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Partial material replacement without stress redistribution
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A PARTIAL MATERIAL replacement causes stress redistribution in comparison to the
original structure made of a homogeneous material. The article presents a possibility
to design a geometry of the replacement which keeps the state of stress unchanged.
It is shown that for a class of two-dimensional configurations, it is possible to find a
solution of this problem. Conditions for the existence of an appropriate geometry are
given. A method to obtain the shape of the replaced part is proposed.

1. Introduction

WE CONSIDER AN ELASTIC body initially made of one material and subjected to
a single load system. Then some part of the body is replaced by a part of the same
shape but made of another material. This partial material replacement usually
causes essential stress redistribution in comparison to the same structure made
of one material. The choice of the shape of a bimaterial interface significantly
influences the redistribution. Defining any norm (measure) of the stress change,
we can consider a function which maps the set of all possible interfaces into the
value of the stress redistribution norm. Considering the lowest possible value of
this norm it is clear that since the norm is nonnegative, the lowest (theoretical)
value is zero. The physical interpretation of this value requires the existence of
an interface which does not cause the stress redistribution in the whole domain.
We are going to analyze the possibility of existence of the replacement shape
which preserves the stress state unchanged.

Such a problem seems to lead to a contradiction. The solution of a Boundary
Value Problem (BVP) of elasticity is dependent on the distribution of material
properties. The change of mechanical properties in any part of the domain should
lead to significant changes in the BVP solution. Considering the problem of the
body with a replaced part from the viewpoint of mechanics, it is obvious that
the stress redistribution depends on the mechanical properties of materials, the
geometry of the body, the shape of a material interface, the applied loads and
kinematic boundary conditions.
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36 A. MATUSZAK

We are going to show in the paper that, even if the properties of the original
and new material are given and the geometry of the domain is determined, there
may exist a shape of the interface which does not lead to any change of stress
distribution. We will show cases when such an interface exists. Then we will try
to establish a simple method of finding such an interface for a limited class of
problems.

The idea of this research was introduced by the analysis of biomechanical
problems related to the stability of an implant-bone system. An inserted im-
plant (the replacement) causes stress redistribution which initiates the process
of bone material adaptation known as remodeling. This process causes essential
structural changes in the bone material and these changes belong to important
factors limiting the implant service time [3|. The majority of known remodeling
theories assume that the process is caused by stress/strain redistribution [7]. The
most effective way to avoid an unwanted effect is to prevent its cause. A design
which would cause no redistribution of stress would prevent any mechanically
induced remodeling and eliminate one of the reasons of implant loosening. How-
ever, at this stage of development, the presented theory is of a purely theoretical
significance for biomechanics, since assumptions adopted in this paper are too
restrictive for their practical application.

Apart from biomechanics, the presented results can be interesting for any
problem where a bimaterial interface occurs and a single load system dominates.
At the bimaterial interface high stress concentrations occur [6]. The existence of
such a special shape of the interface which does not cause the stress redistribution
allows one to obtain a structure made of two materials but maintaining the same
stress state as the structure made of one material, and therefore free of any stress
concentrations caused by the bimaterial interface.

Finally, what is most important, this solution presents some unexpected prop-
erties of elasticity which contradict our belief and is interesting per se.

2. Problem formulation and trivial solutions

2.1. Primary problem

We define a primary problem considering a body occupying domain D, with
prescribed boundary conditions: kinematic on 0D, of boundary @D and static
on part dD,, as depicted in Fig.1. The linear elastic material properties are
described by the tensor Ejjg.

This is the classical BVP of the theory of elasticity. The problem is well-posed

and can be solved for the unknown fields of displacements u!, stresses a{j and

I

strains &;;.
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In what follows we assume that the solution of the primary problem i.e. fields

I and efj are known.

I
u;, Oj;

9D,

FiG. 1. Primary problem

2.2. Secondary problem

Let us modify the primary problem assuming the existence of an interface I'
which forms two subdomains D; and Dy of domain D, as shown in Fig. 2.

9Ds

9D,

Fi1G. 2. Secondary problem

The material properties in subdomain D; remain the same as in the primary
problem, while in subdomain D5 the material properties are described by another
elasticity tensor E‘-jk;.

Kinematic boundary conditions are prescribed on boundary part D, of
subdomain D; and static boundary conditions are prescribed on 9D;,. Only
static boundary conditions are prescribed on boundary dD; of subdomain Ds.
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This new BVP will be called a secondary problem. The secondary problem is
still well-posed and can also be solved for the fields: displacements u{ I' stresses
a;'jl and strains sf;' . One primary problem can generate a series of secondary
problems with different locations of I'. Each of the secondary problems has a
solution u!’, aff, s{j‘{.

We expect that the solution of a secondary problem is highly dependent on
the location of I'. It is also expected that the introduction of another material
causes redistribution of stresses, i.e. everywhere in D

(2.1) Aoij = org - a{j # 0.

2.3. Redistribution problem

Our objective is to find a special case of the secondary problem with such a
shape of interface I' which gives no stress redistribution

(2.2) Agij =0

in the whole domain D provided that such a line I' exists. This is equivalent to
the condition:
(2.3) og = a{j.

In what follows we will refer to this problem as the problem of stress redis-
tribution or shortly, as the problem of redistribution.

In order to distinguish the solution of the secondary problem from its special
case when condition Eq. (2.3) is met, another notation is introduced. For the so-
lution of the stress redistribution problem we denote the solution of the secondary
problem in subdomain D; (where material properties are Ejjx) by ui, 0ij, €5
and in subdomain D (where material properties are F:‘,-_,-H} by i, Gij, €ij.

Due to the properties of Eq. (2.3) we have: g;; = crfj inDy, 0y = a{j in Dy
and therefore we could use afj as the distribution of stresses in the solution of
the redistribution problem, but we will use the notation o;; and &;; in order to
emphasize which subdomain is considered.

It should be noted that for a known shape of I, the verification of Eq. (2. 3)
can be performed by a direct solution of the primary and secondary problems.

2.4. Trivial solutions

It is unbelievable that the redistribution problem may possess a solution.
The solution of the problem which satisfies condition Eq. (2.3) contradicts our
experience. In order to prove that the considered problem is solvable, a few simple
solutions should be presented prior to the formulation of a consistent theory.
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Let us consider a rectangular panel subjected to pure tension in plane stress
conditions. The panel is made of two linear, elastic, isotropic and homogenous
materials with a material interface perpendicular to the axis of tension, as shown
in Fig.3. In order to preserve the pure tension condition, we assume that the
kinematic boundary conditions at the left-hand edge of the panel should allow
for free expansion in direction y.

E,v E.v

il

Fic. 3. Panel with straight interface

Let us virtually separate the panel along the material interface and assume
pure tension in both parts. Then both parts of the panel deform independently.
The elongation of each part in the direction of tension is governed by Young's
modulus. In the direction perpendicular to the axis of tension, the value of Pois-
son’s ratio governs the width change of each part. The strain value in the direc-
tion perpendicular to the axis of tension (in the system of coordinates shown in
Fig. 3) is given by:

v
(24) Eyy = -EO'
where the values of E and v are taken for the relevant material.

If both sides of the interface shrank in the same way, the displacements along
both sides of the interface would be compatible and both parts would deform in
the same way, either separately or as a whole. Therefore we can join them back
because both the displacement continuity and equilibrium are satisfied and the
complete solution of BVP is obtained.

The condition of equal transverse shrinking of both parts leads to the follow-
ing relation between the material constants:

(2.5) ¥

& &

ot
The above solution can be viewed as a solution of the redistribution problem
while the primary problem would concern the same panel made of one material.

This gives us an example of a material replacement without stress redistribution,
but in fact this problem is different from that originally specified, since it imposes
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conditions on the material properties instead of conditions on the shape of the
interface.

In order to find an interface shape which gives no redistribution after material
replacement, it is sufficient to consider a straight but inclined interface in the
previously considered example, see Fig.4. It could be shown that it is sufficient
to consider the condition of equal elongations of both sides of the interface. After
rewriting the strain tensor in a local set of coordinates chosen in such a way that
the first local axis £ coincides with the direction of the interface, the elongation
of the interface is given by:

(2.6) Eee = Ezx cos? a + Eyy sin .

where a is the angle between the global axis z and the local axis €.

Il

Fi1G. 4. Panel with inclined interface

The condition of equal elongation of both sides of the interface leads to the
following formula for the inclination angle:

(2.7) tan® o = .E;E
Ev—Ev

It can be verified that the solution of the primary and the secondary problem
with the inclination angle given by Eq.(2.7) yields the same stress field. This
means that for a given primary problem such as the panel made of one material
subjected to pure tension, one can replace a part of this panel with another
material and, as long as the interface is a straight line with an inclination given
by Eq. (2.7), there will be no stress redistribution. This is a simple example of
a solution of the main problem considered in this paper. It is also a proof that
the problem has a solution at least in one case.

It is worth noting that, while in the secondary problem the stress field is
homogeneous, the field of strain is not. There is a jump of strains along the
material interface. As a consequence of this, the deformation is non-symmetric,
as depicted in Fig. 5.

It has been shown that a solution of the problem exists in the case of the
pure tension. Another simple example could also be demonstrated, the case of
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Fic. 5. Undeformed (solid line) and deformed (dashed line) shape of panel with inclined
interface

uniform tension (compresion) state of stress where a solution does not exist (the
simple proof will be given later in this paper).

At this point it is clear that the problem of stress redistribution can possess
a solution but it is also possible that even in a simple case, such a solution may
not exists. Therefore, it is difficult to find a condition which gives us information
about the existence of the solution for a given case.

Instead of searching for the universal condition which asserts existence, in the
following part we focus our attention on a more practical problem, how to find
the interface location. We assume that this interface exists and try to establish
the conditions which allow us to find its location.

3. Interface location

The problem of finding the shape of such a replacement in the most gen-
eral case is far too difficult to consider. In this paper we simplify the problem
essentially (and therefore restrict the validity of our solution) by adopting the
following assumptions:

(a) displacements and strains are small,
(b) plane stress conditions are adopted,

(c) materials are homogeneous, isotropic and linear elastic, therefore tensor
Eijri is completely defined by Young’s modulus E and Poisson’s ratio v,
and the tensor Ejji by values E and 7,

body forces are neglected,
a single load is applied to the structure,
the interface of materials is perfectly bonded,

the replacement is external, which means that a part of the structure made
from the new material includes a boundary of the domain 9Dy N 9D # 0;
in other words, the replacement is not completely surrounded by the body,
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(h) there are no kinematic boundary conditions placed on the part of boundary
which belongs to the replacement dD,, = dDs.

We restrict our aim to establishing the theoretical formulation. The numerical
application of the presented idea is not straightforward and has been described
separately [5].

The stress redistribution problem leads to searching for the unknown inter-
face line I'. The formulation of the problem provides us a simple condition for
verification if a particular line is an actual solution of the redistribition problem
(by means of condition (2.3)) but it does not give us any practical method of
searching for the interface location.

In the following part of the paper we will try to anlyse the consequences of
the existence of the stress redistribution problem in order to find an auxiliary
condition which helps us to determine the interface location.

It is useful to consider the problem as given in two subdomains. The solution
of the whole redistribution problem can be split into two smaller problems given
in two subdomains D) and D, defined by line I'. Then we have two BVPs and in
addition, we have to specify the interface conditions which couple the solutions of
the subproblems to obtain a proper solution of BVP in whole domain domain D.

Interface conditions [1] require:
continuity of displacements along interface I':

(3.1) u; = U3
equilibrium of interface
(3-2) aijn; = 6,-jnj.

Standard interface conditions of type Eq. (3. 1) and Eq. (3. 2) introduce %;, u;,
oijnj and gi;n; as unknowns of the problem at each point of I'. None of these
variables is prescribed along I' and there are six independent components of
the stress tensors, while formula Eq. (3.2) gives only two equations which relate
them.

For the redistribution problem the stresses along the interface are not un-
known, since stresses should be the same as in the primary problem everywhere
in D and therefore also along I'. Then, in addition to Eq. (3.2), because of con-
dition Eq. (2. 3) we also have

(33] gijng = O’{jﬂj.

Therefore, the interface equilibrium Eq. (3. 2) is satisfied as an identity, but be-
cause of condition Eq. (3.3), the value of o;;n; and ;jn; along I becomes pre-
scribed. We obtain prescribed static boundary conditions at the boundary I" of
both subdomains.
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Now the problem can be seen as two, almost uncoupled, BVPs with prescribed
tractions along I' (as shown in Fig.6) and with an additional condition given by

Eq. (3.1).
Lo

v

9D,
Fi1c. 6. Problem separated into two problems in subdomains

In subdomain D; a separate BVP can be formulated, with prescribed trac-
tions Eq.(3.3) along I'. The material is the same as in the primary problem,
therefore the whole solution of BVP is identical to the solution of the primary
problem in subdomain D;. The field of stress o;; is the same as afj, the field of
strain €;; is the same as Efj and the field of displacement u; is the same as u{.
The last statement leads to the conclusion that displacements along I' are also

known, so we can write in addition to Eq.(3.1) that along I':
(3.4) u =uf.

Next, we can consider the second subdomain. The boundary of D, is formed
by part 9Dy, and by interface I'. At boundary 0D,,, the tractions are pre-
scribed. At boundary I the static boundary conditions are also prescribed, since
substituting Eq. (3. 3) into Eq. (3.2) we obtain:

(3.5) pi = 0jjnj = Ufjnj.

Moreover, at I" also the kinematic boundary conditions are prescribed. Sub-
stituting Eq. (3.4) into Eq. (3.1) we obtain:

(3.6) il = ul.
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Therefore, in the second subdomain we have a BVP with both kinematic and
static boundary conditions prescribed along I'. For a problem of linear elasticity,
exactly one type of boundary conditions should be prescribed. When both types
are specified, it can (and usually will) lead to a contradiction and can form an
ill-posed problem.

The problem formulated in subdomain D is an example of a BVP problem
which can formally be specified with an excessive number of boundary conditions
and which does not lead to a contradiction. Formally, in this BVP problem in
D, we can have along I' given tractions Eq. (3.3) and displacements Eq. (3. 4),
but a solution satysfying both conditions exists.

This is the unique possibility. For prescribed tractions there is exactly one
function of displacements which gives the proper solution. Conversely, for pre-
scribed displacements there is exactly one function of tractions which does not
lead to contradiction.

The application of the same reasoning to D; leads to an alternative method
of verification if a given I' is a solution of the redistribution problem. We can
specify one of boundary conditions Eq. (3.5) or Eq. (3. 6) along I, solve the BVP
in D, and check if the second condition is satisfied. Then with both equilibrium
and continuity along I satisfied, we can join both subdomains to form one body
and obtain a complete solution which satisfies Eq. (2. 3).

When the interface line I' is unknown, we can assume that one of these
boundary conditions is specified and use the other one to determine the shape
of I if it exists. The choice which boundary condition is prescribed is arbitrary.
In the following considerations tractions along I' are specified.

Now, we focus our attention on the virtually separated subdomain Dy. Taking
assumption (h) into account, the BVP in Dj is given in stresses. Because of
assumptions (a)-(d), the stress distribution in such a problem is independent
of material properties of the body. It is then clear that the state of stress &;;
is the same as the state of stress o{j in the solution of the primary problem
in subdomain Dy, while the same stress ;; with new material of properties
E, i gives a different strain €ij. It is also clear that the field of displacements
will change, however displacements for the secondary problem in D, can be
obtained with an accuracy corresponding to unknown rigid body motions since
the problem is given in stresses.

This leads us to another formulation of the redistribution problem:

Find such a line I' defining subdomain D, that for given stresses
or{j and material properties E, # we can satisfy prescribed dis-
placements Eq. (3.6) along I'.
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4. Displacements along I

Now, we focus our attention on the separated BVP given in D, with an ad-
ditional condition of prescribed displacement Eq. (3. 6) which has to be satisfied
along part I' of the boundary.

We analyse the consequences of this problem in order to find the unknown
shape of I" in the redistribution problem.

Equation (3. 6) is formulated in terms of displacements and is not convenient
for further analysis. A better possibility is given by rewriting this equation in
terms of displacement differentials. The displacement along any curve C can be
expressed as

(4.1) ui(zc) = wi(zc,) + /dui.

ICU

Applying Eq. (4.1) to I' it can be stated that, assuming the existence of one
point £y € I where equation Eq. (3.6) is satisfied, it is equivalent to compare
the displacement differentials along I':

(4.2) dii; = du!.

For any field, the differentials of displacements can be expressed in terms of
derivatives using the chain rule, and can be expressed in terms of small strain
and small rotation tensors. In an extended form it gives (all superscripts are
dropped):

duy = e11dxy + €19dzy + wiadzs,
(4.3)
dug = Elzd:!:l + Eggdmg == wlgd.'l:] -

For the plane stress conditions the tensor of small rotation wj; has only two
nonzero components, each of the same absolute value but with an opposite sign,
so it can be described by a single scalar value w:

(4.4) W= w2 = —Way.

Rearranging equation Eq. (4. 2) and taking into account Eqs. (4.3) and Eq. (4. 4)
we obtain:

(e11 — Eu)d.’r} + (512 — €19 +w—¢3)d:1:2 =0,

(4.5)
(€12 — €12 — w + @) dz) + (€22 — €22) dzo = 0.
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Now, we introduce an additional notation in order to simplify the equations.
We define the difference of strains as:

(4.6) €ij = Eij — Eij-

It should be noted that e;; depends on the properties of both materials. In a
similar manner we define the difference of rotations:

(4.7) Q=w-—w.
Rewriting the set of Egs. (4.5) with the new notation we obtain:

endz, + (812 + Q) dzy = 0.
(4.8)
(e12 — ) dz; + egadzy = 0.

The set of Eqs. (4.8) is a system of linear homogeneous equations with un-
knowns dz, and dz,. Such a system always possesses the trivial solution with
the unknowns equal to zero. It has a nontrivial solution if the determinant of the
system is equal to zero. This happens only if value of (2 satisfies the condition:

(4.9) 02 = .‘3?2 — €11€22.

Since Eq. (3.6) and its equivalent form Eq. (4. 8) are well-defined only along T',
the unknowns dz; and dzy define increments along I'. Then, the local slope of
I' at a given point is:

d.‘l':g €11 Q- €12

4. — = =
(4.20) dzy e+ €99

The rightmost term of Eq. (4.10) is valid except for the case ez = 0. In order
to handle properly any case of e;;, we have to examine special cases:
1. If e3o = 0 and ey2 # 0, then we obtain inclination

dzy  en

4.11 L L U
( ) d:l?] 2612

2. If eg9 = 0 and e; = 0, then we obtain a vertical line

(4.12) dzy = 0.

It should be noted that Eq.(4.10) (and its special cases) is a first order
differential equation which can be used for finding I' if proper initial conditions
can be specified. This requires that at least a single point belonging to I' is
known.
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4.1. Remarks

Equation (4.9) gives us a value of §2 squared. This makes it necessary to
determine when the RHS of Eq. (4.9) is nonnegative. The sign of the RHS of
Eq. (4.9) depends on the state of stress and material constants of both materials.
This makes it dependent on seven variables: three components of stress tensor ;;
and four material constants. Such a function is far too complex to be analysed.
However, the properties of this function with respect to the stress state can be
examined. In order to simplify the analysis we consider the stress tensor in its
principal directions. This does not restrict the generality of our considerations
since the existence of a solution does not depend on the choice of a coordinate
system.

After rewriting equation Eq. (4.9) in terms of principal stresses, the condition
for the nonnegative value of RHS of Eq. (4.9) leads to the following inequality:

(4.13) 0 > (ko — 03] [koz — 01]
where
(4.14) faa—

Fv — Ev

G,
Q<0
Q>0
a
Q>0

Fi1G. 7. Existence of solution on the plane of principal stresses

Inequality Eq. (4.13) splits the plane o), o2 into four parts as depicted in
Fig. 7. In the part where condition Eq. (4.13) is not satisfied, the solution does
not exist. This means that such a point of domain can not belong to I'. When at a
given point the value of € can be computed, the existence of I is not guaranteed
yet and must be investigated using further conditions.
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It is clear from Fig.7 that in the case of uniform tension or compression
(o = 09) the solution does not exist.

Equation (4. 6) defines a tensor of strain differences e;;. The RHS of Eq. (4.9)
is the value of the second invariant of e;; taken with a negative sign. This makes
it clear that condition Eq.(4.9) is independent of the choice of a coordinate
system.

4.2. Interpretations

Now, we review some interpretations of the obtained formulae Eq. (4.9) and
Eq. (4.10). By definition Eq. (4. 7) Q is a difference between the value of rotation
in the primary problem and the value of rotation in the secondary problem.
The rotation tensor component w can be interpreted as the angle of rotation of
an infinitesimally small segment between the undeformed and deformed state.
Therefore, in case of the secondary problem, any curve crossing interface which is
smooth before deformation, exhibits a slope discontinuity at I' after deformation.

The physical interpretation of the equations describing the continuity of dis-
placements along the material interface is also worth examining. It becomes
quite clear after assuming that Egs.(4.8) are written in a local set of coordi-
nates with the first axis coinciding with the tangent to the curve I' (dzy = 0).
The first Eq. (4.8); then becomes a condition of equal elongation of both sides
of the interface. The second one becomes a condition of equal displacements in
the direction perpendicular to the interface. This condition is dependent on 2,
therefore the value of §2 is responsible for a gap or overlap.

4.3. Final condition

We now extend the meaning of Eq.(4.9). This equation must be satisfied
along the material interface I'. It has been pointed out that the RHS of Eq. (4. 9)
can be computed everywhere in domain D. Then, it is useful to introduce a new
field Q such that:

(4.15) 0% =el) —enren

in D. The value of Q2 can be computed from the solution of the primary problem
without knowing . Then, condition Eq. (4.9) can be rewritten as:

(4.16) 0% =2

and must be satisfied along I

We note that the sign of Q computed from Eq.(4.15) is in fact undeter-
mined. Since along I' the sign of Q2 should remain the same, setting the sign
at any arbitrary point determines the whole solution. This is the reason why
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both possible signs of { should be examined as separate solutions. Then we will
rewrite Eq. (4. 16) in the form:

(4.17) N=0

to be satisfied along I', keeping in mind that it actually shows two possibilities

(4.18) Q=:§:we¥2“611€22.

Let us look at the definition of € given by equation Eq. (4. 7). The value of
the rotation, either w or w, is not independent of the strain field. It is given by
the following relation [2]:

(4.19) w=wy+ /(Eu,z —€12,1 )dx) + (€12,2 —€22,1 )dza.

This means that for a given strain field the whole field of rotation is deter-
mined over the domain (or subdomain) except for the unknown value of wgy. The
field of w is determined by the solution of the primary problem since the value
of wy can be computed from boundary conditions on dD,,. The field of @ is not
completely defined, since the value of @y is unknown. This value can easily be
computed from the condition of displacement continuity if at least one point of
curve I is known. In the case of unknown I' and the secondary problem given in
stresses, the value of @ is determined with a parameter. This means that at any
point that is supposed to belong to I', the value of @ can be chosen to satisfy
condition Eq. (4.17). Then, at any other point of I' the value of @ is fixed.

Thus, the field of Q2 over the whole domain is determined with a single un-
known scalar parameter. This is the reason why a directional derivative of Q is
used. Since condition Eq. (4.17) has to be satisfied only along I', the increments
of both sides of Eq. (4.17) should be equal along I':

4 _do
ds  ds’

After expanding both sides of equation Eq. (4.20) according to the chain rule
we obtain:

(4.20)

anN anN a0 a0
(4.21) a—-dzl 9z 2dx B2, —dz) + B—-dwz

After substituting the definition of Q Eq. (4.15) and its derivatives, taking
into account Egs. (4.7), (4.19) and rearranging Eq. (4.21), we obtain the follow-
ing condition to be satisfied along I':

(4.22) (O —er1,2 +e12,1 ) dzy + (Qy2 —€12,2 +e22,1 ) dza = 0.
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The relation between dz; and dzs is determined from the local slope of I' and
is given by Eq. (4.10)

(4.23) ez (1 —er2 +e12,1) + (2 —erz2 +e22,1 ) (2 — e12) = 0.

In special cases not covered by Eq.(4.10) equation (4.22) leads to other
expressions:
1. If es9 = 0 and ej2 # 0, then we use Eq. (4.11)

(4.24) 2e12 (Qu —€11,2 +812,1) = (Q,z —e12,2 +€22,] ) ey =0.
2. If e3o = 0 and e12 = 0, then we use Eq. (4.12)

(4.25) 2,2 —e12,2 +e22,1 = 0.

It should be noted that condition (4. 23) depends on the derivatives of the strain
field. This is the reason why for a homogeneous state of stress this condition is
satisfied as an identity and then the solution is given by a straight line which
can be obtained from condition Eq. (4.10).

In order to simplify the notation we define a function F' as:

(e (1 —en2+ezn ) + (Q2 —e12,2
+ex,1) (2 — en2) if eg # 0,
2ey9 (Q 1 —€11,2 +€12,1 ) = if e30 =0
4.26 F =4 = : j
(52n) — (2,2 —e12,2 +€22,1 ) enr and ejp # 0,
Q9 —e12,2 +€22,1 if ez =0
& and €19 = 0.

With this definition of function F' we can simply write conditions Eq. (4. 23),
Eq. (4.24), and Eq. (4.25) as:

(4.27) F=0.

We have shown that if some line I is the sought interface then along this line,
condition (4.27) has to be satisfied. However we have not shown that the inverse
is true. In fact, it can be shown by just one example that it is not. Therefore, the
condition (4.27) is only the necessary condition, but lines along which condition
(4.27) is satisfied are the only possible locations of the sought interface. As a
consequence of this, we have reduced the problem of stress redistribution from
searching among the infinite number of possible locations of I' to a finite number
of its locations.
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4.4. Practical use of derived condition

The solution of the primary problem gives us stresses &;; as functions of
coordinates. The values of e;; can be obtained from stresses 7;; which determine
€i; and £;;. The value of £;; was originally defined in D, only. However, one
can compute &;; from rrfj- everywhere in D, although it can be meaningless in
the neighbourhood of the kinematic boundary conditions. This makes it possible
to obtain e;; without the prior knowledge of I'. Then the field(s) of Q and its
derivatives can be computed. Substituting all these functions into Eq. (4.26), a
parametric equation for F' can be obtained:

(428) F (eij (Ia y)s €ijik (551 y)l Q('Ts y)! Qsi (Is y}) =F (Isy) .

It is quite difficult and apparently not necessary to solve this parametric
equation. The most practical way to obtain the location of lines where condition
Eq. (4.27) is satisfied is to draw contour lines of the surface given by F' over the
entire domain.

When drawn, the contour lines of zero level show us all possible locations
of I.

The absence of the zero level contour informs us that a solution does not
exist. When one or more zero level contours appear, it is neccessary to verify
each one separately. In fact, we should consider two such surfaces F* and F~,
according to the choice of the sign in Eq. (4. 18)

This approach is very efficient. In fact we need to solve a simple linear static
problem (primary), then compute the values and draw the contours of F* and
F~ and finally verify by direct computation every line satisfying Eq. (4. 27). Prior
to this verification we can exclude some lines when they violate assumptions

(g) or (h).

5. Example

The formula (4.27) gives a solution for the problem of finding the shape of
I'. We will now show an example of a solution predicted by Eq.(4.27). This
example is a case of an inhomogeneous state of stress, in order to actually verify
condition Eq. (4. 27) rather than Eq. (4. 10). We show a simple example obtained
in a rather artificial way. We find an example which is a solution of the redistri-
bution problem and then compute the functions given by Eq. (4.27) in order to
check if we obtain the correct solution.

We assume the shape of I' and determine the stress which satisfies Eq. (4. 27).
For the sake of simplicity, the shape of I is chosen as a straight line described
by the function:
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(5.1) y=z-1.

We will seek the solution in a class of linearly varying fields of stress. After
lengthy but simple derivations, one of the possible stress fields is found as:

gyl = —2137$,
(5.2) oy = 1645z + 3362y,

o1 = —3572 — 3362z + 2137y.

The following material constants are adopted: £ = 20 GPa, v = 0.1, E =
210 GPa, 7 = 0.3. After computing the displacements for the primary problem
and the secondary problem it is verified that the displacements along the material
interface are equal, which makes us sure that it is the complete solution of the
redistribution problem.

Therefore, any part of plane zy (finite or not) can be considered as a primary
problem as long as we guarantee that the stresses inside are given by Eq. (5.2).
Then, the static boundary conditions at the appropriate part of the boundary
can be obtained from Eq. (5.2). The kinematic boundary conditions (if any) have
to be determined from the displacements resulting from Eq. (5.2), but again the
rigid body motion is arbitrary. Then the solution of the redistribution problem is
given by Eq. (5. 1) provided that the chosen domain contains any part of this line
and the chosen kinematic boundary condition does not violate assumption (h).

In order to demonstrate the application of the presented approach, the do-
main 0 < z < 2 and 0 < y < 4 is chosen arbitrarily. The static boundary
conditions are prescribed at all boundaries. In addition to this, one can assume
appropriate pointwise supports at lower corners of the rectangle in order to
prevent the rigid body motions. They do not influence the presented example,
however they might be essential in case of (numerical) verification of the obtained
solution.

Then, we can verify the validity of formula (4.27), by computing F' using
stresses given by Eq. (5.2). After applying the procedure described previously,
the surfaces created by functions F(z,y) are drawn over the domain. The values
of F~(z,y) are negative everywhere in this domain and the solution does not
exist. Figure 8 (left) shows the contour lines of function F*(z,y). In Fig. 8 (right)
only the zero contours are left. This shows us two lines satisfying Eq. (4. 27). Then
we should verify each line separately, by solving the secondary problem, if it is
the actual solution of the redistribution problem. It should be noted that the
known solution of the redistribution problem (5.1) has been detected by this
approach.
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Fic. 8. Plot of contour lines of F*(z,y) = const (left) and contours of zero level (right)

6. Conclusions

In this paper we have formulated the problem of stress redistribution, i.e.
the problem of finding a shape of a partial material replacement which preserves
the same stress as in the body before replacement. We have shown some triv-
ial examples which prove that this problem may have a solution. The paper
demonstrates how significantly we can influence the redistribution caused by
a bimaterial interface. It is also a proof that the solution of such a problem does
not violate the fundamental laws of mechanics and, moreover, it contradicts the
common belief that a bimaterial interface has to lead to stress redistribution, as
long as the material properties of both materials are different.

Then we have discussed the question of searching for such a specific material
interface. For a simplified problem we have derived the neccessary condition for
the existence of a solution. This converts the problem of searching among an
infinite number of interface locations to the verification of finite number of lines.
We have demonstrated that the use of this condition is a practical method of
finding that interface. However, the proposed method of solution has obvious
limitations. The application of this approach is strongly limited by the set of
adopted assumptions.
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The article presents the ultimate approach to the problem of redistribution:
we can obtain no redistribution or no solution at all. In practice, a partial solu-
tion of the problem focused on the reduction of redistribution could be equally
worthwhile.

The redistribution problem brings some side effects, such like undesired de-
formations. The significance of these effects can be assessed in case of a given
application, since the same effects may be irrelevant for one problem while they
can disqualify the solution for other problems.
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