =(1- c)ﬁ",

which is the concentration balance.
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The first contribution on the right-hand side of (2.2) describes changes in
time of the fraction of occupied sites. It is specified by the Langmuir evolution
equation which can be written in the form

9 [cpt 1
(23) % |Za-0-¢ 1,

where p denotes the partial pressure in the liquid (fluid and adsorbate together),
po is a Langmuir reference pressure and 7,4 is the characteristic time of adsorp-
tion. In the case of time changes of ¢ equal to zero the well-known Langmusr
1sotherm of occupied sites follows

(24) b=,
B
Po
where according to Dalton’s law for small concentrations of the adsorbate it is
assumed that the partial pressure of the adsorbate p® = cp.

The other part of (2.2) describes the change of the internal surface. We as-
sumed this change to be coupled with the relaxation of porosity. However, under
the assumption of constant porosity it drops out in calculations of this work.
This does not influence essentially the results because, as we have shown in ear-
lier works, the Langmuir part of the mass source dominates the part connected
with the porosity. Consequently, we obtain the following form of the mass source

L
8 cp 1
(2.5) pt = —Pfd{[—po (I'=£) —5] ;—d},
[
A mAfim ' p 2
where p7y, := —— is the mass density of the adsorbate on the internal surface.

|4
This is a very important parameter as we know, for example, from BEAR [4] that

the internal surface may change by several orders of magnitude. Therefore pfd is
one of those parameters which we alter to see changes in the stability behavior
for various porous materials.

Momentum balance
Due to the same velocity of fluid and adsorbate we need only one momentum
balance jointly for these both components. We have

dptvF
ot

The order of magnitude of m is much higher than that of 5 so that on the right-
hand side of (3.5) p* is negligible. Furthermore the permeability coefficient 7

+ div (vaF vl + le) = (—:'r + pA) vF x —nvf,

(2.6)
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and the compressibility parameter x are assumed to be constant. We assume the
flow to be isochoric which leads to the following linear constitutive relation for
the pressure in the liquid phase p”

2.7) Pl =p+Kp.

Governing equations in 2D
Summing up, the 2D model is governed by the following set of equations
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3. Regular perturbation

The stability behavior of the 1D base flow is investigated with respect to
transversal (2D) perturbations with mass exchange. For the analysis we use a
regular perturbation method restricted to the zeroth and first order contribu-
tions. This means that we expect the fields to be a superposition of the base
solution (indicated by 0) and a small perturbation (indicated by 1). The solu-
tions have the following structure:

F 0 0 1 0 1
31) p" =p(z)+ wplz,2,t), c=c+e(z,zt), &=E(z)+&(x,21),
vf=g+éx(z,z,t), vf—vz(:c,z,t)
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3.1. Base solution/zeroth step of perturbation

The base flow satisfies the following set of field equations. It is a steady state
one-dimensional flow process in a porous medium,

9" | 9p"vg _

; o 0, O<z<l
(3.2) n . z
dv v dp -
Pl g2\ _ 90 _.p
£ ( ot +og oz ) o =

Equations (3.2),/, are the mass and momentum balances of the fluid. Here, pF
is the mass density of the fluid component, v£ is the fluid velocity in z-direction
and m is the bulk permeability coefficient. The partial pressure in the fluid is
denoted by p’. We investigate solely the steady state processes. Consequently,
the base flow does not contain an influence of mass exchange.

It is assumed that a deformed skeleton does not contribute to a dynamical
disturbance, and therefore relations for the skeleton are not quoted.

Boundary conditions of this problem have the following form:
(3.3) i pp”flx:o b [PFL:[] —ngp)

., = a[pf|_,—nep].

They are of the third type and express the fact that the flow through the bound-
ary of the body depends on the pressure difference of the partial pressure in the
fluid (pF) and the external pressure which works on the fluid (on the left-hand
side p; and on the right-hand side p,). The permeability of the surface denoted
by « is the material property of the system.

For simplicity we assume the base flow to be isochoric. This means that in
the zeroth step of perturbation the mass density is constant

(3.4) ;0)= const = p .

This simplification is supported by calculations which we performed in earlier
papers on porous media. Bearing (3.2); for the zeroth step in mind we obtain

that also the fluid velocity in z-direction is constant (denoted by v without
subscribed )

(3.5) 3 = const.
The stationary form of (3.2); allows us to calculate the solution for the partial

: ot 0
pressure in the fluid in the zeroth step, p,

0
dp 0 0 0
(3.6) B Y = p=-nmvz+C,
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where C is an integration constant which can be determined by use of the bound-
ary condition on the left-hand side of the system (z = 0)

0
(3.7) —pyv=a[p"|,_, —nep],
so that we obtain
70
0 0 )
(3.8) p= —TVI + NEP| — Pg?-

As the second boundary condition for z = [ we have

(3.9) p[‘,wg = a [;!:!F\mI —ngpr|

from which the constant velocity of the zeroth step follows in the form

0 apd
3.10 V= —, =n —pr).
(3.10) 258 + anl pa = ng (P — pr)
The base solution forms the zeroth approximation of the above described per-
turbation. Obviously it depends solely on the z-variable. In addition to the above
fields we need in the zeroth step with mass exchange the fields of concentration

0 B s

¢ and of the number of occupied sites £ given by Eq. (2.8)9/3.
In the stationary case they reduce to
- concentration balance

0 0
0 Oc o\ p2 lop ( 0) 0
3.11 s s RS . AR (0 6 R I
(3.11) wvg, =~ (1-¢) 2 [epﬂ £)-¢
- evolution equation for fraction of occupied sites
0
0 0
(3.12) 0=c2 (1*5) —£.
Po

From (3.12) follows the Langmuir adsorption isotherm which depends, of course,
on z

(3.13) e D

On the other hand (3.11) yields & = const. = co, where ¢y denotes the initial
concentration of the adsorbate in the fluid.
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3.2. First step of perturbation

For the first step of perturbation (2D) we obtain the following set of equa-
tions:

(z,2) € B:= (0,1) x (—b, b)

(3.14) o T p\1] 1
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with
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The following boundary conditions are considered:
o vai‘*‘x:O T8 [pplcc:O - nEpt] ? )
(3.16) 7 |,y =10
PP Il F -
P Y |z:l =g [p ]m:t ﬂE}Jr] )
The two conditions on the left-hand side corresponding to the momentum bal-
ance in z-direction are already introduced in (3.3). They describe in the above
explained way the in- and outflow in z-direction of the liquid to the porous body
of length {. But we consider also the flow in z-direction. We assume the fields to
be periodic in this direction with period 2b. Application of a Fourier ansatz yields
that the two boundary conditions on the right-hand side of (3.16) corresponding
to the momentum balance in z-direction are automatically fulfilled.
In the first step of perturbation boundary conditions (3.16) have the form

Fl 01 1
——povzx DH‘UP:I: D:O.’sz 0o’ 1
(3.17) v, =1,
Fl 01 1 z=+b
Po vz|  +vp| =akp|
=l z=l z=l
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4. Wave ansatz for the disturbance

The perturbations in the first step are expressed in terms of the following
simple wave ansatz:

1 t

1 1 .
=e“'p(z)coskz, vz =e“'v, (z)coskz, v, =e“'D, (x)sinkz,

(4.1) : i <
c=e“'c(z)coskz, & =e“t€(z)coskz,

where g (z) , 7, (z), 9, (z) ,¢ () and £ (z) are the amplitudes of the disturbances,

w is the frequency, possibly complex, and k the real wave number defined as

IIm
e %
The Fourier ansatz in z-direction follows from the structure of the boundary

conditions.
After insertion of this ansatz into the field equations (2.8) we have

(4.2) k:: IT = 3.1415...

89 op
wp+ pt (% +kﬁz) + 3£

0 A 0 o N
(4.3) _F . W 71 PO <) W
E(chpo)] Tadc[copu (1 6) é] ’

_ 000 ap =
p[f (r.;.:‘uI + Uf) - —n—gg - M0y

. 08D -
s (w‘uz + va—;) = kKp — ;.

Dispersion relation
We have to analyse the following dispersion relation:

(4.29) (wl +2A)u+ Bu' =0,
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Condititions in 2-direction are fulfilled automatically due to ansatz (4.1).
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5. Numerical investigation

We solve the eigenvalue problem for w, using a second order finite differ-
ence scheme in a equidistant mesh (length of the body [ divided into n parts
of length h). The derivatives of disturbances are written as central differences

Ou _u(z+h)—u(z—nh)
(89: il 2h
the first (% = ufz+ hﬁ = (:c)) and the last point (% = iirl= :(I = h)).
For this linear eigenvalue problem we obtain 5n+ 3 eigenvalues w; (number of
linear equations: 5(n+ 1)-2). The exponential form of the ansatz (4.1) yields
that the base flow is stable if all real parts of w; are negative and unstable if at
least one of the 5n + 3 real parts is positive.

For a chosen pair (, p,;) we calculate max(Re(w)) in dependence on 7. In
order to consider the precision of numerical calculations only those real parts of
eigenvalues are considered whose absolute value is greater than 10~°. We have
determined this value by comparison of results for the same parameters running
once a program without mass exchange and once a program with mass exchange
where mass exchange was switched off. Many authors who solve eigenvalue prob-
lems numerically using a finite-difference scheme complain about slowly converg-
ing procedures (e.g. [5]) from which it follows that calculations for a large value
of elements are necessary. In our case we do not observe such problems: Compar-
ison of analytical and numerical results (without mass exchange) shows that the
small number of 10 elements is sufficient to obtain a good agreement of results
in the scope of the just mentioned precision.

In the calculations we use the data of the following two tables. The data are
typical for geotechnical applications. In Table 1 parameters for a flow process
without adsorption are given, in Table 2 these quantities are given which enter
the model due to the adsorption process:

for inner mesh points, or as asymmetric ones for

Table 1. Typical model parameters for flow processes in soils.

Length, width of the body [,b 1lm || equilibrium porosity ng 0.23
Compressibility « 2.25 . 105 ﬂ;;— Initial mass density pf 2.3 -10° ﬁ%
Pressure left-h.s. p 110kPa || Pressure right-h.s. p, 100kPa
Pressure difference working on the fluid  ps = ne (p — pr) 2.3kPa

Table 2. Additional model parameters for adsorption processes in soils.

Initial concentration co 1077
Langmuir pressure pg 10 kPa
Charact. time of adsorp. 7eq 1s
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In the following Fig. 1 we show the results of the stability analysis. The
domain of instability is shown in 3D in dependence on the bulk permeability
m, the surface permeability «, and the coefficient pa"‘d characterizing adsorption
properties of the internal surface. The last coefficient may change by a few orders
of magnitude because it is proportional to the internal surface. Below we see the
2D projections of the instability region.
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FiG. 1. Numerical result for transversal disturbance with mass exchange.

Transversal disturbance with mass exchange yields an instability of the steady
state flow for some ranges of parameters. While for small values of 7 the border
of this region strongly varies with the surface permeability parameter « (see the
third 2D projection), on the side of large 7 the unstable region is limited by a
value of 7 app. 108548, For greater values of 7 the base flow is stable for any «. In
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the range of extremally large 7 not shown any more in the figure there appears
again an instability for all values of a. However, the model is not applicable in
this range any more. In addition, the numerical procedure is not stable any more
for such very large values of .

With decreasing « also the region of 7 decreases for which the flow is unstable
until the value a ~ 107569 is reached where the base flow is stable in the whole
range of w (see the first 2D projection). A similar behavior exists in dependence
on p::‘d (see second 2D projection): the range of pfd for which the flow is unstable
decreases with decreasing «. For smaller values than a =~ 1075%% the flow is
stable for any p;‘d. It is worth mentioning that parameters which have been used
for the works quoted earlier lie all in the stable region.

6. Properties of some other disturbances of the base flow

As in many other known cases of flow instabilities, a 1D disturbance either
without or with mass exchange does not produce any instability of our base
flow. The same is valid for a 2D disturbance without mass exchange. Results
for these disturbances are shown in the paper [1]. Although there appears no
region of instability for the three mentioned disturbances results show important
features of the relaxation behavior. For the 1D and 2D disturbances without mass
exchange even an analytical investigation was feasible which gave hints for the
numerical approach also of this work.

From the stable cases we know that the relaxation properties do not change
monotonously with the permeability . They possess rather two different ranges.
In the range of smaller values of 7 the relaxation is determined by a real part
of the complex root, while for larger 7 this root does not possess the imaginary
part. It means that the perturbation causes vibrations in the range of smaller ,
whose frequencies cover the whole discrete spectrum. For values of 7 greater than
this of the turning point, the disturbance is only damped but the damping is

smaller than that predicted by the resistance to the diffusion (i.e. < lp) . The
Po
position of the turning point is determined by the compressibility coefficient of

the fluid. We refer to [3] where this property is discussed. In general the damping
is the smallest (i.e. the relaxation is the slowest) for large and small values of 7.

Calculations for different disturbances made it evident that the mass ex-
change slows down the relaxation even by a few orders of magnitude. This ef-
fect is related to the characteristic time of adsorption 7.,4. Little can be said
about its experimental values for porous materials because most experiments
are conducted in quasistatic conditions. In [3] we show the influence of 7,4 on
the relaxation properties. As expected, the disturbances relax faster for smaller
characteristic times 7,4 but even for a very short time of adsorption 7,4 = 10™%s
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this relaxation is considerably longer than in the case of no mass exchange. For
the current work we used a value of 7,4 = 1s as in all earlier works on adsorption.

Results for the 2D disturbance without mass exchange reveal the same be-
havior as these for the 1D perturbation. Admittedly there appear additional
solutions but they do neither have influence on the stability behavior nor on
the relaxation properties. In general the relaxation in the 2D case without mass
exchange is faster than in the 1D case. Anyway it is interesting that the 2D
disturbance with mass exchange yields an instability while the 1D disturbance
with adsorption does not.

7. Conclusions

In this work we have shown that for transversal disturbances with mass ex-
change of the 1D steady state flow through the porous material there appears
a region of parameters m,a, and p2, in which the base flow is unstable. This is
not the case with respect to a linear longitudinal disturbance without and with
mass exchange and to a linear transversal disturbance without mass exchange.
For the three latter disturbances the base flow is stable in the whole range of
control permeability parameters 7, and a.

This shows that a disturbance with adsorption has a great influence on the
stability behavior of the base flow. While adsorption already in the case of 1D
disturbances decreases the maximum values of real parts by some orders of mag-
nitude, for the 2D disturbances it even decides whether the base flow is stable
or unstable.

The existing unstable region for the disturbance investigated in this paper
appears in the region of 7 where in the case of the other disturbances (1D with-
out and with mass exchange, 2D without mass exchange) appear complex roots
and thus vibrations. The range of instability corresponds to higher velocities for
the same pressure difference due to a lower resistance of the boundary. Simulta-
neously it corresponds to a lower “internal friction* 7vf in momentum balance
equation due to lower values of permeability =. '

The work has shown that the order of magnitude of parameters which were
used in earlier works on this model were determined correctly and lie in stable
regions of the model.
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