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THE AIM OF THE PAPER is twofold: first, the stochastic homogenization theorem for-
mulated by Dar Maso and Mobica [9, 10] is extended to the case applicable to
a class of nonlinear problems of mechanics. Second, this new theorem is applied to
determine the effective thermoelastic response of the material body with stochasti-
cally periodic microstructure. As a result, one obtains the closed form of effective
(homogenized) stored energy function. As a specific case, one-dimensional problem is
solved analytically.

1. Introduction

EFFECTIVE MATERIAL moduli of nonhomogeneous, linear, thermoelastic solids
were derived by various authors. FRANCFORT [11] solved the problem of ho-
mogenization of a thermoelastic solid with microperiodic structure. The method
of two-scale asymptotic expansions was used to obtain effective thermoelastic
constants, cf. [22]. The idea was further developed by GALKA at al. [12] in the
case of diffusion in a thermoelastic body. Thermopiezoelectric composites were
investigated in [13].

In the case of random microstructure various, rather engineering-type, stochas-
tic approaches were used, cf. [23]. The method of conditional moments due to
KHOROSHUN [16] was applied to predict the effective properties of stochastic
composites. Particularly, the effective thermoelastic moduli of anisotropic com-
posites with ellipsoidal inclusions were determined in [17]. Thermoelastic proper-
ties of porous anisotropic materials were investigated in [20]. The micromechan-
ical approach based on the Green function technique, as well as the interfacial
Hill operators, was applied in [6] to the analysis of thermoelastostatic behaviour
of composites with coated randomly distributed inclusions. The local effective
thermoelastic properties of graded random structure matrix composites were
considered in [5] under the hypothesis of effective field homogeneity near the
inclusions.
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Papers dealing with the application of rigorous homogenizatior methods to
randomly inhomogeneous materials are not numerous [9, 10], cf. also [8, 14].
The aim our paper is to perform homogenization of randomly inhomogeneous
thermoelastic media in the case of stochastically periodic microstructure. To
this end we apply the method of stochastic ['-convergence. As a specific case,
one-dimensional problem is solved analytically.

We observe that the I'-convergence method is applicable only to stationary
thermoelasticity, the case investigated in this paper.

2. Stochastic homogenization theorem

The aim of the present paper is to determine the global thermoelastic re-
sponse of the material body with stochastically periodic microstructure. To this
end the method of stochastic I'-convergence is used. As a result, one obtains
the closed form of effective (homogenized) stored energy function. To find this
function explicitly, provided that a stochastic microstructure is prescribed, one
has to solve a counterpart of a so-called cell problem. Unfortunately, this can
be done only in specific cases, Sec. 5. The microstructure is understood here as
a real heterogeneous thermoelastic body whose properties vary rapidly and are
stochastically periodic in space, see below. The real dimension of a single cell of
periodicity is large enough to permit the application of the concept of continuum,
but the number of cells is too large to apply any numerical procedure for solving
the proper system of partial differential equations. To cope with such a difficulty,
a passage to the limit with suitably defined small parameter is performed. The
limit procedure is nothing else but smearing out the microheterogeneities, i.e.
the number of cells goes to infinity and at the same time their characteristic
dimension becomes infinitely small.

Our considerations are based on employing the notion of stochastic I' - conver-
gence. An alternative approach would consist in applying stochastic G - conver-
gence [15, 18] or stochastic two-scale convergence in the mean [2, 3]. Suitable
comments will be provided at the end of Sec. 3. In the present section we are
going to formulate a general stochastic homogenization theorem. In Sec. 3 we
provide the proof and comments,

Let us pass to the formulation of general stochastic homogenization theo-
rem applicable to performinig homogenization of equations of stationary ther-
moelesticity. We denote by Ag the family of all bounded open subsets of RV .
Obviously, from the physical point of view N = 1,2, or 3. Nevertheless no such
restriction on the space dimension is needed in Secs.2 or 3. For every A € Ay
we denote by W12(A) the Sobolev space of functions of L%(A) whose first-order
weak derivatives belong to L*(A). :
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Let usfix @ > 1, 8> 1, ¢ > ¢g > 0. We denote by F = F(cp,c1,0, ) the
class of all functionals

F: (e (R % LP

loc

(RY) x Ag = R=RU {—00} U {+00}

such that
(2.1) F(u,T,A)
: u), = Wl‘a(A)N,
. {f[x,e(u(x)),T(x).VT(x)]dx if { T, € WHS(A)
400, otherwise

Here f : RN x EN x R x RV — R is any function satisfying the following
conditions:

(i) f(x,€,&,q) is Lebesgue measurable in x and convex in €, § and q;

(ii) collel® + [€1° + |al® < f(x,€,€,q) < cr(le]* + [€|° + |al’H!)
for each (x,€,£,q) € RY x EN x R x RN

We denote by EVN the space of symmetric N x N matrices; in the case of linear
thermoelasticity e = = 2. Moreover e(u) denotes the small strain tensor

1
(2.2) eij(u) = w5 = 5(’“:',;' + uj4),
du;
where, as usual, u(; jy = —.
(2,7) 6%&

We observe that DAL MASO and Mobpica (9, 10] studied only the integrands
of the form f(x, Vu(x)), cf. also SAB [21].

In order to perform stochastic homogenization of equation of stationary ther-
moelasticity, a more general approach is obviously needed.

In Sec. 3 we shall consider a possibility of weakening the assumptions (i), (ii).
After DAL Maso and Mobica [9, 10], we equip F with the metric d so that
the F is a compact metric space. To define the metric d, we first introduce the
e-Yosida (e > 0) transform of F € F:

(2.3) T.F(u,T,A) =inf{F(v,R,A) + %[]v — u|%dx
A

+ % flR — T|Pdx|v € LE.(R¥)Y, Re Lﬁ,c(RN)}.
A
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Now we are in a position to define a distance on F. Let us choose a countable
dense subset W = {w;| j € N} x {g;| j € N} of Whe(RV )N x WLA(RN) and a
countable subfamily B = {B|k € N} of Ap. Here N denotes the set of natural
numbers. For instance, B could be chosen as the family of all bounded open
subsets of RV which are finite unions of rectangles with rational vertices. Let us
define for F,G € F

+0co 1
(2.4) d(F,G) = Z Wlﬁb(TlfiF(wjrgstk)) — ¢(T1/iG(w;, g5, B))|-
L=

Here ¢ : R — R is any increasing, continuous bounded function. For instance,
we may take ¢ = arctan [9].

To prove that d is a distance on F it suffices to show that if d(F,G) = 0
then F' = G. Indeed, Proposition 1.11 and Corollary 1.6 due to DAL MASO and
Mobica [9], now extended to our more general case, are formulated as follows.

PROPOSITION 1.

(a) Let F € F,ue L& (RY)N, T € L, (RY), A € Aq.

Then

lim T.F(u,T,A) =supT.F(u,T, A) = F(u,T, A).
e—0+ >0

(b) Let W be a dense subset of WH*(RV)N x W1#(RV) and B a dense
subfamily of Ag. If F,G € F and F(w,g,B) = g(w,g,B) Y(w,9) e W,VB€ B
then F' = G. 0O

Now we have to show that the metric space (F, d) is compact, hence complete
and separable. To this end we have to introduce the notion of [-convergence.
For more details the reader is referred to [7,10] and the relevant references cited
therein. We observe that this type of variational convergence was introduced by
E. De Giorgi and profoundly developed by the Italian School of the Calculus of
Variations.

Let X be a metric space and let {Fj}550 be a sequence of functions defined
on X with values in R. For instance, in our case X = L%(A)N x LA(A). We
say that {Fj} I'(X)-converges at a point z, € X to A € R if the following two
conditions are satisfied:

(A A< l%m[i)EfFé(z‘s) for any sequence {zs}s>0 converging in X to zeo;
s

(A), there exists a sequence {z5}s>0 converging in X to 2. such that
lim sups_,o+ F5(z5) < A
In such a case we write A = I'(X) 6111{1)1+ F5(z0). More precisely, we should write
-}

['(X ™) instead of ['(X), cf. [7,9]. Since only the above notion of I'-convergence
is used in this paper, therefore we prefer to use our simpler notation.
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If there exists F, : X — R such that

Fio(z) = T(X) Jim, fs(z), VzeX

we say that {F;} I'(X)-converges to Fy. Then from (A;) and (A;) we conclude
that

(2.5) FoolZan) = min{liﬁm{i):;lng(zgﬂzg converges in Xto zq}

for every zo, € X. Consequently, the I'(X)-limit F, is determined uniquelly.
Let now {Fs} be a sequence in F. Then we write

(2.6) T(L(A)N x LA(A)) Jim, Fj(u,T) = Foo(u,T)

V(u,T) € L*(A)N x L#(A), whenever A € Ay. More precisely, in (2.6) we should
write (Fj) 4 and (Fx) 4 instead of Fs and Fm, cf. [9]. Indeed, each F € F defines,
for every A € A, a functional Fy : L%(A)N x LP(A4) — R, cf. [9]. It suffices to
extend (u,T) € L*(A)N x LP(A) to an element (i, T) of L2 (RN )Y x J‘LJg (IRN)
We observe that the value of F(u, T A) does not depend on the extension (u, T
of (u,T).

As we shall see, the distance d on F has been chosen to be defined by (2.4)
since then there is a link between d and I'-convergence. Primarily, however, we
formulate a compactness result.

PROPOSITION 2. The class F is compact for the I'(L® x L?)-convergence, i.e.
every sequence { Fj}s~¢ in F contains a subsequence that I'(L® x LP)-converges
to a functional F, € F.

Proof. Let {Fs}s50 be a sequence in F. By Theorems 2.4 and 4.3 of 7]
there exists a subsequence {Fy } and a function Fpo : RY xEN x Rx RV — R,
non-negative, Lebesgue measurable in x and convex in the remaining variables,
such that

(27) TELANAN x LO(4)) Jim (Fy)a(u,T)

= fA fool(%, e(u(x)), T(x), VT(x))dx

for every A € Ag and (u,T) € W (AN x WHB(A). If (u,T) € (L*(A)N \
Whe(A)N) x (LP(A) \ W1H(A)) and {us, Ts}s>0 is a sequence converging in
L*(A)N x LA(A) to (u,T), then {us,T5} cannot have bounded subsequences in
Whea(A)N x W1H(A). Indeed, extending slightly Corollary 1.4 of DAL MASo
and MoDICA [9] we conclude that if A € Ag then any bounded sequence in
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whe(A)N x WLB(A) contains a subsequence that converges in L% (A)N
Lﬁm(A), weakly in WH@(A)N x W1#(A) and pointwise almost everywhere in A.
Consequently, either {us, Ts}s>0 ¢ WHe(A)N x WHHA(A), or

lim | (le(ug)|® + |Ts|? + |VTsu|?)dx = +o0
8" >0
A

for each subsequence {ug, Ty~ }s7>0 contained in whe(A)N x WhHB(A).
In both cases we get

lim inf( Fj = 3
{5111’;5}( 5 ) a(us) = +o0

We recall that {¢'} is a subsequence of {4}. For instance, {4} = {%}, n € N,
) ={=}

Thus we arrive at

D(L*(A)N x LP(A)) Jim, (Fy)(u,T)

/fm x, e(u(x)), T(x), VT (x))dx if (u,T) € W' (4)N x W (A)
+

oo if (u,T) € (LXA)N \WH(A)N) x (LF(A) \ W14 (A))

for every A € Ap.

The r.h.s. of the last equality defines a functional Fa, : L& (RV)N x L (A)x
Ao — R which is the T'(L® x LP)-limit of {Fy}s0. It now remains to prove
that Fo € F, i.e. that condition (ii) following formula (2.1) is satisfied. Indeed,
we have

e / (le(w)|® + [T + |VT|P)dx < Fy (u,T, A)

< e / 1+ le(u)|* +|T|° + |VT|P)dx
A

for every A € A, (u,T) € Whe(A)N x WA(A). By taking the [(L*(A)V x
LP(A))-limit of these three terms we obtain

b f (le(u)|® + |T|® + |VT|P)dx < Fu (u, T, A)

o / (1+ le(w)® + [T/ + |VTP)dx
A
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for every A € Ay and (u,T) € WHe(A)N x WLB(A).

Let now B,(u) be the ball in RV with center at x and radius p, |B,(u)|
denotes its Lebesgue measure. Furthermore, let us denote by lq and I, the linear
functions such that [ : RN 5 R, lqg=q-x%,: IESN — R, I, = € x. Then we
get, cf. Remark 1.1 of [9]

‘ 1 »
(4) s Bl (/ | Fool%, €€, @)X = foolX, & £,),

a.e. xRV, where £€R.

In virtue of the last relation we finally obtain

co(lel® + [€1% + 1alP) < foo(x,€,€,a) < c1(1 + [€]* + |€]° + |al?).

It means that Fi, € F and the proof is complete. O

Now we are in a position to formulate a theorem which links d, I'-convergence
and e-Yosida transform.

THEOREM 1. Let {Fjs}s~0 be a sequence in F and Fy, € F. Then the follow-
ing conditions are equivalent:

(1) lims_,g+ d(F5, Foo) = 0;
(2)  T(L* x LP) lim;_o+ Fy = Foo;
(3) limg_,o+ (Te F5)(u, T, A) = (TEFm)(u1T|A]
for each & > 0, (u,T) € L& (A)N x L} (A),A € Ap.
Proof The proof parallels that of Proposition 1 of DAL MASO and
Mobica [9], with obvious extensions. Therefore it is omitted here. a
Random integral functionals
Let (2,%, P) be a fixed probability space, that is € is a set of elementary
events, ¥ is a o-field of subsets of Q2 and P is a probability measure on 3.
A random integral functional is any measurable function F' : @ — F when
(2 is equipped with the o-field ¥ and F with the Borel o-field £ generator by
the distance d defined by Eq. (2.4), cf. [9].
If F'is a random integral functional, the image measure Fy P on F defined
by (FgP)(S) = P(F~1(S)) for every S € Lp, is called the distribution law of F.
We shall write F' ~ G if F and G are random integral functionals having the
same distribution law.
The additive group Z" and the multiplicative group Rt act on F by the
translation operator 7, (z € Z") defined by

(2.8) (rF)(u, T, A) = / f(x+5,e(u), T, VT)dx
A
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and by the homothety operator p. (¢ > 0) defined by

(2.9) (0eF)(u, T, A) = f f(;—c,e(u),T, VT) dx
A

for every (u,T) € W2 (RV )N x W{L'f{}RN), and A € Ag. We recall that Z stands
for the set of integers. We observe that if the integrand f does not depend on T',
but still depends on VT, then

(‘TZF}(‘I.I,T,A] — F('rzu, T 1, TzA)u

where (1,u)(x) = u(x — z), ,T(x) =T(x —2z), ,A={x € RN |x —z € A4},
and
(peF)(u, A) = ¥ (peu, peT, pe A),

1 1
where (peu)(x) = -S-u(sx), (peT)(x) = ET(EK]’ peA = {x € RV|ex € A}. In
other words, during translation and homothety, T' in (2.8) and (2.9) is treated
as a parameter similarly to the case of periodic homogenization, cf. [4].
By virtue of Corollary 2.4 due to DAL MASO AND MODICA [9], we conclude

that if F is a random integral functional and z € RV | ¢ > 0, then the functions
T2 F, peF : Q0 = F defined by

(2.10) (raF) (W) = 12(F(w)), (peF)(w) = pe(F(w)), Yw €,

are random integral functionals. Furthemore, if G is another random integral
functional such that F ~ G, then we have 7,F ~ 7,G and p.F ~ p.G.

We say that {F.}.~0 is a stochastic homogenization process modelled on a
fixed random integral functional F' on § if F; ~ p.F for every € > 0, that is F;
and p. F have the same distribution law.

Let F be a random integral functional. We say that F' is stochastically peri-
odic if F and 7, F have the same law for every z € Z".

Ergodicity is a well-established notion when applied to integrands. Here we
need ergodicity in F with respect to Z". After DAL MASO and Mobica [10] we
say that a random integral functional F € F is ergodic if P[F € S] =0 or 1 for
every ¥ p-measurable subset S of F such that 7,(S) = S for every z € ZV.

For F € F, A€ Ag, £ € R and (up, Tp) € Wh(A)N x WLH(A) we may
consider the following Dirichlet problem:

(211) me(F,uo, To, A) = m'm{ / F(x,e(u(x)), €, VT(x))dx
A
|(u—uo, T — To) € WH*(A)N x Wﬂl’ﬁ(A)}
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We conclude that m¢(F, ug, Tp) is continuous in F' with respect to the met-
ric d. We stress that in (2.11) £ € R plays the role of a parameter.
Let @,/ be the cube

Quje ={xRY : || < Ve, i =1,..,N}

and |Qy/¢| = (2/€)" its Lebesgue measure. We recall that lq = q-x and I = € x,
where q € RV, e ¢ EV.

After these lengthy, yet necessary preparations, we are in a position to state
our main homogenization theorem.

THEOREM 2. Let F be a random integral functional and define F, = p.F.
If f is periodic in law, then F. converges P-almost everywhere as € — 0% to a

random integral Fy. Moreover, there exist Q' C Q of full measure such that the
limat

(212) im eF@)lela, Quye)

Py e |Ql;’£| fﬂ(w € 61 )

exists for everyw €V, E€R, q€ RV, e € EY and

(2.13) Fo()@,T,4) = [ folo,e(u(x), Tx), VT (x)ldx

for every w € ¥, A € Ay, (u,T) € L (A)N x LfaC(A) with u|4 € Whe(A)V,
14 € W1B(A). Additionally, if F is ergodic, then Fy is or equivalently fo(w, €,&,q)
does not depend on w and

m{ Icsiq'} Ql/s)
(2.14) fole, €,q) = hm/
€0 |Ql,fs!

forevernylR,qE]RN,eE]Ef.

3. Proof the stochastic homogenization theorem and comments

Prior to passing to the proof of Theorem 2 we are going to provide useful
comments and additional indispensable tools.

First we observe that similar theorem was formulated by DAL MASO and
Mobica [10] for a much simpler case where

(3.1 (peP) )T, A) = [ (%, V7)) ax

A
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The same authors stated a stronger result as Theorem 3 in their another paper
[9]. More precisely, for {F;}.>o a stochastic process modelled on a stochastically
periodic random integral functional F, in [9], it was assumed that there exists
M > 0 such that the two families of random functions

(F()(T, A4)) (F()(T, B))

TeLP

TeL (RN) b (®RY)

are independent wherever A, B € Aj with dist(A, B) > M. Then a counter-part
of formula (2.14) holds. In fact, {F.} converges in probability as ¢ = 0% to
the single functional Fy € F independent of w. Now, the functional Fj is easily
deduced from (2.14) by deleting € and £.

Let us recall the motions of convergence in probability and convergence in
law cf. [9] and the relevant references cited therein.

We say that a sequence of random integral functional {F;}.~o converges in
probability to a random integral functional F, if

(3.2) lim, P{w € Qd(F. (), Foo(w)) > n} =0,Vn >0

where d is the distance on F. It is well-known that any sequence converging
in probability contains a subsequence which converges pointwise almost every-
where.

We say that {F.}.so converges in law to F if the corresponding laws
pe = F,.4P converge weakly — * as € = 0 t0 poo = Fooy P, i.€.,

(33) tim [ o(F)due(F) = / (F)dpioo(F)

e—0+

F F

for every continuous function ¢ : F — R.
Equivalently we may write

(e, ) = (Boorp) as e—0

where (-, -) denotes the duality pairing defined on C*(F) x C(F); C(F) denotes
the space of continuous functions on the compact space F with the supremum
norm and C*(F) is its dual.

The interrelationship between these two types of covergence is well-known,
cf. [9, Prop.2.9].

PROPOSITION 3. Let F, be a constant random integral functional, that
is there exists Fy € F such that Fo(w) = Fy for P-almost all w € Q. Then
convergence in law and convergence in probability toward F, are equivalent.
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Let us comment on the stronger version of the stochastic homogenization
theorem due to DAL MAsSO and MobicA [9]. This theorem is unsatisfactory
for two important reasons. First, the indenpedence at large distances is not
always verified. Such is the case of chessboard structure with cells of random
size sketched in Fig. 3 of [10]. Second, whilst convergence in probability is the
best possible if we give as in [9] the hypotheses in terms of laws, the problem
arises whether there is almost everywhere convergence in the case F, = p.F, a
result well-known in the case of linear stochastic homogenization, cf. [9, 10] and
the relevant references therein.

Both these difficulties are overcome by Theorem 1 of DAL MASO and
MonbicA [10] and our more general Theorem 2.

Nonlinear stochastic homogenization of random media was also performed
by SAB [21]. In essence, this author considers integrands of the type f(w,x,€),
e € EY, convex with respect to €. Essential novelty lies in admitting the linear
growth in €, thus allowing for the study of homogenization of perfectly plastic
media with random distribution of microheterogeneities. Such an approach is
confined to deformational theory of plasticity, sometimes called Hencky plastic-
ity. SAB [21] observed a correspondence between periodic media and statistically
homogeneous ergodic (S.H.E.) media. We observe that this class is larger than
the class of media described by stochastically periodic random integral func-
tionals. SAB’S [21] approach involves an N-dimensional dynamical system on €,
sometimes called the measure preserving flow. This dynamical system is assumed
to be ergodic. Having introduced the dynamical system, not necessarily ergodic,
one can exploit the stochastic differential calculus.

In order to prove our Theorem 2 we need a few additional results, cf. [1, 10].

A set function p: Ay — R is said to be subadditive if

(34) p(A) < > p(Ax)

keK

for every A € Ay and for every finite family {Aj}kex in Ag such that

AcCAVEEK, AinA=0VikeK,j#k [|A-|] Al=0
keK

Let M = M(c) be the family of subadditive functions u : Ay — R such that
0<u(4)<cld] VAEe€A

where ¢ > 0 is a fixed constant. We denote by X s the trace on M of the product
-algebra of RAo.
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Let (2, 3, P) be a given probability space. A (X, Xjs)-measurable map
u: 2 — M is called a subadditive process.
The group Z" acts on M by the formula

(3.5) (rz1)(A) = p(rzA).

If (—p) is subadditive then u is called superadditive.

We say that a subadditive process is ergodic if P[u € S] = 0 or 1 for Xp-
measurable subset S of M such that 7,5 = S for every z € ZV.

Essential role in the proof of Theorem 2. will play the following proposition,
which is substantially the subadditive ergodic theorem due to AKCOGLU and
KRENGEL [1].

PROPOSITION 4. Let u: 2 — M be a subadditive process. If u is periodic
in law, that is g and 7,u have the same law for every z € ZN, then there exists
a Y-measurable function ® : @ — R and a subset ' C Q of full measure such
that

1
(3.6) lim M — i PW(Q)

S = g )
€

for every w € Q' and for every cube @ € RV . Moreover, if y is ergodic then ® is
constant. O

For the proof the reader is refered to DAL MASO and Mobica [10].

Proof of Theorem 2. We divide it into two steps.

STEP 1. The random integrand f(w,x,€,&,q) does not depend on €. Then
mg(F(w),le,lq, Q1/:) appearing in Eq. (2.12) does not involve £ and simply write
m(F(w),le,lq, Q1/¢). Now our proof is an extension of the proof of Theorem I

due to DAL MAsO and Mobica [10]. We recall that lq = q - x, I, = € x.
Let us fix g € RV, e € EY and define

pp(w)(4) = m(F(w),le,lq, 4), Yw € Q, YA € Ag

where p = (€,q). Then pp(w) € M(c) with ¢ = ¢1(1 + |g|® + |€|?) for every
w € Q,and pp : 2 = Mis (I, Xy )-measurable since m(-, l¢,lq, A) is continuous
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on F equipped with the distance d. For every z € ZV, weQ, Ae Ay we have

(Taptp)(W)(A) = pp(w)(724) = (m'!;l){('rzF)(w)(T—zu;T—zTa A)

1

| gt — 7—ale € Wy *(A)Y, 75T — 7—slq € Wy (A)}
= min{ (R F)()(v + L(2), R + lq(2), 4)

|v-lee W (AN, R—lq € Wg*(4)}.
Since the integrand of F' depends only on x, e(u) and VT, therefore
(12F)(v + le(z), R + lq(2), A) = (12F)(w)(v, R, A).

Hence
(TZHP)(L‘J)[A) = m{(TzF)(W)thq:A)a

for every z € ZN, w € Q, A € Ay. Thus ip is periodic in law because 7, F and
F have the same law and m(-,l¢,lq, A) is continuous on F.

In virtue of Proposition 4 we conclude that there exist a subset €, C Q of
full measure and a ¥-measurable function @, : © — R such that

for every w € Q"p and for every cube Q € RY. Let now @1/¢ be the cube defined
in Sec. 2 and let fo: @ x ENY x RN — R be the function defined by

fO(w! €, Q) = lim sup M

V(w,e,q) € X xEN xRV,
e—0+ |Q1_}'£|

We observe that the functions

p=(€‘q)~+ﬁ(—|’“‘£l—@ (weQ, A€ A)

are convex and equibounded between 0 and c;(1 + |q|? + |€|*), hence locally
equicontinuous. The convexity follows from the convexity in (u,T) of F(w)(u, T, A).
Consequently fy(w, €,q) is convex in (€,q). Let us set

=Ny

peQ@V
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where Q is the set of rational numbers. We have P(2') = 1 and

#P(“"")(%Q)

1
3

lim
e—0+

= fﬁ{w: €, Q]

foreveryw € ¥, p = (e,q) € !ESN xRN and for every cube @ in RV . Furthermore,
we get

1
£

ip(@) (1) =1(2) Ml(peF)(@) s lay Q)

Hence, since p. F' = F,, we obtain

El—i-rlil)l"“ m(FE(wl)élln lq‘ Q) = fﬂ(wa €, Cl)

for every w € 9, e € EN, q € RN and for every cube in RY. In virtue of
Proposition 2, for every w € ' there exists an integral functional Fy(w) € F
such that Fi(w) I'(L* x LP) converges to Fy(w) as € — 0F. More precisely, there
exists such a subsequence still denoted by F,.

Let us calculate the integrand go(w,x,€,q) of Fy(w). Fix w € ' and set

Qo(x)={y €R" : |y; —zi| <p,i=1,..,N}.

Taking into account formula (A) of Sec. 2 and the continuity of m(:,l,lq, A),
we conclude that there exist a subset N of RV with |A/| = 0 such that

m(Fo(w), le, Iq: Qp(x))

gﬂ(w,X,G}Q) = pl_i+%'1+ |Qp(x)|
. . m(FE (w}s IE! [qs Qp(x))
=i %l 1
p—l)r(I]1+ s-l+r(l}1+ |Qp(x)|
1
:Q
— llm llm ,up(w)( p(x)) =f0(‘-‘-’»£:£l)
p—0t e—=0+ %Qp(x)l

for every x € RV \ W, e € EY, q € RY. Thus we get

Fo(w)(u,T, 4) = / folw, e(u(x)), VT(x)]dx
A

for every w € ', A € Ao, (u,T) € L (RY)N x L’E}C(RN] such that (u,T)[4 €
Whe(A)N x WLB(A).

http://rcin.org.pl



STATIONARY THERMOELASTICITY AND. .. 333

If F is ergodic, then pp is ergodic and on account of Proposition 4, ®,, and
thus also fy do not depend on w.

STEP 2. Let now f = f(w,x,€,T,q). On account of Proposition 2, for a
fixed w € §, there exists a subsequence of {F}.>o, still denoted by {F.} such
that Fy(w) I'(L® x LA) converges to

Foo(w)(u,T, A) =/fg[w,x,e{u(x}),T(x),VT(x}]dx
Q

for each A € Ao, (u,T) € L (RY)N x Lf
who(4).

Let now T € C'(R") and consider the function, cf. BRAIDES [4] in the case
of periodic homogenization

(RN) with (u,T)|4 € Whe(A)N x

fT(w: X, €, Q) == f(wa X, €, T(x)’ q).
To the function fr we may apply Step 1 and write

: m{FT(w)aiﬂlq:Ql;"E)
3.7 lim
(5.0 S T

for every w € &, (e,q) € EN x RV, and

= fOT(wa €, Q)

ol i [ folw, e(u(x)), T(x), VR(x)]dx
A

Still by Step 1 and (3.7) we get

fm(wrxsev&(n = fﬂﬁ(w} E:Q) = fO{w,G,E,q)-

Ergodicity implies that fy does not depend on w. Thus the proof of Theorem 2
is complete. O
REMARK 1.
(i) The easiest way of proving ergodicity of F is to verify a mixing condition
(or independence at large distances), cf. [9].
(ii) A random integrand f is ergodic if it satisfies the following mixing condi-
tion [9]:
lim P({w € 0lf (@, %0 €16,:) > si Vi€ ],

|#]| = +o0
zeZN

f(w$Yj + z, Aj:{vrj) 2 tj VJ € ‘}})
= P({w € Q| f(w,x;,€,€,q;) > s; Vi€ I})

XP({w S .Qlf(wa)'j! Aj,§,rj) >t; V5 € J})
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(i)

for every pair of finite families {(x;, €;,qi}ics and {(y;, Aj,rj}jes in RN x
EN x RV. Here ¢ € R is treated as a parameter. Then one can extend
Theorem III due to DAL MASoO and Mobica [10] and prove that, for
instance, if f is ergodic, then F is ergodic.

Ergodicity of F' also follows if a measure preserving ergodic flow on €2 is in-
troduced. Then the integrand is ergodic and the ergodicity of F' is satisfied.

It seems that Theorem 2 can be weakened by assuming the convexity of
integrands only with respect to € € EY and q € RV. Then appropriate
conditions on f are specified by BRAIDES [4]. This author performed the
so-called periodic nonuniform homogenization. It means that after homoge-
nization the integrand fy depends additionally on the macroscopic variable
x € V, where V denotes a domain in RV occupied by the considered body.
The authors of the present paper are not aware whether any results of this
type are available for random media; we mean here non-uniform stochas-
tic homogenization of functionals. The only available approach is due to
BOURGEAT et al. [3]. These authors introduced the motion of stochastic
two-scale convergence in the mean which allows for treating the media
remaining macroscopically inhomogeneous.

4. Thermoelastic stochastically periodic composite

Theorem 1 is general and covers a broad class of stochastic microstructures.
In the remaining part of the paper we will focus on specific microstructures.
More precisely, we consider a two-phase thermoelastic composite, occupying a
domain A C RV . The phases are located randomly in periodic cubic cells with
a given distribution. The dimensionless parameter ¢ is equal to the ratio of the
length of the cell I and the characteristic dimension of the body L, £ = [/L.

The classical Duhamel-Neumann relations are satisfied at an arbitrary point
x € A:

(4.1)

o =A(w,x)e — f5(w,x)T, B (w,x) = A*(w,x)a"(w,x),

where the strain-displacement is linear

(4.2)

1
eij(u) = i(u;',j + u43).

The Fourier relation takes now the form

(4.3)

qe(wa }C) = _xt.‘(w’ K)VT,

where w € §2. Here, o is the stress tensor; A and a are the tensors of the elastic
moduli and thermal expansion; T is the temperature increment; q is the heat
flux whiles s denotes the conductivity tensor.
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We recall that
A% (w,x) = A(w, %), w(w,x) = x(w, 5), ete.
The random functional F*¢, given by:
(44) F*(w)(u,T,A)
ffs(w,x,e(u);T,VT]dx if (u,7) € H'(A)N x H'(A)

A
+00 otherwise

where
(4.5) f(w,x,e(u);T,VT) = —{[e u) — Taf (w,x)] " A¥(w, x)

- [e(u) = Ta®(w,x)] + (VT) " 3¢ (w, x)VT}.

Under usual symmetry and coercivity assumptions pertaining to matrices A
and & the integrand f(w,x,€,&,q) is convex in (€,£,q) € EN xR x RV and
f € F where a = 8 = 2. The convexivity in £ results from linearity of the trans-
formation (€,£) — (€ — £a). Here the superscript T stands for transposition.

The moduli A, 3, a possess the usual properties, cf. [11-13].

We have

LB P
de ’ VT

(4.6)

Now we introduce the stochastically periodic structure as follows: let (X§)yxez~
be a family of independent random variables defined on a probability space
(2,%, P)

Plwe: Xi(w)=1}=g¢,
(4.7)
P{LJEQ Xk —0} l—ci=co

for every £ > 0, k € Z" and for ¢; €]0, 1] fixed.
For every € > 0 and k € Z¥, let Qy be the cube in RY defined by

(4.8) t={xeR": eki<zi<e(k;+1), i=1,..N}

and denote by Iy its characteristic function.
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Furthermore, let us define the stochastically periodic characteristic function

(4.9) X (w,x) = Z X (w) I (x), we, xeRY
keZN

where I¢(x) is periodic in x. More precisely, I is the characteristic function of

the cube Qf:
H £
Iﬁ(u) a { ]., if xe Qk’

0, otherwise.
We also set
x
£ f— FE
(4.10) X (@,%) = x(w, ),

where x(w, ) is a 1-periodic function, since
X
IE(x) = I,i(g).

REMARK 2. If y = x/e, one recovers the microvariable well-known in peri-
odic homogenization [22]. O

For € > 0 the values of the coefficients A°, &® and »* may be determined by
the function x*(w,x) and positive definite moduli A0 ﬁm, a® ¥ §=1,2
characterizing each of the two phases we write

A% (w,x) = AW xE (w,x) + AD(1 - x*(w,x)),
B (w,x) = BUx"(w,x) + B (1 — X (w,x)),
af (w,x) = aVy (w,x) + a?(1 - x*(w,x)),
3 (w,x) = 3V (w, %) + %P (1 - x*(w, x)).
The moduli A&, &) o) 5() are constant.

Now we are in a position to apply Theorem 1. Particularly, we have

(4.11) (0 F)(w)(u,T, A) = /f(w, E,e(u);T, VT)dx,

A

where

e (w, %, e(u); T, VT) = f(w, =, e(u); T, VT),
£

(4.12) f(w, z

e’

e(u);T, VT) = %[ (u) - Ta(, ;)]TA(wg)
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The I-limit of Ff,, is now given by Theorem 1, where now f¢ is defined by
(3.12).
The limit functional Fy is given by a non-random integral functional:

(4.13)  Fo(w)(u,T, A)
[ fo(e(u); T, VT)dx if (u,T) € H'(A)® x H'(A),
g { ioo otherwise.
The integrand fo(-;-,-) is given by

: / (0, %, e(u);0,, VT)dxdP(w)
1}£| i

1/e

(1.14) fo(E:6,8) = lim [ win{ 5

lu=B:x, 'T=8-% on GQUE,(U,T)EM}

where ECEN, 0 e R, SeRV.

REMARK 3. The necessary conditions for the existence of minimum in (4.14)
are the following Euler equations

div[A(x,w) - (e(u) + E — a(x,w)d)] =0
(4-15) ; ~ } in Ql/e
div[s(x,w) - (VT +8)] =0

with

a=>n T=0 on 9Q/.

Since the problem is linear, we look for the fields u and T in the following
abberative form

(4.16) %= —" Bn + 68, T=y™Sm.
Then

eij (1) = —e;j(™) Emn + €i5(9)0,
ViT = 0™ Qm.

Substituting (4.17) into (4.15) we get:

(4.17)

—[0iMijkiext (@™ )] Enn + (8iMijmn) Bmn =0  VE € EY
(4.18) —(0i Aijkiak)0 + [0iXijmnemn(4)]0 =0 Vo € R
;[ (— ;™)) S + 9i(55)Si = 0 VS € RV,
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Hence we get the system of equations posed on @, ,E'

3;'1\;'3'1::3(;;*?5;“} = O;Aijmn
(4.19) aai)\z'jmna{k(f’n = ai)\ijktﬂfkt
0;i; 0™ = O >tim

with the homogeneous boundary conditions on 9@y for the unknown fields
(mn)? ¢11 ' D

Knowing the solution of the “cell problems” i.e. the functions (p ) , &, % on

0Q1 /e, which obviously are the functions of u, w and €, we obtain the unique
fields

e(u) =e(u) + E,
VT = Vs

and
1
(4.20) f(w,x,e( ) 9 VT) [{eU — ]/\,-J-H(ek; - O:HS) B 6kaH3;T]

= §[Aijkt(—3(kw§;n ") By + By + Ok P1y0 — b))
: (_a(i‘Pﬁ‘Tn)Emn + Eij + 0(;9;)0 — i;0)
+ (=0 Sj + Si) sk (— k'St + Sk))

1 mn
= {)‘ijkl[(fk{mn = 3(::90;() ) Eumn + (8 bty — k)

2
% [(Is'jmn a(tﬁp{mn]}Emn 2 ( (:’ij) = Qij)gl
+ 56T = O9") SU[(Tmi — Omnt')Sim] .
The tensors I, and gy, are unit tensors in the proper spaces, namely:
1
L; = 05 Liji = 5(5:‘1:5;': + 0itdk)-

Substituting (4.20) into (4.14) we arrive at:

(4.21) fo(E;0,S) = _[x a*d)- (E—a'0) + s -S-8],
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where the macroscopic moduli are determined by

1/:

=1 dP(w

1}':

(4.22)

a3t = !E,%/ IQLJ f A (I-Vy)- adxdP(w),

Y] Qi/e

- =m/ iQuEI / (I — Vi) dxdP(w).

I./r.'

The above abbreviated notation should be understood as, e.g.,

e—0

A 111’1’1/ /z\lmnwx v 3m[}ewx dxdP(w
i =10 | g ) damalbimlias = mge e, x)]

Qlf:

Here we have exploited the following properties of the solutions of the cell
problems

fA-{I—V:p)-Vrpdx=0, /A-(I—Vgo)—Vqux:O,
Ql;s Ql/z

//\-(I—-qu)-qudx:U, /A-(IFtiJ)-qudx:O,
Qi/e Qe

/ A-(I—Vy)-Vipdx =0.
Qe

One can set: E = e(u), # = T, S = VT and then the macroscopic potential
given by (4.21) yields the macroscopic stresses and heat flux fields in the form:

dfo dfo

o_ 9%9Jo a1

(4:25) =% 9 VT’
where

(4.24) o = A* - [e(u) — a’T], q° = »*VT.
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5. One-dimensional case

Let assume that all material properties as well as displacement and temper-
ature fields are scalar functions of one variable, denoted further by z. Then for
every € > 0, let (Xj)kez be a family of independent random variables defined
on the probabilistic space (2, X, P)

(5.1)
P{MEQ: Xf:(w)=1}=(:1, P{WEQ: Xi(w)=0}=1—c1=c2

for every k € Z and for ¢; €]0, 1] fixed.
For every € > 0 and k € Z, let Qf be the interval in R defined by

1

(5.2) Qe = {-J Lz <j}, 1@1/e| = oTh

Denote by Iy its characteristic function. The stochastically periodic characteristic
function is given by

(5.3) X (w, @) = Y Xiw)i(z) weQ, zeR,
keZ

where If(z) is periodic in z. Moreover, we set

(5.4) X (,2) = x(, 3),

where x(w, -) is 1-periodic function, because

Ii(z) = Ié(%).

Then the coefficients A\, o and »° are determined by the function x*(w,z) and
positive constants A, () o) () =1 2 asfollows

X (w, 2) = AxE (W, 2) + AP (1 - x* (w, 7)),
B (w, z) = VX" (w, ) + BO(1 - x* (w, ),
of (w,z) = a{l)xe(w,x) + a1 - x°(w, z)),

#(w, @) = V¥ (w,z) + 5P (1 - X (w, 7)).
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In this case the macroscopic potential is expressed by

(5.6) fo(E;0,Q) = hm jmm———[[ v — a(w, 7)0)\w, T)

(v = a(w,)8) + T'»(w, z)T'|dzd P(w),
subject to
(57) u(_j) = _jEs u(.?) = JE) T(_J) = —jS'I T(J) =JS

Here v’ = du/dz, etc. To find the minimum in (5.6) we solve the following Euler
equations

(5.8) Mw, 2)u'(z) — B(w, 2)6) =0 and [s(w,z)T(z)]' =0, Yz €] - ji j
with the following boundary conditions

(i) = =iB . wli=iB,
(5:9) Tl-gy=il, ()=

After straightforward calculations we get

(5.10) u = /\(ilm) + a(w, 2)0,
where

i A A
(5.11) dy = [2Ej - Bfa(w,a:)d:c] (f ,\(wxm)) .

~j =
and
(5.12) T = x(i"z),
j
(5.13) dp = 2Qj(/ x(imx) gy
=
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Hence

J
rmn ;21'? [[(u’ — a(w, 7)0)A\(w, z) (v — a(w,z)0) + T'»(w, z)T')dzd P (w)
=J

[u(~5) = —3E, u(j) =jB, T(-j)=-jS, T() = jS}

) _i[(/j[/\(w, x)]‘ldzr)_l(2Ej — Bja(w,sc)d&:)z
%

=3

- H[E S (Oxeite 00 - xwie) "] e

k=i
J Sy
+2[§%kgj(,\f”x5( W)Ik(z) + A (1 - X (@) I}())) 1] 'B
J
(5 3 (" xiokta) + o2 - X ) o
+[5: i (AVxgw) + X0 - x5w)) ]
" kA kY )
1 ;
.[2_3_*;3( X{(@)Ik(2) + @ (1 - X; (@)} (2)))] 62
J
+[2ijk§(x“>x€( (@) + 201 - X)) ] 5
for any € € Q.

Taking into account that (X} )kez is the family of independent random vari-
ables for every €, I}(z) is one-periodic characteristic function and applying the
strong law of large numbers [9] to the limit j — oo, we obtain:

(5.14) fo(E;6,S)
= (A + A ) TTE? = 2(c AT + e ) T (eran + coa) BB

+ (Cll\ +62r\2 ) (C;Q‘] +L‘2(}:2) 9 . (Clxl +62x )-“152_

http://rcin.org.pl



STATIONARY THERMOELASTICITY AND... 343

The final form of the integrand fp is expressed by

(5.15) fo(E;8,8) = N E? — 2X*a*Ef + \*a*?26? + »* §2,
where

X = (aA[ + e ), g = \a

a* = cjay + craa, 7 — (clxl'l -+ c2x2_1)_1.

6. Final remarks

Except cases such as one-dimensional, one has to resort to approximation of
effective moduli. Elaboration of upper and lower bounds for effective thermo-
elastic moduli remains open. Though media with random microstructure were
studied by many authors, see for instance TORQUATO [23], yet application of
mathematically rigorous homogenization methods seem to be at its very begin-
ning. The lack of lucid bounding methods is thus not surprising. From Theorem 1
and its specific form applied to two-phase composites with random microstruc-
ture we conclude that the method applied is not applicable to nonstationary
thermoelasticity.

To solve the problem of stochastic homogenization of equations of coupled,
nonstationary thermoelasticity, one has to use either the method of G - conver-
gence or the stochastic two-scale convergence in the mean, cf. [2,3,15,18].

The general stochastic homogenization Theorem 1 was applied to classical,
linear, stationary thermoelasticity. This theorem can also be used to physically
nonlinear thermoelestic materials with random microstructures provided the the
deformations are small.
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